MAE 142 Homework #1 SOLUTIONS Due Friday, January 30, (a) Find the principle moments of inertia for each body.

Σχετικά έγγραφα
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 8 Model Solution Section

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

( ) 2 and compare to M.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Spherical Coordinates

Section 8.3 Trigonometric Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Reminders: linear functions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Example Sheet 3 Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

derivation of the Laplacian from rectangular to spherical coordinates

Second Order Partial Differential Equations

Areas and Lengths in Polar Coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

EE512: Error Control Coding

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homework 3 Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Matrices and Determinants

Srednicki Chapter 55

Section 9.2 Polar Equations and Graphs

CRASH COURSE IN PRECALCULUS

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

2 Composition. Invertible Mappings

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

1 String with massive end-points

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Section 8.2 Graphs of Polar Equations

TMA4115 Matematikk 3

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Tutorial problem set 6,

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Orbital angular momentum and the spherical harmonics

Numerical Analysis FMN011

Differential equations

Trigonometric Formula Sheet

Approximation of distance between locations on earth given by latitude and longitude

Space-Time Symmetries

If we restrict the domain of y = sin x to [ π 2, π 2

Parametrized Surfaces

CORDIC Background (2A)

Math221: HW# 1 solutions

Second Order RLC Filters

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Fractional Colorings and Zykov Products of graphs

11.4 Graphing in Polar Coordinates Polar Symmetries

x j (t) = e λ jt v j, 1 j n

Higher Derivative Gravity Theories

Forced Pendulum Numerical approach

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Problem Set 3: Solutions

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Modelling the Furuta Pendulum

The Simply Typed Lambda Calculus

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Statistical Inference I Locally most powerful tests

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Dr. D. Dinev, Department of Structural Mechanics, UACEG

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Finite Field Problems: Solutions

Solutions to Exercise Sheet 5

Variational Wavefunction for the Helium Atom

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lecture 15 - Root System Axiomatics

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Derivations of Useful Trigonometric Identities

EE 570: Location and Navigation

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

Strain gauge and rosettes

Tridiagonal matrices. Gérard MEURANT. October, 2008

Lifting Entry (continued)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Geodesic Equations for the Wormhole Metric

CYLINDRICAL & SPHERICAL COORDINATES

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Συστήματα Διαχείρισης Βάσεων Δεδομένων

C.S. 430 Assignment 6, Sample Solutions

Concrete Mathematics Exercises from 30 September 2016

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Transcript:

MAE 4 Homework # SOLUTIONS Due Friday, January 3, 9. Mass Properties (pts) (a) Find the principle moments of inertia for each body. The inertia tensor is: J xx J xy J xz J = J xy J yy J yz J xz J yz J zz The principle moments of inertia are the eigenvalues of the inertia tensor. In Matlab: [eigenvectors,eigenvalues]=eig(j) For Body, J =, J =, and J 3 =. For Body, J =, J =, and J 3 =. The ordering of inertias is addressed below. (b) Find the principle axes for each body. The principle axes are the eigenvectors of the inertia tensor. For Body :.5475.5843.599 p =.5898, p =.7773, p 3 =.9.5936.334.77 For Body :.77 p =.47, p =.4794.388.959, p 3 =.668.6379.58.5789 The ordering of the principle axes is determined by which one is closest to each geometric axis via the dot product. For example, take the first eigenvector of Body : acos(dot(eigenvectors(:,),[ ] )) =.994 acos(dot(eigenvectors(:,),[ ] )) =.6 acos(dot(eigenvectors(:,),[ ] )) =.63 As the angle between the first eigenvector and the geometric x axis is the smallest, it is obvious that the first eigenvector is the p axis of the set of principle axes. The same idea can be applied to the remaining eigenvectors.

(c) Are there any special properties about each body? Yes, both bodies are axi-symmetrical and oblate. (d) In the presence of energy dissipation, which (if either) body would be stable and about which principle axes? Body would be stable spinning about ±p 3 and Body would be stable spinning about ±p.

