ProbStat Forum, Volume 6, October 23, Pages 73 88 ISSN 974-3235 ProbStat Forum s an e-ournal. For detals please vst www.probstat.org.n Concomtants of generalzed order statstcs from bvarate Lomax dstrbuton Nayabuddn Abstract. In ths paper probablty densty functon (pdf for rth, r n and the ont (pdf of rth and sth, r < s n, concomtants of generalzed order statstcs from bvarate Lomax dstrbuton s obtaned. Also sngle and product moments are derved. Further the results are deduced for moments of kth upper record values and order statstcs. Also ther means and product moments are tabulated.. Introducton The Lomax dstrbuton ntroduced and studed by Lomax (954. He used ths dstrbuton to analyze busness falure data. Lomax dstrbuton has been studed by several authors n lterature. Balkema and de Haan (974 showed that the (df of Lomax dstrbuton arses as a lmt dstrbuton of resdual lfetme at great age. Accordng to Arnold (983, the Lomax dstrbuton s well adapted for modelng relablty problems. Nayak (987 used multvarate Lomax dstrbuton n relablty theory. Balakrshnan and Ahsanullah (994 derved the relatons for sngle and product moments of record values from Lomax dstrbuton. The Lomax dstrbuton s also known as the Pareto dstrbuton of second knd. In ths paper, we consder the bvarate Lomax dstrbuton (Sankaran and Nar, 993 wth probablty dstrbuton functon (pdf f(x, y α α 2 c(c + ( + α x + α 2 y (c+2, x, y, c, α, α 2 >, ( and correspondng df F (x, y ( + α x + α 2 y c, x, y, c, α, α 2 >. The condtonal pdf of Y gven X s f(y x α 2(c + ( + α x (c+ ( + α x + α 2 y (c+2, y >. (2 The margnal pdf of X s f(x cα, x >, (3 ( + α x (c+ Keywords. Generalzed order statstcs, concomtants of generalzed order statstcs, order statstcs, record values, bvarate Lomax dstrbuton, sngle and product moments Receved: 9 August 22; Revsed: 3 May 23; Re-revsed: 2 September 23; Accepted: 7 September 23 Emal address: nayabstats@gmal.com (Nayabuddn
and the margnal df of X s Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 74 F (x ( + α x c, x >. (4 The concept of generalzed order statstcs (gos was gven by Kamps (995. Several authors utlzed the concept of (gos n ther work for detaled survey one may refer to Khan et al. (26, Ahsanullah and beg (26, Anwar et al. (27, Beg and Ahsanullah (28, Fazan and Athar (28, Tavangar and Asad (28, Khan et al. (29, Tahmaseb and Behboodan (22, Athar et al. (22, Athar et al. (23, Athar and Nayabuddn (23, Athar and Nayabuddn (23, among others. Let n N, n 2, k >, m (m, m 2,..., m n R n, M r n r m, such that γ r k + n r + M r > for all r {, 2,..., n }. Then X(r, n, m, k, r {, 2,..., n} are called gos f ther ont pdf s gven by k ( n ( n γ [ F (x ] m f(x [ F (xn ] k f(xn (5 on the cone F ( < x x 2... x n < F ( of R n. Choosng