Module 5. February 14, h 0min

Σχετικά έγγραφα
4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 2: ARMA Models

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Stationary ARMA Processes

Stationary ARMA Processes

2 Composition. Invertible Mappings

Numerical Analysis FMN011

6.3 Forecasting ARMA processes

Section 8.3 Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Durbin-Levinson recursive method

derivation of the Laplacian from rectangular to spherical coordinates

Areas and Lengths in Polar Coordinates

EE512: Error Control Coding

Matrices and Determinants

Partial Differential Equations in Biology The boundary element method. March 26, 2013

MAT Winter 2016 Introduction to Time Series Analysis Study Guide for Midterm

Introduction to the ML Estimation of ARMA processes

Inverse trigonometric functions & General Solution of Trigonometric Equations

Areas and Lengths in Polar Coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Homework 3 Solutions

2. ARMA 1. 1 This part is based on H and BD.

CRASH COURSE IN PRECALCULUS

Stationary Univariate Time Series Models 1

Concrete Mathematics Exercises from 30 September 2016

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Example Sheet 3 Solutions

Second Order RLC Filters

ARMA Models: I VIII 1

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

Math 6 SL Probability Distributions Practice Test Mark Scheme

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

C.S. 430 Assignment 6, Sample Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

w o = R 1 p. (1) R = p =. = 1

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

The Simply Typed Lambda Calculus

Finite Field Problems: Solutions

D Alembert s Solution to the Wave Equation

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Lecture 2. Soundness and completeness of propositional logic

Other Test Constructions: Likelihood Ratio & Bayes Tests

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

General Linear Process. Autocovariance and Spectrum

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

If we restrict the domain of y = sin x to [ π 2, π 2

Section 7.6 Double and Half Angle Formulas

Asymptotic distribution of MLE

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Lecture 26: Circular domains

Lifting Entry (continued)

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Section 9.2 Polar Equations and Graphs

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

5. Partial Autocorrelation Function of MA(1) Process:

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

ST5224: Advanced Statistical Theory II

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Srednicki Chapter 55

Second Order Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Trigonometric Formula Sheet

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Μηχανική Μάθηση Hypothesis Testing

Probability and Random Processes (Part II)

Higher Derivative Gravity Theories

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Approximation of distance between locations on earth given by latitude and longitude

Quadratic Expressions

Uniform Convergence of Fourier Series Michael Taylor

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Solutions to Exercise Sheet 5

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Differential equations

Statistical Inference I Locally most powerful tests

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Math221: HW# 1 solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

The ε-pseudospectrum of a Matrix

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Lecture 13 - Root Space Decomposition II

5.4 The Poisson Distribution.

Introduction to Time Series Analysis. Lecture 16.

Problem Set 3: Solutions

Instruction Execution Times

Transcript:

Module 5 Stationary Time Series Models Part 2 AR and ARMA Models and Their Properties Class notes for Statistics 451: Applied Time Series Iowa State University Copyright 2015 W. Q. Meeker. February 14, 2016 21h 0min 5-1

Module 5 Segment 1 AR(p) Mean and AR(1) Properties 5-2

Mean the AR(p) Model Model: Z t = θ 0 +φ 1 Z t 1 + +φ p Z t p +a t, a t nid(0,σ 2 a) Mean: µ Z E(Z t ) E(Z t ) = E(θ 0 + φ 1 Z t 1 + + φ p Z t p + a t ) = E(θ 0 ) + φ 1 E(Z t 1 ) + + φ p E(Z t p ) + E(a t ) = θ 0 + (φ 1 + +φ p )E(Z t ) = θ 0 1 φ 1 φ p The last step requires several algebraic steps, but is straightforward. 5-3

Variance of the AR(1) Model Model: Z t = θ 0 +φ 1 Z t 1 +a t, a t nid(0,σ 2 a) Variance: γ 0 Var(Z t ) E[(Z t µ Z ) 2 ] = E(Ż 2 ) γ 0 = E(Żt 2) = E[(φ 1 Ż t 1 +a t ) 2 ] = E[(φ 2 1Ż2 t 1 + 2φ 1Żt 1a t + a 2 t )] = φ 2 1 E(Ż2 t 1 ) + 2φ 1E(Ż t 1 a t ) + E(a 2 t ) = φ 2 1 γ 0 + 0 + σa 2 = σ2 a 1 φ 2 1 or Var(Z t ) = Var(a t) 1 φ 2 1 5-4