. Kinematics (4pts) (a) Derive the three fundamental rotation matrices. i. The basis vectors of the inertial frame in the inertial frame coordinates are: â =, â =, â 3 = The basis vectors of the rotated frame in the inertial frame coordinates are: ˆb =, ˆb = cos θ, ˆb 3 = cos ( ) θ + π sin θ sin ( ) θ + π Recall the definition of a dot product is: v v = v v cos θ The definition of the DCM is the dot products of the two sets of basis vectors: ˆb â ˆb â ˆb â 3 C (θ ) = ˆb â ˆb â ˆb â 3 ˆb3 â ˆb3 â ˆb3 â 3 Carrying out the multiplications and trig identities: C (θ ) = cos θ sin θ sin θ cos θ ii. iii. (b) Show: cos θ sin θ C (θ ) = sin θ cos θ C 3 (θ 3 ) = cos θ 3 sin θ 3 sin θ 3 cos θ 3 Ω = ċ c 3 + ċ c 3 + ċ 3 c 33 Ω = ċ 3 c + ċ 3 c + ċ 33 c 3 Ω 3 = ċ c + ċ c + ċ 3 c 3 3

The kinematic differential equation can be manipulated to isolate the skewsymmetric angular velocity matrix: (Ċb/a Ċ b/a = Ω C b/a ) T ( = Ω C b/a) T ( ) = C b/a T ( ) Ω T ( ) = C b/a T Ω ( (C b/a ) T ) (Ċb/a ) T = Ω ) T b/a C (Ċb/a = Ω Ω 3 Ω Ω 3 Ω = Ω Ω c ċ + c ċ + c 3 ċ 3 c ċ + c ċ + c 3 ċ 3 c ċ 3 + c ċ 3 + c 3 ċ 33 c ċ + c ċ + c 3 ċ 3 c ċ + c ċ + c 3 ċ 3 c ċ 3 + c ċ 3 + c 3 ċ 33 c 3 ċ + c 3 ċ + c 33 ċ 3 c 3 ċ + c 3 ċ + c 33 ċ 3 c 3 ċ 3 + c 3 ċ 3 + c 33 ċ 33 This is now a system of 9 equations, where only 3 of them are independent (because of the orthonormal nature of the DCM). Therefore, it is obvious that: Ω = ċ c 3 + ċ c 3 + ċ 3 c 33 Ω = ċ 3 c + ċ 3 c + ċ 33 c 3 Ω 3 = ċ c + ċ c + ċ 3 c 3 (c) To construct the DCM from an Euler 3-- rotation sequence, recall that successive rotations are dependent on order of rotation: C b/a = C (θ ) C (θ )C 3 (θ 3 ) Using this and the kinematical relationship above, find the angular rate vector (Ω) as a function ( of the 3-- sequence Euler angles (θ,θ,θ 3 ) and angular velocities θ, θ, θ ) 3. The DCM is: C b/a = C (θ ) C (θ )C 3 (θ 3 ) = cos θ cos θ 3 cos θ sin θ 3 sin θ sin θ sin θ cos θ 3 cos θ sin θ 3 sin θ sin θ sin θ 3 + cos θ cos θ 3 sin θ cos θ cos θ sin θ cos θ 3 + sinθ sin θ 3 cos θ sin θ sin θ 3 sin θ cos θ 3 cos θ cos θ 4