the parameters approprately, models such as ordnary order statstcs (γ n + ;, 2,..., n,.e. m m 2... m n, k, kth record values (γ k,.e. m m 2... m n, k N, sequental order statstcs (γ (n + α ; α, α 2,..., α n >, order statstcs wth non-ntegral sample sze (γ (α + ; α >, Pfefers record values (γ β ; β, β 2,..., β n > and progressve type II censored order statstcs (m N, k N are obtaned (Kamps, 995, 2. In vew of (5 wth m m;, 2,..., n, the pdf of rth gos, X(r, n, m, k s f X(r,n,m,k C r (r! [ F (x] γr f(xg r m (F (x (6 and ont pdf of X(s, n, m, k and X(r, n, m, k, r < s n, s where and f X(r,s,n,m,k (x, y C r C s (r!(s r! [ F (x] m f(xgm r ( ( ( F (x [hm F (y hm F (x ] s r [ F (y] γs f(y, α x < y β, (7 r γ, γ k + (n (m +, ( xm+, h m (x m + log( x g m (x h m (x h m (, x (,. m, m Let (X, Y,, 2,..., n, be n pars of ndependent random varables from some bvarate populaton wth dstrbuton functon F (x, y. If we arrange the X varates n ascendng order as X(, n, m, k X(2, n, m, k X(n, n, m, k, then Y varates pared (not necessarly n ascendng order wth these generalzed ordered statstcs are called the concomtants of generalzed order statstcs and are denoted by Y [,n,m,k], Y [2,n,m,k],..., Y [n,n,m,k]. The pdf of Y [r,n,m,k], the rth concomtant of generalzed order statstcs s gven as g [r,n,m,k] f Y X (y xf X(r,n,m,k (xdx (8
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 75 and the ont pdf of Y [r,n,m,k] and Y [s,n,m,k] s g [r,s,n,m,k] (y, y 2 x2 f Y X (y x f Y X (y 2 x 2 f X(r,s,n,m,k (x, x 2 dx dx 2. (9 It s well known that the dstrbuton functon of order statstcs are connected by the relatons (Davd, 98 n ( ( n F r:n (x ( n+r F : (x n r n r+ where F r:n (x s the df of rth order statstcs. Thus the pdf of rth concomtants of order statstcs Y [r:n] s g [r:n] (y n n r+ and the kth moments of Y [r:n] s µ k [r:n] (y n n r+ ( ( n ( n+r g [:] (y n r ( ( n ( n+r µ (k n r [:](y. ( Here some mportant transformaton and formulas are presented, whch wll be used n the subsequent sectons (Prudnkov et al., 986; Srvastava and Karlsson, 985 (λ n ( + z a ( n ( λ n, n, 2, 3,..., λ, ±, ±2,..., ( ( p (a p z p, (2 p! p (λ + m λ(λ + m (λ m, where (λ m Γ(λ+m Γ(λ, λ,, 2,... (3 (λ + m + n λ(λ + m+n (λ m+n, (4 (λ m+n (λ m (λ + m n. Important denttes/result n hypergeometrc functon are a, b 2F ; z (a p (b p ( z p (c c p p p! (5 (6 s condtonally convergent for z, z f < Re(ω, 2F a, b ; Γ(cΓ(c a b, Re(c a b >, c,,, 2,..., (7 Γ(c aγ(c b c a, b x p 2F ; mx dx (m p Γ(cΓ(pΓ(a pγ(b p, (8 Γ(aΓ(bΓ(c p c