Simulated AR(1) Data with φ 1 = 0.9,σ a = 1 Showing ±2 σ Z limits plot(arima.sim(n=250, model=list(ar=0.90)), ylab= ) -10-8 -6-4 -2 0 2 4 0 50 100 150 200 250 Time 5-5

Simulated AR(1) Data with φ 1 = 0.9,σ a = 1 Showing ±2 σ Z limits plot(arima.sim(n=250, model=list(ar=-0.90)), ylab= ) 0 50 100 150 200 250-4 -2 0 2 4 Time 5-6

Autocovariance and Autocorrelation Functions for the AR(1) Model Autocovariance: γ k Cov(Z t,z t+k ) E(Ż t Ż t+k ) γ 1 E(Ż t Ż t+1 ) = E[Ż t (φ 1 Ż t +a t+1 )] = φ 1 E(Żt 2) + E(Ż t a t+1 ) = φ 1 γ 0 + 0 = φ 1 γ 0 Thus ρ 1 = γ 1 γ 0 = φ 1. γ 2 E(Ż t Ż t+2 ) = E[Ż t (φ 1 Ż t+1 + a t+2 )] = φ 1 E(Ż t Ż t+1 ) + E(Ż t a t+2 ) = φ 1 γ 1 + 0 = φ 1 (φ 1 γ 0 ) = φ 2 1 γ 0 Thus ρ 2 = γ 2 γ 0 = φ 2 1. In general, for the AR(1) model, ρ k = γ k γ 0 = φ k 1 for 1 < φ 1 < 1. 5-7

True and P for AR(1) Model with φ 1 = 0.95 True ar: 0.95 True -1.0 0.0 1.0 True P ar: 0.95 True P -1.0 0.0 1.0 5-8

True and P for AR(1) Model with φ 1 = 0.95 True ar: -0.95 True -1.0 0.0 1.0 True P ar: -0.95 True P -1.0 0.0 1.0 5-9

Simulated Realization (AR(1),φ 1 = 0.95,n = 75) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -6-4 -2 0 2 4 6 0 10 20 30 40 50 60 70 time Range 1 2 3 4 5 6 7 Partial P -4-2 0 2 4 Mean 5-10

Simulated Realization (AR(1),φ 1 = 0.95,n = 300) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -6-4 -2 0 2 4 6 0 50 100 150 200 250 300 time Range 2 3 4 5 6 Partial P -4-2 0 2 4 Mean 5-11

Simulated Realization (AR(1),φ 1 = 0.95,n = 75) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -5 0 5 0 10 20 30 40 50 60 70 time Range 4 6 8 10 12 14 16 Partial P -1.5-1.0-0.5 0.0 Mean 5-12

Simulated Realization (AR(1),φ 1 = 0.95,n = 300) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -5 0 5 0 50 100 150 200 250 300 time Range 4 6 8 10 12 14 Partial P -0.4-0.2 0.0 0.2 0.4 Mean 5-13

Module 5 Segment 2 AR(1) Stationarity Conditions 5-14

Using the Geometric Power Series to Re-express the AR(1) Model as an Infinite MA (1 φ 1 B)Ż t = a t Ż t = (1 φ 1 B) 1 a t = (1+φ 1 B+φ 2 1 B2 + )a t = φ 1 a t 1 +φ 2 1 a t 2 + +a t Thus the AR(1) can be expressed as an infinite MA model. If 1 < φ 1 < 1, then the weight on the old residuals is decreasing with age. This is the condition of stationarity for an AR(1) model. 5-15