Taking the time derivative of the DCM, we get: ċ = θ sin θ cos θ 3 θ 3 cos θ sin θ 3 ċ = θ sin θ sin θ 3 + θ 3 cos θ cos θ 3 ċ 3 = θ cos θ ċ = θ (cos θ sin θ cosθ 3 + sin θ sin θ 3 ) + θ sin θ cos θ cos θ 3 + θ 3 ( sin θ sin θ sin θ 3 cos θ cos θ 3 ) ċ = θ (cos θ sin θ sin θ 3 sin θ cos θ 3 ) + θ sin θ cosθ sin θ 3 + θ 3 (sin θ sin θ cosθ 3 cos θ sin θ 3 ) ċ 3 = θ cos θ cos θ θ sin θ sin θ ċ 3 = θ ( sin θ sin θ cosθ 3 + cos θ sin θ 3 ) + θ cos θ cos θ cos θ 3 + θ 3 ( cos θ sin θ sin θ 3 + sinθ cosθ 3 ) ċ 3 = θ ( sin θ sin θ sin θ 3 cos θ cosθ 3 ) + θ cos θ cosθ sin θ 3 + θ 3 (cosθ sin θ cos θ 3 + sinθ sin θ 3 ) ċ 3 = θ sin θ cos θ θ cos θ sin θ Plugging it all together: Ω ċ c 3 + ċ c 3 + ċ 3 c 33 sin θ Ω = ċ 3 c + ċ 3 c + ċ 33 c 3 = cos θ sin θ cosθ Ω 3 ċ c + ċ c + ċ 3 c 3 sin θ cos θ cos θ θ θ θ 3 5

3. Kinetics (4pts) (a) Derive the equations of motion. Recall that in the Lagrangian formulation of the equations of motion, the equation for each generalized coordinate q i is: d dt ( ) L q i L q i + F q i = Q i where L = T U and the Rayleigh dissipation function would be F = C d φ in this case if φ is the angle of the damper body relative to the main body. There are no generalized forces, therefore: Q i =, i. The kinetic energy T, was given: Compute L ( ) d dt L φ T = ΩT J J J 3 Ω + J d Ω + L, θ θ L, θ L, 3 φ, L L L L θ, θ, θ 3,, d φ dt, and F φ ( T Ω + ) L θ d, dt ( φ ) L θ d, dt ( ) L θ, 3 φ using your favorite symbolic solver (Matlab script attached below). From the above, the equations of motion can now be written. θ equation (J + J d ) θ + ( J sin θ J d sin θ ) θ 3 + J d φ θ J cosθ θ 3 J d cos θ θ 3 θ + J sin θ θ cos θ + J θ cos θ θ 3 J cos θ cos θ θ 3 θ J cosθ cos θ θ 3 sin θ J 3 sin θ θ cos θ +J 3 cos θ cos θ θ 3 θ J 3 θ cos θ θ 3 + J 3 cos θ cos θ θ 3 sin θ = θ equation ( cos θ J + sin θ J 3 ) θ + (cosθ J sin θ cos θ sin θ J 3 cos θ cos θ ) θ 3 J cos θ θ 3 sin θ + J cos θ θ 3 θ J d cos θ θ 3 sin θ +J d cos θ θ 3 θ + J d cos θ θ 3 φ θ sin θ J cos θ θ θ sin θ J cos θ θ 3 + θ cos θ J cos θ θ 3 + θ cos θ J 3 sin θ θ θ cos θ J 3 cos θ θ 3 + θ sin θ J 3 cos θ θ 3 + sinθ sin θ θ 3 J cos θ + cosθ sin θ θ 3 J3 cos θ = 6

θ 3 equation φ equation ( J sin θ J d sin θ ) θ + (cosθ J sin θ cosθ sin θ J 3 cos θ cos θ ) θ + ( ) sin θj + sin θ cos θj + cosθ cos θj 3 + sinθj d θ3 + ( J d sin θ ) φ + θ cosθ cos θ J θ + θ cos θ cos θj sin θ θ 3 θ sin θ cosθ J θ + θ sin θ cos θ J 3 θ θ sin θ cos θ J 3 cos θ θ 3 θ cos θ cos θ J 3 θ θ cos θ J θ + θ sin θ J cos θ θ 3 sin θ sin θ J cos θ θ θ sin θ cos θ J sin θ θ 3 + cos θ sin θ J 3 sin θ θ θ cos θ cos θ J 3 sin θ θ 3 θ cos θ J d θ + θ sin θ J d cosθ θ 3 θ cos θ J d φ = J d θ + ( J d sin θ ) θ 3 + J d φ Jd cosθ θ 3 θ + C d φ = (b) Simulate the equations of motion and discuss. The Matlab code for simulating the bodies is attached below. As Body starts out spinning about its major axis p, the energy dissipation from the viscous damper body causes the transverse angular rates to null and the body to spin purely about the major axis (the nutation angle goes to zero). This is easier to see if one looks at the angular rates Ω about the principle axes (also attached below) instead of just the Euler angular rates θ, θ, and θ 3. As Body starts out spinning about its minor/intermediate axis (because of the symmetry), it starts out in a flat spin. If the simulation were to continue to run and the Euler angles never became singular (a.k.a. gimbal lock), Body would settle to a pure spin about its major axis p 3. 7