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 76 f < Re p < a, Re b; arg m < π (a, (a 2, (a 3 x s 3F 2 ; x dx Γ(b Γ(b 2 Γ(sΓ(a sγ(a 2 sγ(a 3 s, (9 Γ(a (b, (b 2 Γ(a 2 Γ(a 3 Γ(b sγ(b 2 s f < Re < s < Re a ;, 2, 3 3F 2 N,, a m,, 2 b, (b (a m F 2, (b + N (a b, a m, 3 2 b N, 2 a, (2 N,, N, m, 3F 2, (l F 2,, (N + l l, m 3 m, 2 N l (2 for m, 2,..., l N, N, N,... For real postve k, c and a postve nteger b b ( b ( a B(a + k, c B(k, c + b. (22 a a Note that (Erdély et al., 954 y x λ (x y µ Γ(λ µγµ dx y (µ λ, < Reµ < Re < λ Γλ (23 µ, v x v (a + x µ (x + y ρ ΓvΓ(µ v + ρ dx Γ(µ + ρa µ y (v ϱ 2F ; y a µ + ρ (24 f arg a < Π, Rev >, arg y < Π, Reρ > Re(v µ. Note that (Srvastava and Karlsson, 985 F p:q;k (a p; (b q ; (c k p l:m;n ; x, y (a q r+s (b k r (c s x r l (α l ; (β m ; (γ n ; r s (α m r+s (β n r (γ s r! s known as Kampé de Féret s seres. Note that (Prudnkov et al., 986 pf q α, α 2,..., α p ; z β β 2,..., β q k (α k (α 2 k...(α p k (z k (β k (β 2 k...(β q k k! y s s! (25 (26 s known as generalzed hypergeometrc seres. 2. Probablty densty functon of Y [r,n,m,k] For the bvarate Lomax dstrbuton as gven n (, usng (2, (3, (4 and (6 n (8, the pdf of rth concomtants of gos Y [r,n,m,k] s gven as g [r,n,m,k] (y α 2C r c(c + r ( r (r!(m + r ( α ( + α x + α 2 y c+2 dx. (27 ( + α x c(γr
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 77 Let t α x, then the R.H.S. of (27 reduces to α 2 C r (r!(m + r r c(c + Usng relaton (24 n (28, we get g [r,n,m,k] (y ( r ( ( + t + α 2 y (c+2 ( + t c(γr dt. (28 C r (r!(m + r c(c + (α 2 r ( ( + α 2 y (c+ ( (cγ r r c, (cγ r + 2 F ; α 2 y. (29 (cγ r + 2 We now prove that g [r,n,m,k] (ydy. We have, g [r,n,m,k] (ydy Usng relaton (6 n (3, we get C r (r!(m + r r c(c + α 2 ( + α 2 y (c+ 2 F α 2C r c(c + r ( r ( (r!(m + r cγ r + Let t + α 2 y, then R.H.S. of (3 becomes C r c(c + r (r!(m + r ( r ( Now usng relaton (23 n (32, we get C r (r!(m + r r c(c + p cγ r + ( r ( ( r ( (cγ r c, (cγ r + 2 (cγ r c p ( p ( p (cγ r + 2 p p! p cγ r + cγ r + (cγ r c p ( p ( p (cγ r + 2 p p! p ; α 2 y dy. (3 ( + α 2 y (c+ (α 2y p dy. (3 t (c+ (t p dt. (32 (cγ r c p ( p ( p Γ(c p. (cγ r + 2 p Γ(c + In vew of (, we have C r (r!(m + r r (c + ( r ( cγ r + 3 F 2 (cγ r c,, (cγ r + 2, ( c,. (33 Usng relaton (2 n (33, we get C r r ( r (r!(m + r ( 2F (cγ r c, ( c ;. (34 Now n vew of (7 n (34, we have n vew of (22. g [r,n,m,k] (ydy C r r ( r ( k (r!(m + r ( B m + + (n r +,
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 78 3. Moment of Y [r,n,m,k] In vew of (29, we have ( E Y (a [r,n,m,k] y a g [r,n,m,k] (ydy C r (r!(m + (r!(m + p Lettng t + α 2 y n (35 we have r r c(c + ( r ( (cγ y a α r c, 2 ( + α 2 y (c+ 2 F (cγ r + 2 C r r r c(c + (cγ r c p ( p (cγ r + 2p! C r c(c + r ( r ( (α 2 a (r!(m + r cγ r + In vew of relaton (23, (36, becomes (α 2 a C r c(c + r ( r ( (r!(m + r cγ r + p ( ( r cγ r + ; α 2 y cγ r + dy y a (α 2 ( + α 2 y (c+ ( α 2y p dy. (35 p (cγ r c p ( p ( p (cγ r + 2p! (cγ r c p ( p ( p (cγ r + 2 p p! t (c+ ( t (p+a dt. (36 Γ(c a pγ(p + + a. (37 Γ(c + Now on usng ( n (37, we get after smplfcaton α a 2 C r ( r c(c + r ( (cγ Γ(c aγ( + a r c,, ( + a (r!