Using the Back-substitution to Re-express the AR(1) Model as an Infinite MA Ż t = φ 1 Ż t 1 +a t Ż t 1 = φ 1 Ż t 2 +a t 1 Ż t 2 = φ 1 Ż t 3 +a t 2 Ż t 3 = φ 1 Ż t 4 +a t 3 Substituting, successively, Ż t 1,Ż t 2,Ż t 3..., shows that Ż t = φ 1 a t 1 +φ 2 1 a t 2 +φ 3 1 a t 3 + +a t This methods works, more generally, for higher-order AR(p) models, but the algebra is tedious. 5-16

Notes on the AR(1) model Z t = φ 1 Z t 1 +a t, a t nid(0,σ 2 a) Because ρ 1 = φ 1, we can estimate φ 1 by φ 1 = ρ 1. The root of (1 φ 1 B) = 0 is B = 1/φ 1 and thus if 1 < φ 1 < 1, then the root is outside [ 1,1] so that AR(1) will be stationary. φ 1 = 1 implies Z t = Z t 1 +a t, the random walk model. If φ 1 > 1, then Z t is explosive. If φ 1 < 1, then Z t is oscillating explosive. 5-17

True and P for AR(1) Model with φ 1 = 0.99999 True ar: 0.99999 True -1.0 0.0 1.0 True P ar: 0.99999 True P -1.0 0.0 1.0 5-18

Simulated Realization (AR(1),φ 1 = 0.99999,n = 75) Graphical Output from Function iden Simulated data w= Data w -140-136 -132-128 0 10 20 30 40 50 60 70 time Range-Mean Plot Range 2 3 4 Partial P -138-136 -134-132 -130-128 Mean 5-19

Simulated Realization (AR(1),φ 1 = 0.99999,n = 300) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -170-160 -150-140 0 50 100 150 200 250 300 time Range 2 4 6 8 Partial P -170-165 -160-155 -150-145 -140 Mean 5-20

Re-expressing the AR(p) Model as an Infinite MA More generally, any AR(p) model can be expressed as φ p (B)Ż t = a t Ż t = 1 φ p (B) a t = ψ(b)a t = ψ 1 a t 1 +ψ 2 a t 2 + +a t = k=1 ψ k a t k +a t Values of ψ 1,ψ 2,... depend on φ 1,...,φ p. For the AR model to be stationary, the ψ j values should not remain large as j gets large. Formally, the stationarity condition is met if j=1 ψ j < Stationarity of an AR(p) model can be checked by finding the roots of the polynomial φ p (B) (1 φ 1 B φ 2 B 2 φ p B p ). All p roots must lie outside of the unit-circle. 5-21

Module 5 Segment 3 AR(2) Stationarity and Model Properties 5-22

Checking the Stationarity of an AR(2) Model Stationarity of an AR(2) model can be checked by finding the roots of the polynomial (1 φ 1 B φ 2 B 2 ) = 0. Both roots must lie outside of the unit-circle. Roots have the form B = φ 1 ± φ 2 1 +4φ 2 2φ 2 z = x+iy where i = 1. A root is outside of the unit circle if z = x 2 +y 2 > 1 This method works for any p, but for p > 2 it is best to use numerical methods to find the p roots. 5-23

Checking the Stationarity of an AR(2) Model Simple Rule Both roots lying outside of the unit-circle implies φ 2 +φ 1 < 1 φ 2 < 1 φ 1 φ 2 φ 1 < 1 φ 2 < 1+φ 1 1 < φ 2 < 1 1 < φ 2 < 1 and defines the AR(2) triangle. 5-24

Autocovariance and Autocorrelation Functions for the AR(2) Model γ 1 E(Ż t Ż t+1 ) = E[Ż t (φ 1 Ż t + φ 2 Ż t 1 + a t+1 )] = φ 1 E(Ż 2 t ) + φ 2E(Ż t Ż t 1 ) + E(Ż t a t+1 ) = φ 1 γ 0 + φ 2 γ 1 + 0 γ 2 E(Ż t Ż t+2 ) = E[Ż t (φ 1 Ż t+1 + φ 2 Ż t + a t+2 )] = φ 1 E(Ż t Ż t+1 ) + φ 2 E(Ż 2 t ) + E(Ż t a t+2 ) = φ 1 γ 1 + φ 2 γ 0 + 0 Then using ρ k = γ k /γ 0 and ρ 0 = 1, gives the AR(2) ρ 1 = φ 1 + φ 2 ρ 1 ρ 2 = φ 1 ρ 1 + φ 2 ρ 3 = φ 1 ρ 2 + φ 2 ρ 1... ρ k = φ 1 ρ k 1 + φ 2 ρ k 2 5-25

