Verification. Lecture 12. Martin Zimmermann

Σχετικά έγγραφα
LTL to Buchi. Overview. Buchi Model Checking LTL Translating LTL into Buchi. Ralf Huuck. Buchi Automata. Example

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lecture 2. Soundness and completeness of propositional logic

Every set of first-order formulas is equivalent to an independent set

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Bounding Nonsplitting Enumeration Degrees

2 Composition. Invertible Mappings

Finitary proof systems for Kozen s µ

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Lecture 21: Properties and robustness of LSE

Other Test Constructions: Likelihood Ratio & Bayes Tests

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

A Lambda Model Characterizing Computational Behaviours of Terms

The challenges of non-stable predicates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Example Sheet 3 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Proofs on expressing nested GR(1) properties in GR(1)

Iterated trilinear fourier integrals with arbitrary symbols

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Approximation of distance between locations on earth given by latitude and longitude

Distances in Sierpiński Triangle Graphs

5. Choice under Uncertainty

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

C.S. 430 Assignment 6, Sample Solutions

Fractional Colorings and Zykov Products of graphs

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Reminders: linear functions

Inverse trigonometric functions & General Solution of Trigonometric Equations

A Conception of Inductive Logic: Example

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Lecture 34 Bootstrap confidence intervals

Γραμμική Χρονική Λογική (Linear Temporal Logic)

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Statistical Inference I Locally most powerful tests

Homework 3 Solutions

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Mean-Variance Analysis

About these lecture notes. Simply Typed λ-calculus. Types

Trigonometric Formula Sheet

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Abstract Storage Devices

CS-XXX: Graduate Programming Languages. Lecture 27 Higher-Order Polymorphism. Matthew Fluet 2012

Uniform Convergence of Fourier Series Michael Taylor

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Chapter 3: Ordinal Numbers

The Simply Typed Lambda Calculus

Congruence Classes of Invertible Matrices of Order 3 over F 2

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Derivation of Optical-Bloch Equations

CRASH COURSE IN PRECALCULUS

5.4 The Poisson Distribution.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

The λ-calculus. Lecturer: John Wickerson. Phil Wadler

Numerical Analysis FMN011

ST5224: Advanced Statistical Theory II

Homomorphism in Intuitionistic Fuzzy Automata

Formal Semantics. 1 Type Logic

Theorem 8 Let φ be the most powerful size α test of H

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Κεφάλαιο 12. Αναπαράσταση του Χρόνου. Τεχνητή Νοηµοσύνη - Β' Έκδοση. Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

The ε-pseudospectrum of a Matrix

TMA4115 Matematikk 3

EE512: Error Control Coding

From the finite to the transfinite: Λµ-terms and streams

Commutative Monoids in Intuitionistic Fuzzy Sets

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

Lecture 21: Scattering and FGR

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

1. Introduction and Preliminaries.

Μηχανική Μάθηση Hypothesis Testing

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Matrices and Determinants

Space-Time Symmetries

Tridiagonal matrices. Gérard MEURANT. October, 2008

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Models for Probabilistic Programs with an Adversary

Όλνκα πνπδάζηξηαο: Γξεγνξία αββίδνπ Α.Δ.Μ:7859. Δπηβιέπνλ Καζεγεηήο: Παζραιίδεο Αζαλάζηνο ΑΝΩΣΑΣΟ ΣΔΥΝΟΛΟΓΗΚΟ ΔΚΠΑΗΓΔΤΣΗΚΟ ΗΓΡΤΜΑ ΚΑΒΑΛΑ

Module 5. February 14, h 0min

12. Radon-Nikodym Theorem

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

STAT200C: Hypothesis Testing

Lecture 15 - Root System Axiomatics

Second Order Partial Differential Equations

Areas and Lengths in Polar Coordinates

Θεωρία Πληροφορίας και Κωδίκων

Completeness Theorem for System AS1

Transcript:

Verification Lecture 12 Martin Zimmermann

Plan for today LTL FairnessinLTL LTL Model Checking

Review: Syntax modal logic over infinite sequences[pnueli 1977] Propositional logic a AP ϕandϕ ψ Temporal operators ϕ ϕuψ atomicproposition negationandconjunction nextstatefulfillsϕ ϕholdsuntilaψ-stateisreached linear temporal logic is a logic for describing LT properties

Review: Intuitive semantics atomic prop. a a arbitrary arbitrary arbitrary arbitrary... arbitrary a arbitrary arbitrary arbitrary nextstep a... a b a b a b b arbitrary until aub... a a a a arbitrary eventually a... always a a a a a a...