(m + r 3F 2 cγ r + Γ(c + (cγ r + 2, ( c + a After applcaton of (2 n (38, we have cα2 a C r (c aγ(c a Γ( + a r ( r (r!(m + r ( 2F Γ(c + a, ( cγ r ( a Applyng (7 n (39, we get C r Γ(c + aγ( + a r ( r (α 2 a (r!(m + r ( cγ(c γ r a c, ;. (38. (39 α2 a C r Γ(c + aγ( + a r ( r ( k (r!(m + r ( a sb + (n r + Γ(c + m + c(m +,, whch after applcaton of (22, yelds ( E y (a [r,n,m,k] C r Γ(c + a Γ( + a Γ( k+(n r(m+ a c (α 2 a (m + r m+ cγ(c Γ( k+n(m+ a c Γ(c + a Γ( + a (α 2 a cγ(c r ( a cγ m+ (4 (4
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 79 Remark 3.. Set m, k n (4, to get moments of concomtants of order statstcs from bvarate Lomax dstrbuton ( E y (a [r:n] n! (α 2 a (n r! and at r, we get ( E y (a [:n] n (α 2 a (nc a Further, n vew of (, (42 becomes ( E y (a [r:n] n n r+ Γ(c + a Γ( + a Γ(n r + a c cγ(c Γ(n + a c Γ(c + a Γ( + a. (42 Γ(c ( ( n ( n+r Γ(c + a Γ( + a n r (c a(α 2 a. Γ(c Remark 3.2. At m n (4, we get moment of concomtants of kth upper record value from bvarate Lomax dstrbuton ( E y (a [r,n,,k] Γ(c + a Γ( + a (α 2 a cγ(c ( a. ck r Here n Table 3, t may be noted that the well known property of order statstcs n E(X :n ne(x (Davd and Nagaraa, 23 s satsfed. 4. Jont probablty densty functon of Y [r,n,m,k] and Y [s,n,m,k] For the bvarate Lomax dstrbuton as gven n (, usng (2, (3, (4 and (7 n (9, the ont pdf of rth and sth concomtants of gos Y [r,n,m,k] and Y [s,n,m,k] s gven as g [r,s,n,m,k] (y, y 2 C s c 2 (c + 2 (α (α 2 2 (r!(s r!(m + s 2 r s r ( + ( r ( s r ( + α x 2 c(γs ( + α x 2 + α 2 y 2 c+2 I(x 2, y dx 2 (43 where I(x 2, y x2 α ( + α x c(s r+ (m+ c ( + α x + α 2 y c+2 dx. (44 Let t ( + α x, then the R.H.S. of (44 reduces to I(x 2, y (λ β +αx 2 t α ( + t λ β dt, (45 where α c(s r + (m + c, β (c + 2 and λ α 2 y. Now on usng (2 n (45, and smplfyng, we get I(x 2, y (λ β p ( p (β p( λ p p! [ ] ( + α x 2 (α p. ( α + p +
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 8 Table : Mean of the concomtant of order statstcs n r α 2, c 2 α 2 2, c 3 α 2 3, c 4..25. 2.6667.2.952 2.3333.3.27 3.6.875.99 2.8.225.39 3.6.3375.385 4.574.88.889 2.6857.245.969 3.943.2455.8 4.8286.3682.478 5.5556.786.877 2.6349.948.936 3.769.292.2 4.59.2629.66 5 2.37.3945.555 6.5454.765.87 2.66.89.95 3.6926.263.976 4.832.232.65 5.82.2785.27 6 2.265.477.623 7.5385.75.864 2.5874.853.92 3.6527.985.949 4.7459.266.3 5.895.2436.5 6.935.2924.262 7 2.387.4386.683 Table 2: Mean of the concomtant of record statstcs r α 2, c 2, k α 2 2, c 3, k 2 α 2 3, c 4, k 3..2.99 2 2..24.992 3 4..288.8 4 8..3456.8 5 6..447.287 6 32..4977.44 7 64..5972.532 8 28..766.67 9 256..8599.823 52..39.989