True and P for AR(2) Model with φ 1 = 0.78,φ 2 = 0.2 True ar: 0.78, 0.2 True -1.0 0.0 1.0 True P ar: 0.78, 0.2 True P -1.0 0.0 1.0 5-26

True and P for AR(2) Model with φ 1 = 1,φ 2 = 0.95 True ar: 1, -0.95 True -1.0 0.0 1.0 True P ar: 1, -0.95 True P -1.0 0.0 1.0 5-27

Simulated Realization (AR(2),φ 1 = 0.78,φ 2 = 0.2,n = 75) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -10-8 -6-4 -2 0 10 20 30 40 50 60 70 time Range 1 2 3 4 5 6 Partial P -8-6 -4-2 Mean 5-28

Simulated Realization (AR(2),φ 1 = 0.78,φ 2 = 0.2,n = 300) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -2 0 2 4 6 8 10 0 50 100 150 200 250 300 time Range 2 3 4 5 6 7 Partial P 0 2 4 6 8 Mean 5-29

Simulated Realization (AR(2),φ 1 = 1,φ 2 = 0.95,n = 75) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -10-5 0 5 10 0 10 20 30 40 50 60 70 time Range 5 10 15 20 Partial P -0.4-0.2 0.0 0.2 0.4 0.6 Mean 5-30

Simulated Realization (AR(2),φ 1 = 1,φ 2 = 0.95,n = 300) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -6-4 -2 0 2 4 6 8 0 50 100 150 200 250 300 time Range 4 6 8 10 12 Partial P -0.5 0.0 0.5 1.0 Mean 5-31

AR(2) Triangle Relating ρ 1 and ρ 2 to φ 1 and φ 2 5-32

AR(2) Triangle Showing and P Functions 5-33

Module 5 Segment 4 Yule-Walker Equations and Their Applications and AR(p) Variance 5-34

Yule-Walker Equations (Correlation Form) AR(1) Yule-Walker Equation ρ 1 = φ 1 AR(2) Yule-Walker Equations ρ 1 = φ 1 + ρ 1 φ 2 ρ 2 = ρ 1 φ 1 + φ 2 AR(3) Yule-Walker Equations ρ 1 = φ 1 + ρ 1 φ 2 + ρ 2 φ 3 ρ 2 = ρ 1 φ 1 + φ 2 + ρ 1 φ 3 ρ 3 = ρ 2 φ 1 + ρ 1 φ 2 + φ 3 5-35

Yule-Walker Equations (Correlation Form) AR(4) Yule-Walker Equations ρ 1 = φ 1 + ρ 1 φ 2 + ρ 2 φ 3 + ρ 3 φ 4 ρ 2 = ρ 1 φ 1 + φ 2 + ρ 1 φ 3 + ρ 2 φ 4 ρ 3 = ρ 2 φ 1 + ρ 1 φ 2 + φ 3 + ρ 1 φ 4 ρ 4 = ρ 3 φ 1 + ρ 2 φ 2 + ρ 1 φ 3 + φ 4 For given ρ 1,...,ρ 4, this is four linear equations with four unknowns. 5-36

AR(p) Yule-Walker Equations (Correlation Form) ρ 1 = φ 1 +ρ 1 φ 2 +ρ 2 φ 3 + +ρ p 1 φ p ρ 2 = ρ 1 φ 1 +φ 2 +ρ 1 φ 3 + +ρ p 2 φ p. ρ p = ρ p 1 φ 1 +ρ p 2 φ 2 +ρ p 3 φ 3 + +φ p For given ρ 1,...,ρ p, this is p linear equations with p unknowns. Solving the Yule Walker equations for an AR(p) for φ p gives the P value φ pp. 5-37