. Body Euler Angles θ [rad]. 3 4 5 6 7 8 9. θ [rad]. 3 4 5 6 7 8 9 5 θ 3 [rad] 5 3 4 5 6 7 8 9.4 φ [rad]. 3 4 5 6 7 8 9 8

dφ/dt [rad/s] dθ /dt [rad/s] dθ /dt [rad/s] dθ /dt [rad/s] 3.5 Body Euler Angular Velocities.5 3 4 5 6 7 8 9.5.5 3 4 5 6 7 8 9..98 3 4 5 6 7 8 9.5.5 3 4 5 6 7 8 9 Time [sec] 9

.4 Body Angular Velocities about Principle Axes. Ω..4 3 4 5 6 7 8 9.4. Ω..4 3 4 5 6 7 8 9. Ω 3. 3 4 5 6 7 8 9

5 Body Euler Angles θ [rad] 5 3 4 5 6 7 8 9.5 θ [rad].5 3 4 5 6 7 8 9 5 θ 3 [rad] 5 3 4 5 6 7 8 9. φ [rad].5 3 4 5 6 7 8 9

dθ /dt [rad/s] dθ /dt [rad/s] dθ 3 /dt [rad/s] Body Euler Angular Velocities 3 4 5 6 7 8 9 3 4 5 6 7 8 9.5.5 3 4 5 6 7 8 9. dφ/dt [rad/s]. 3 4 5 6 7 8 9 Time [sec]

.5 Body Angular Velocities about Principle Axes. Ω.5. 3 4 5 6 7 8 9 Ω 3 4 5 6 7 8 9 Ω 3 3 4 5 6 7 8 9 3

Symbolic Derivation of Equations of Motion in Matlab close all; clear all; syms t t t3 p dt dt dt3 dp w Jx Jy Jz Jd Cd T V F L real t=theta, t=theta, t3=theta3, p=phi dt=dtheta/dt, dt=dtheta/dt, dt3=dtheta3/dt, dp=dphi/dt w=[ -sin(t); cos(t) sin(t)*cos(t); -sin(t) cos(t)*cos(t)]*[dt dt dt3] ; wd=[dp ] ; T=.5*w *[Jx ; Jy ; Jz]*w+.5*(w+wd) *diag([jd ])*(w+wd); U=; F=.5*Cd*dp^; L=T-U; eqn=fulldiff(diff(l,dt),{t,t,t3,dt,dt,dt3,dp})-diff(l,t)+diff(f,dt); eqn=fulldiff(diff(l,dt),{t,t,t3,dt,dt,dt3,dp})-diff(l,t)+diff(f,dt); eqn3=fulldiff(diff(l,dt3),{t,t,t3,dt,dt,dt3,dp})-diff(l,t3)+diff(f,dt3); eqn4=fulldiff(diff(l,dp),{t,t,t3,dt,dt,dt3,dp})-diff(l,p)+diff(f,dp); [E,HOW]=simple(eqn); [E,HOW]=simple(eqn); [E3,HOW]=simple(eqn3); [E4,HOW]=simple(eqn4); E, E, E3, E4, 4