Therefore, n vew of (43, we have Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 8 g [r,s,n,m,k] (y, y 2 c 2 (c + 2 (α (α 2 2 C s (r!(s r!(m + s 2 r s r ( + ( r ( s r (λ β p α ( + α x 2 (cγs c ( + α x 2 + α 2 y 2 c+2 [ ( + α x 2 (α p ( p (β p ( λ p ( α + p + p! ] dx. (46 Lettng t 2 ( + α x 2 n (46, and usng relaton (2, we get g [r,s,n,m,k] (y, y 2 c 2 (c + 2 (α 2 2 C s (r!(s r!(m + s 2 (λ β (δ β p where δ α 2 y 2 and θ cγ s c. Set d θ and g 2 θ α n (47, to get c2 (c + 2 (α 2 2 C s λ β δ β r (r!(s r!(m + s 2 s r (β p ( λ p p! After substtutng the value of λ and δ n (48, we get c 2 (c + 2 (α 2 2 C s (r!(s r!(m + s 2 l (β l ( l (d + ll! p r l s r (β l ( δ l l! ( ( ( + r s r r Usng relaton (3 and (4 n (49, t becomes Therefore c 2 (c + 2 C s (r!(s r!(m + s 2 (α 2 (α 2 y β (α 2 (α 2 y 2 β s r ( + ( r ( + ( r p ( s r ( θ + l(2 θ α + l + p, (47 (β p ( λ p (g + p + lp! ( s r l (β l ( δ l (d + ll!. (48 (α 2 y 2 β (α 2 y β (β p ( α 2y p (g + p + lp!. (49 l p r s r ( + ( r (g p+l (g + p+l (β l (d l (β p ( s r ( α 2y p (d + l p! ( l l! dg. g [r,s,n,m,k] (y, y 2 c 2 (c + 2 C s (r!(s r!(m + s 2 (α 2 (α 2 (α 2 y β (α 2 y 2 β F :; :2; r s r ( + ( r ( s r (g; (β; (d; (β; ;, α 2y (g + ; (d + ; dg (5 where F :; :2; [ ] s as defned n (25.
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 82 We now prove that g [r,s,n,m,k] (y, y 2 dy dy 2 A g [r,s,n,m,k] (y, y 2 dy dy 2. We have F :; :2; (α 2 (α 2 y β (α 2 (α 2 y 2 β (g; (β; (d; (β; ;, α 2y (g + ; (d + ; dy dy 2 where Then, A c 2 (c + 2 C s (r!(s r!(m + s 2 r g [r,s,n,m,k] (y, y 2 dy dy 2 A On applyng (5 n (5, we can wrte (α 2 A (α 2 y 2 β l s r (g l (β l (d l ( (g + l (d + l l! ( + ( r p l l { ( s r (α 2 (α 2 y β (α 2 (α 2 y 2 β (g l+p (g + l+p (β l (d l (β p (α 2 (α 2 y β dg. ( α 2y p (d + l p! (g + l p (β p ( (g + l + p p! p ( α 2y p l l! dy dy 2. (5 dy }dy 2. (52 Now usng relaton (26 n (52, we have α 2 A (α 2 y 2 β (g l (β l (d l ( (g + l (d + l l! l l (α 2 (α 2 y β 2 F (β; (g + l (g + + l ; α 2y dy dy 2. (53 Now lettng t α 2y (α 2 y 2 A (α 2 y 2 β n (53, to get (g l (β l (d l ( (g + l (d + l l! l l t (β 2F (β; (g + l (g + + l ; t dt dy 2. Now n vew of relaton (8, we have (α 2 A (α 2 y 2 β (g l (β l (d l ( (g + l (d + l l! l Further, usng relaton (3 n (54, to get ga (α 2 (g β + (α 2 y 2 β l (g β + l (β l (d l ( (g β + 2 l (d + l l! l (g + l (β (g + l + β dy 2. (54 l dy 2. (55 Now usng relaton (26 n (55, we have ga (g + β; (β; (d (α 2 (g β + (α 2 y 2 β 3 F 2 ; dy 2. (56 (g + 2 β; (d +