Applications of the Yule-Walker Equations Provides the true of an AR(p) model (given φ 1,φ 2,...,φ p, compute ρ 1,ρ 2,...ρ p recursively) Provides estimate of φ 1,φ 2,...,φ p of an AR(p) model (given sample values ρ 1, ρ 2,..., ρ p, substitute in Y-W equations and solve the set of simultaneous equations for φ 1, φ 2,..., φ p ) Provides the sample P φ 1,1, φ 2,2,..., φ kk for any realization. (substitute ρ 1, ρ 2,..., ρ k into the AR(k) Y-W equations and solve for φ k ). Same as Durbin s formula. Provides the true P φ 1,1,φ 2,2,...,φ kk for any ARMA model. (substitute ρ 1,ρ 2,...,ρ k into the AR(k) Y-W equations and solve for φ k ). Same as Durbin s formula. 5-38

Variance of the AR(p) model Ż t = φ 1 Ż t 1 + φ 2 Ż t 2 + + φ p Ż t p + a t Multiplying through by Ż t gives Ż 2 t = φ 1 Ż t Ż t 1 + φ 2 Ż t Ż t 2 + + φ p Ż t Ż t p + Ż t a t Taking expectations and noting that E(Ż t a t ) = σ 2 a gives γ 0 = Var(Z t ) = E(Ż 2 t ) = φ 1γ 1 + φ 2 γ 2 + + φ p γ p + σ 2 a Then dividing through by γ 0 and solving for γ 0 gives γ 0 = σ 2 a 1 φ 1 ρ 1 φ 2 ρ 2 φ p ρ p Note: E(Ż t a t ) = E(φ 1 Ż t 1 a t +φ 2 Ż t 2 a t + +φ p Ż t p a t +a 2 t) = σ 2 a 5-39

Module 5 Segment 5 ARMA(1,1) Model Properties 5-40

Properties of the ARMA(1, 1) Model φ 1 (B)Z t = θ 0 +θ 1 (B)a t Z t = θ 0 +φ 1 Z t 1 θ 1 a t 1 +a t Noting that µ Z = E(Z t ) = θ 0 /(1 φ 1 ) φ 1 (B)Ż t = θ 1 (B)a t Ż t = φ 1 Ż t 1 θ 1 a t 1 +a t Omitting derivations, γ 0 = Var(Z t ) = [(1 2φ 1 θ 1 +θ1 2 )/(1 φ2 1 )]σ2 a ρ 1 = (1 φ 1 θ 1 )(φ 1 θ 1 )/(1+θ1 2 2φ 1θ 1 ) ρ 2 = φ 1 ρ 1 ρ k = φ 1 ρ k 1 5-41

True and P for ARMA(1,1) Model with φ 1 = 0.95,θ 1 = 0.95 True ma: -0.95 ar: 0.95 True -1.0 0.0 1.0 True P ma: -0.95 ar: 0.95 True P -1.0 0.0 1.0 5-42

Simulated Realization (ARMA(1,1),φ 1 = 0.95,θ 1 = 0.95,n = 75) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -10-5 0 5 0 10 20 30 40 50 60 70 time Range 4 6 8 10 12 14 Partial P -10-5 0 Mean 5-43

True and P for ARMA(1,1) Model with φ 1 = 0.95,θ 1 = 0.95 True ma: 0.95 ar: -0.95 True -1.0 0.0 1.0 True P ma: 0.95 ar: -0.95 True P -1.0 0.0 1.0 5-44

Simulated Realization (ARMA(1,1),φ 1 = 0.95,θ 1 = 0.95,n = 75) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -10-5 0 5 10 0 10 20 30 40 50 60 70 time Range 5 10 15 20 Partial P -0.4-0.2 0.0 0.2 0.4 Mean 5-45

True and P for ARMA(1,1) Model with φ 1 = 0.9,θ 1 = 0.5 True ma: 0.5 ar: 0.9 True -1.0 0.0 1.0 True P ma: 0.5 ar: 0.9 True P -1.0 0.0 1.0 5-46

Simulated Realization (ARMA(1,1),φ 1 = 0.9,θ 1 = 0.5,n = 75) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -4-3 -2-1 0 1 2 0 10 20 30 40 50 60 70 time Range 2.2 2.4 2.6 2.8 3.0 Partial P -2.0-1.5-1.0-0.5 0.0 0.5 Mean 5-47