Main Function for Simulation close all; clear all; global J Jinv Jx Jy Jz Jd Cd bodyname= Body ; Jx=; Jy=; Jz=; bodyname= Body ; Jx=; Jy=; Jz=; J=diag([Jx Jy Jz]); Jinv=inv(J); Jd=; Cd=; T=:.:; X=[...] ; [T,Y]=ode45( eom_rigid_euler_lagrange,t,x); figure() subplot(4,,) plot(t,y(:,)),grid on; title(strcat(bodyname, Euler Angles )); ylabel( theta [rad] ); subplot(4,,) plot(t,y(:,)),grid on; ylabel( theta [rad] ); subplot(4,,3) plot(t,y(:,3)),grid on; ylabel( theta 3 [rad] ); subplot(4,,4) plot(t,y(:,4)),grid on; ylabel( phi [rad] ); figure(gcf+) subplot(4,,) plot(t,y(:,5)),grid on; ylabel( d theta /dt [rad/s] ); title(strcat(bodyname, Euler Angular Velocities )); subplot(4,,) plot(t,y(:,6)),grid on; ylabel( d theta /dt [rad/s] ); subplot(4,,3) plot(t,y(:,7)),grid on; ylabel( d theta 3/dt [rad/s] ); subplot(4,,4) plot(t,y(:,8)),grid on; ylabel( d phi/dt [rad/s] ); xlabel( Time [sec] ); 5

Equations of Motion Function: function [Xdot]=eom_rigid_euler_lagrange(t,X) global J Jinv Jx Jy Jz Jd Cd t=x(,); t=x(,); t3=x(3,); tr=x(4,); dt=x(5,); dt=x(6,); dt3=x(7,); dt=x(8,); ct=cos(t); ct=cos(t); st=sin(t); st=sin(t); M(,)=Jx+Jd; M(,)=; M(,3)=-Jx*st-Jd*st; M(,4)=Jd; M(,)=; M(,)=ct^*Jy+st^*Jz; M(,3)=ct*Jy*st*ct-st*Jz*ct*ct; M(,4)=; M(3,)=-Jx*st-Jd*st; M(3,)=ct*Jy*st*ct-st*Jz*ct*ct; M(3,3)=st^*Jx+st^*ct^*Jy+ct^*ct^*Jz+st^*Jd; M(3,4)=-Jd*st; M(4,)=Jd; M(4,)=; M(4,3)=-Jd*st; M(4,4)=Jd; f = -dt*jx*ct*dt3-jd*ct*dt3*dt+jy*st*dt^*ct+jy*dt*ct*dt3-*jy*ct^*ct*dt3*dt-jy*ct*ct^ *dt3^*st-jz*st*dt^*ct+*jz*ct^*ct*dt3*dt-jz*dt*ct*dt3+jz*ct*ct^*dt3^*st; f = -Jx*ct*dt3^*st+Jx*ct*dt3*dt-Jd*ct*dt3^*st+Jd*ct*dt3*dt+Jd*ct*dt3*dt-*dt*st*Jy*ct*dt -dt*st^*jy*ct*dt3+dt*ct^*jy*ct*dt3+*dt*ct*jz*st*dt-dt*ct^*jz*ct*dt3+dt*st^*jz*ct*dt3 +st^*st*dt3^*jy*ct+ct^*st*dt3^*jz*ct; f3 = dt*ct^*ct*jy*dt+*dt*ct*ct^*jy*st*dt3-dt*st^*ct*jy*dt+dt*st^*ct*jz*dt-*dt*st *ct^*jz*ct*dt3-dt*ct^*ct*jz*dt-dt*ct*jx*dt+*dt*st*jx*ct*dt3-st*st*jy*ct*dt^-*dt *st^*ct*jy*st*dt3+ct*st*jz*st*dt^-*dt*ct^*ct*jz*st*dt3-dt*ct*jd*dt+*dt*st*jd*ct*dt3 -dt*ct*jd*dt; f4 = -Jd*ct*dt3*dt+Cd*dt; Xdot=[dt; dt; dt3; dt; pinv(m)*-[f f f3 f4] ]; 6