Set t 2 ga (g β + Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 83 n (56, to get (t 2 (β 3F 2 Now on usng relaton (9 n (57, we have (g + β; (β; (d ; t 2 (g + 2 β; (d + dt 2. (57 Agd (β 2 (g + 2 2β(d + β. (58 Now after puttng the value of g, d, β, A n (58, we get Therefore, C s (r!(s r!(m + s n vew of (22. r s r g [r,s,n,m,k] (y, y 2 dy dy 2 s r ( + ( r ( s r [ k C s (r!(s r!(m + s ( ( + r ( k B m + + (n r +, B m+ + (n s + ] k [ m+ + (n r + ]. r ( s r ( k m + + (n s +,. 5. Product moments of two concomtants Y [r,n,m,k] and Y [s,n,m,k] The product moments of two concomtants Y [r,n,m,k] and Y [s,n,m,k] s gven by ( E Y (a [r,n,m,k] Y (b [s,n,m,k] In vew of (5 and (59, we have ( E Y (a [r,n,m,k] Y (b [s,n,m,k] A yy a 2 b (α 2 (α 2 (α 2 y β (α 2 y 2 β F :; :2; A On applyng (5 n (6, we have A y2 b (α 2 (α 2 y 2 β yy a 2 b (α 2 (α 2 (α 2 y β (α 2 y 2 β l y a y b 2 g [r,s,n,m,k] (y, y 2 dy dy 2. (59 (g l (β l (d l ( (g + l (d + l l! p l l (g; (β; (d; (β; ;, α 2y (g + ; (d + ; (g l+p (g + l+p (β l (d l (β p { Usng relaton (26 n (6, we have A y b (α 2 (g l (β l (d l ( l 2 (α 2 y 2 β (g + l (d + l l! l (β; (g + l y a (α 2 (α 2 y β 2 F (g + l + y a (α 2 (α 2 y β ( α 2y p (d + l p! ( l l! (β p (g + l p ( (g + + l p p! p ; α 2y α 2y p dy dy 2. dy dy 2. (6 dy }dy 2. (6 dy dy 2. (62
Settng t α 2y Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 84 n (62, to get A (α 2 a y2 b (α 2 (g l (β l (d l ( l (α 2 y 2 β (g + l (d + l l! l (β; (g + l t (β a 2F ; t (g + l + dt dy 2. (63 On usng relaton (8 n (63, we have A (g + lγ(β a Γ(a + (α 2 a Γ(β(g + l + β + a y2 b (α 2 (α 2 y 2 β l (g l (β l (d l ( l (g + l (d + l l! dy 2. Now n vew of relaton (3 and (26, we have Let t 2 Γ(β a Γ(a + (g + β + a Γ(β (d; (g + β + a; (β 3 F 2 (d + ; (g + 2 β + a A (α 2 a g n (64, we have A g (α 2 a+b 3 F 2 (g + β + a Usng relaton (9 n (65, to get A Γ(β a Γ(a + (α 2 a+b Γ(β Γ(β a Γ(a + Γ(β y2 b ; (d; (g + β + a; (β ; t 2 (d + ; (g + 2 β + a Γ(β b Γ(b + Γ(β (α 2 (α 2 y 2 β dy 2. (64 t (β b 2 dt 2. (65 dg (d β + b + (g 2β + a + b + 2. (66 Now puttng the value of A, d, g and β n (66, we have ( E Y (a [r,n,m,k] Y (b c 2 (c + 2 C s Γ(c a + Γ(a + [s,n,m,k] (α 2 (a+b (r!(s r!(m + s 2 Γ(c + 2 Γ(c b + Γ(b + Γ(c + 2 r s r [c{k + (n s + (m + } b] ( + ( r ( s r [c{k + (n r + (m + } a b] (c + 2 C s Γ(c a + Γ(a + (α 2 (a+b (r!(s r!(m + s 2 Γ(c + 2 ( k r Γ(c b + Γ(b + Γ(c + 2 s r ( ( s r ( ( r B ( k b B + (n s + m + + (n r + a m + c(m +,. + b c(m +, (67
In vew of relaton (22, we get Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 85 (c + 2 C s Γ(c a + Γ(a + Γ(c b + Γ(b + (α 2 (a+b (r!(s r!(m + s 2 Γ(c + 2 Γ(c + 2 ( k B + (n r a + b ( k m + c(m +, r b B + (n s m + c(m +, s r, whch after smplfcaton yelds ( E Y (a [r,n,m,k] Y (b C s [s,n,m,k] (α 2 (a+b Γ( k (m+ + (n r a+b Γ( k (m+ + n c(m+ a+b c(m+ Γ(c a + Γ(a + (m + s 2 Γ(c + k Γ( (m+ + (n s b + (n r b Γ( k (m+ c(m+ c(m+. Γ(c b + Γ(b + Γ(c + ( E Y (a [r,n,m,k] Y (b Γ(c a + Γ(a + Γ(c b + Γ(b + [s,n,m,k] (α 2 (a+b Γ(c + Γ(c + r a+b ( cγ s r+ ( b cγ. (68 Remark 5.. Set