True and P for ARMA(1,1) Model with φ 1 = 0.9,θ 1 = 0.5 True ma: -0.5 ar: -0.9 True -1.0 0.0 1.0 True P ma: -0.5 ar: -0.9 True P -1.0 0.0 1.0 5-48

Simulated Realization (ARMA(1,1),φ 1 = 0.9,θ 1 = 0.5,n = 75) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -2 0 2 4 0 10 20 30 40 50 60 70 time Range 2 3 4 5 6 7 Partial P 0.0 0.2 0.4 0.6 Mean 5-49

ARMA(1,1) Square Relating ρ1 and ρ2 to φ1 and θ1 5-50

ARMA(1,1) Square Showing and P Functions 5-51

Module 5 Segment 6 Stationarity and Invertibility of the ARMA(1,1) Model 5-52

Stationarity of an ARMA(1, 1) Model Ż t = (1 θ 1B) (1 φ 1 B) a t (1 φ 1 B)Ż t = (1 θ 1 B)a t = (1 θ 1 B)(1 φ 1 B) 1 a t = (1 θ 1 B)(1+φ 1 B+φ 2 1 B2 + )a t = (φ 1 θ 1 )a t 1 +φ 1 (φ 1 θ 1 )a t 2 +φ 2 1 (φ 1 θ 1 )a t 3 + +a t = j=1 φ j 1 1 (φ 1 θ 1 )a t j +a t = j=0 ψ j a t j where ψ j = φ j 1 1 (φ 1 θ 1 ) for j > 0, ψ 0 = 1, and φ 0 1 1. ARMA(1,1) model is stationary if 1 < φ 1 < 1. ARMA(1,1) model is white noise (trivial model) if φ 1 = θ 1. 5-53

Invertibility of an ARMA(1, 1) Model a t = (1 φ 1B) (1 θ 1 B)Żt (1 φ 1 B)Ż t = (1 θ 1 B)a t = (1 φ 1 B)(1 θ 1 B) 1 Ż t = (1 φ 1 B)(1+θ 1 B+θ 2 1 B2 + )Ż t = Ż t +(θ 1 φ 1 )Ż t 1 +θ 1 (θ 1 φ 1 )Ż t 2 +θ 2 1 (θ 1 φ 1 )Ż t 3 + Ż t = (φ 1 θ 1 )Ż t 1 +θ 1 (φ 1 θ 1 )Ż t 2 +θ 2 1 (φ 1 θ 1 )Ż t 3 + +a t = j=1 θ j 1 1 (φ 1 θ 1 )Ż t j +a t = j=1 where π j = θ j 1 1 (φ 1 θ 1 ),j > 0 and π 0 = 1. π j Ż t j +a t ARMA(1,1) model is invertible if 1 < θ 1 < 1. 5-54

True and P for ARMA(1,1) Model with φ 1 = 0.9,θ 1 = 0.9 True ma: 0.9 ar: 0.9 True -1.0 0.0 1.0 True P ma: 0.9 ar: 0.9 True P -1.0 0.0 1.0 5-55

Simulated Realization (ARMA(1,1),φ 1 = 0.9,θ 1 = 0.9,n = 75) Graphical Output from Function iden Simulated data w= Data Range-Mean Plot w -3-2 -1 0 1 2 0 10 20 30 40 50 60 70 time Range 1 2 3 4 5 Partial P -0.1 0.0 0.1 0.2 0.3 Mean 5-56

Properties of ARMA(p, q) model φ p (B)Z t = θ 0 +θ q (B)a t φ p (B)Ż t = θ q (B)a t (1 φ 1 B φ 2 B 2 φ p B p )Ż t = (1 θ 1 B θ 2 B 2 θ q B q )a t µ Z E(Z t ) = θ 0 1 φ 1 φ p An ARMA(p,q) model is stationary if all of the roots of φ p (B) lie outside of the unit circle. An ARMA(p,q) model is invertible if all of the roots of θ q (B) lie outside of the unit circle. 5-57