m, k n (67, to get product moments of concomtants of order statstcs from bvarate Lomax dstrbuton ( E Y (a [r:n] Y (b [s:n] C r,s:n r s r Γ(c a + Γ(a + Γ(c b + Γ(b + (α 2 (a+b Γ(c Γ(c ( ( r s r ( + [sc nc c c + b] [rc nc c c + a + b]. ( E Y (a [r:n] Y (b [s:n] (α 2 (a+b n! (n s! a+b Γ(n r + c b Γ(n s + c Γ(n + a+b c Γ(n r + b c. Γ(c a + Γ(a + Γ(c b + Γ(b + Γ(c + Γ(c + Remark 5.2. If m, n (68, then we get product moment of concomtants of kth upper record value from bvarate Lomax dstrbuton as ( E Y (a [r,n,,k] Y (b [s,n,,k] Γ(c a + Γ(a + (α 2 (a+b Γ(c + Γ(c b + Γ(b + Γ(c + ( a+b ck r ( b. ck (s r Acknowledgement Authors are grateful to Dr. Haseeb Athar, Algarh Muslm Unversty, Algarh, Inda, for hs help and suggestons throughout the preparaton of ths manuscrpt. The authors are also thankful to learned referee for hs/her comments whch led mprovement n the manuscrpt.
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 86 Table 3: Product moments between the concomtants of order statstcs: α 2 c 3 n s \ r 2 3 4 5 -.82 2.23 2 -.65 -.23 3 -.633 2.266.582 3 -.633 -.79 -.582 4.537 2.3323.3798 3.329.59.899 4 -.665 -.759 -.949 -.898 5.7669 2.5577.635 3.3486.3834.4382 4.394.534.753.29 5 -.697 -.767 -.876 -.96 -.29 Table 4: Product moments between the concomtants of order statstcs: α 2 2 c 4 n s \ r 2 3 4 5 -.64 2.7 2 -.57 -.85 3.48 2.75.24 3 -.58 -.68 -.2 4.666 2.424.466 3.82.99.233 4 -.6 -.67.78 -.7 5.942 2.69.74 3.439.47.58 4.88.22.222.259 5 -.63 -.67 -.74 -.86 -.29
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 87 Table 5: Product moments between the concomtants of order statstcs: α 2 3 c 5 n s \ r 2 3 4 5 -.3 2.48 2 -.2 -.6 3. 2.49.55 3 -.2 -.4 -.8 4.77 2.4.22 3.5.54.6 4 -.3 -.4 -.5 -.2 5.246 2.82.92 3.7.23.33 4.52.55.59.66 5 -.3 -.4 -.5 -.7 -.22 Table 6: Product moments between the concomtants of record statstcs: s r α 2, c 3 α 2 2, c 4 α 2 3, c 5.3333.33.74 2.5.47.93 2..625.23 3.75.555.6 2.5.833.54 3 3..25.26 4.25.74.45 2 2.25..93 3 4.5.667.257 4 9..25.343 5.6875.988.8 2 3.375.48.24 3 6.75.2222.322 4 3.5.3333.429 5 27..5.572
Nayabuddn / ProbStat Forum, Volume 6, October 23, Pages 73 88 88 References Ahsanullah, M., Beg, M.I. (26 Concomtant of generalzed order statstcs n Gumbel s bvarate exponental dstrbuton, Journal of Statstcal Theory and Applcatons 6, 8 32. Anwar Z., Athar H., Khan R.U. (27 Expectaton denttes based on recurrence relatons of functon of generalzed order statstcs, J. Statst. Res. 4(2, 93 2. Arnold, B.C. (983 Pareto Dstrbutons, Internatonal Cooperatve Publshng House, Farland, Maryland. Athar H., Nayabuddn (22 On moment generatng functon of generalzed order statstcs from extended generalzed half logstc dstrbuton and ts characterzaton, South Pacfc Journal of Pure and Appled Mathematcs (,. Athar H., Nayabuddn (23 Recurrence relatons for sngle and product moments of generalzed order statstcs from Marshall- Olkn extended general class of dstrbutons, J. Stat. Appl. Prob. 2(2, 63 72. Athar H., Nayabuddn, Saba Khald Khwaa (23 Relatons for moments of generalzed order statstcs from Marshall-Olkn extended Webull dstrbuton and ts characterzaton, ProbStat Forum 5, 27 32. Athar H., Saba Khald Khwaa, Nayabuddn (22 Expectaton denttes of Pareto dstrbuton based on generalzed order statstcs and ts characterzaton, AJAMMS (, 23-29. Balakrshnan, N., Ahsanullah, M. (994 Relatons for sngle and product moments of record values from Lomax dstrbuton, Sankhya B(56, 4 46. Balkema, A.A., de Haan, L. (974 Resdual lfe tme at great age, Ann. Probab. 2, 792 84. Beg, M.I., Ahsanullah, M. (28 Concomtants of generalzed order statstcs from Farle-Gumbel-Morgenstern dstrbutons, Statstcal Methodology 5, 2. Davd, H.A. (98 Order Statstcs, 2nd edn, John Wley and Sons, New York. Davd, H.A., Nagaraa, H.N. (23 Order Statstcs, John Wley, New York. Erdély, A., Magnus, W., Oberhetnger, F., Trcom, F.G. (954 Tables of Integral Transforms Vol. I and Vol. II, MC Graw-Hll, New York. Fazan M., Athar H. (28 Moments of generalzed order statstcs from a general class of dstrbutons, Journal of Statstcs 5, 36 43. Kamps, U. (995 A concept of generalzed order statstcs, B.G. Teubner Stuttgart, Germany (Ph. D. Thess. Kamps, U., Cramer, E. (2 On dstrbuton of generalzed order statstcs, Statstcs 35, 269 28. Khan, A.H., Khan R.U., Yaqub, M. (26 Characterzaton of contnuous dstrbutons through condtonal expectaton of generalzed order statstcs, J. Appl. Prob. Statst, 5 3. Khan A.H., Anwar Z., Athar, H. (29 Exact moments of generalzed and dual generalzed order statstcs from a general form of dstrbutons, J. Statst. Sc (, 27 44. Lomax, K.S. (954 Busness falures. Another example of the analyss of falure data, J. Amer. Statst. Assoc. 49, 847 852. Nayak, T.K. (987 Multvarate Lomax dstrbuton: Propertes and usefulness n relablty theory, J. Appl. Prob. 24, 7 77. Prudnkov, A.P., Brychkov, Y.A., Marchev, I. (986 Integral and seres Vol. 3, More Specal Functons, Gordon and Breach Scence Publsher, New York. Sankaran, P.G., Nar, N.U. (993 A bvarate Pareto model and ts applcatons to relablty, Naval Research Logstcs 4, 3 2. Srvastava, H.M., Karlsson, P.W. (985 Multple Gaussan Hypergeometrc seres, John Wley and Sons, New York. Tahmaseb, S., Behboodan, J. (22 Shannon nformaton for concomtants of generalzed order statstcs n Farle-Gumbel- Morgenstern (FGM famly, Bull. Malays. Math. Sc. Soc. 34(4, 975 98. Tavangar M., Asad M. (28 On a characterzaton of generalzed Pareto dstrbuton based on generalzed order statstcs, Commun. Statst. Theory Meth. 37, 347 352.