Expressing an ARMA(p,q) Model as an Infinite MA φ p (B)Ż t = θ q (B)a t Ż t = [φ p (B)] 1 θ q (B)a t = ψ(b)a t φ p (B)ψ(B) = θ q (B) Given φ p (B) and θ q (B), solve for ψ(b), giving ψ 1,ψ 2,... Similar method for expressing an ARMA(p, q) model as an infinite AR φ p (B) = π(b)θ q (B) Given φ p (B) and θ q (B), solve for π(b), giving π 1,π 2,... 5-58

Expressing and ARMA(p,q) Model as an Infinite MA Using ARMA(2,2) as a particular example φ 2 (B)ψ(B) = θ 2 (B) (1 φ 1 B φ 2 B 2 )(1+ψ 1 B+ψ 2 B 2 +ψ 3 B 3 + ) = (1 θ 1 B θ 2 B 2 ) Multiplying out gives 1+ψ 1 B +ψ 2 B 2 +ψ 3 B 3 + φ 1 B ψ 1 φ 1 B 2 ψ 2 φ 1 B 3 φ 2 B 2 ψ 1 φ 2 B 3 = 1 θ 1 B θ 2 B 2 Equating terms with the same power of B gives B : ψ 1 φ 1 = θ 1 ψ 1 = θ 1 +φ 1 B 2 : ψ 2 ψ 1 φ 1 φ 2 = θ 2 ψ 2 = θ 2 +ψ 1 φ 1 +φ 2 B 3 : ψ 3 ψ 2 φ 1 ψ 1 φ 2 = 0 ψ 3 = ψ 2 φ 1 +ψ 1 φ 2... B k : ψ k ψ k 1 φ 1 ψ k 2 φ 2 = 0 ψ k = ψ k 1 φ 1 +ψ k 2 φ 2 5-59

Module 5 Segment 7 ARMA Identification Exercises 5-60

Simulated Time Series #5 Graphical Output from Function iden(simsta5.d) Simulated Time Series #5 w= Sales Range-Mean Plot w -10 0 10 20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 time Range 10 15 20 25 Partial 0 10 20 30 P 0 2 4 6 Mean 0 10 20 30 5-61

Simulated Time Series #6 Graphical Output from Function iden Simulated Time Series #6 w= Sales Range-Mean Plot w -40-30 -20-10 0 10 20 20 30 40 50 60 time Range 10 15 20 25 30 35 Partial 0 10 20 30 P -20-10 0 10 Mean 0 10 20 30 5-62

Simulated Time Series #7 Graphical Output from Function iden Simulated Time Series #7 w= Deviation Range-Mean Plot w -40-20 0 20 40 60 20 30 40 50 time Range 20 40 60 80 100 Partial 0 10 20 30 P -20-10 0 10 20 30 40 Mean 0 10 20 30 5-63

Simulated Time Series #8 Graphical Output from Function iden Simulated Time Series #8 w= decibles Range-Mean Plot w -6-4 -2 0 2 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 time Range 2 3 4 5 6 Partial 0 10 20 30 P -4-3 -2-1 0 1 Mean 0 10 20 30 5-64

Simulated Time Series #11 Graphical Output from Function iden Simulated Time Series #11 w= Deviation Range-Mean Plot w -6-4 -2 0 2 4 10 20 time Range 4 6 8 10 12 Partial 0 10 20 30 P -0.3-0.2-0.1 0.0 0.1 0.2 Mean 0 10 20 30 5-65

Simulated Time Series #13 Graphical Output from Function iden Simulated Time Series #13 w= Pressure Range-Mean Plot w -2 0 2 4 6 10 20 time Range 2 3 4 5 Partial 0 10 20 30 P 0 2 4 6 Mean 0 10 20 30 5-66

Simulated Time Series #15 Graphical Output from Function iden Simulated Time Series #15 w= Pressure Range-Mean Plot w -2-1 0 1 2 3 10 20 time Range 2.0 2.5 3.0 3.5 4.0 Partial 0 10 20 30 P -1.0-0.5 0.0 0.5 1.0 1.5 Mean 0 10 20 30 5-67