Semantics over words TheLT-propertyinducedbyLTLformulaφoverAPis: Words(φ) = {σ (2 AP ) ω σ φ},where isthesmallestrelationsatisfying: σ true σ a iff a A 0 (i.e.,a 0 a) σ φ 1 φ 2 iff σ φ 1 andσ φ 2 σ φ iff σ / φ σ φ iff σ[1..] =A 1 A 2 A 3... φ σ φ 1 Uφ 2 iff j 0. σ[j..] φ 2 and σ[i..] φ 1, 0 i<j forσ= A 0A 1A 2... wehaveσ[i..]= A i A i+1 A i+2... isthesuffixofσ fromindexion

Semantics over paths and states LetTS =(S,Act,,I,AP,L)beatransitionsystemwithoutterminal states,andletφbeanltl-formulaoverap. ForinfinitepathfragmentπofTS: Forstates S: π φ iff trace(π) φ s φ iff ( π Paths(s). π φ) TSsatisfiesφ,denotedTS φ,iftraces(ts) Words(φ)

Semantics for transition systems TS φ iff (* transition system semantics*) Traces(TS) Words(φ) iff (* definition of for LT-properties*) TS Words(φ) iff (* Definition of Words(φ)*) π φforallπ Paths(TS) iff (* semanticsof forstates*) s 0 φforalls 0 I.

Example s 1 s 2 s 3 {a,b} {a,b} {a}

Semantics of negation Forpaths,itholdsπ φifandonlyifπ/ φsince: Words( φ) =(2 AP ) ω Words(φ). But: TS/ φandts φarenotequivalentingeneral Itholds: TS φ impliests/ φ.notalwaysthereverse! Note that: TS/ φ iff Traces(TS)/ Words(φ) iff Traces(TS) Words(φ)/= iff Traces(TS) Words( φ)/=. TSneithersatisfiesφnor φifthereare pathsπ 1 andπ 2 intssuchthatπ 1 φandπ 2 φ

Example s 1 s 0 s 2 {a} AtransitionsystemforwhichTS / aandts / a

Semanticsof,, and σ φ iff j 0. σ[j..] φ σ φ iff j 0. σ[j..] φ σ φ iff j 0. i j.σ[i...] φ σ φ iff j 0. i j. σ[i...] φ

Equivalence LTLformulasϕ,ψareequivalent,denotedϕ ψ,if: Words(ϕ) =Words(ψ)

Duality and idempotence laws Duality: ϕ ϕ ϕ ϕ ϕ ϕ Idempotency: ϕ ϕ ϕ ϕ ϕu(ϕuψ) ϕuψ (ϕuψ)uψ ϕuψ

Absorption and distributive laws Absorption: ϕ ϕ ϕ ϕ Distribution: (ϕuψ) (ϕ ψ) (ϕ ψ) ( ϕ)u( ψ) ϕ ψ ϕ ψ but...: (ϕuψ) / ( ϕ)u( ψ) (ϕ ψ) / ϕ ψ (ϕ ψ) / ϕ ψ

Distributive laws (a b) / a b and (a b) / a b {b} {a} {a} TS / (a b)andts ( a) ( b) TS / ( a) ( b)andts (a b)

Expansion laws Expansion: ϕuψ ϕ ϕ ψ (ϕ (ϕuψ)) ϕ ϕ ϕ ϕ

Expansion for until P U =Words(φUψ)satisfies: P U = Words(ψ) {A 0 A 1 A 2... Words(φ) A 1 A 2... P U } and is the smallest LT-property P such that: Words(ψ) {A 0 A 1 A 2... Words(φ) A 1 A 2... P} P ( )

Proof: Words(φ U ψ) is the smallest LT-prop. satisfying(*) LetPbeanyLT-propertythatsatisfies(*).Weshowthat Words(φUψ) P. LetB 0 B 1 B 2... Words(φUψ). Thenthereexistsak 0such thatb i B i+1 B i+2... Words(φ)forevery0 i<kand B k B k+1 B k+2... Words(ψ). Wederive B k B k+1 B k+2... P becauseb k B k+1 B k+2... Words(ψ)andWords(ψ) P. B k 1 B k B k+1 B k+2... P becauseifa 0 A 1 A 2... Words(φ)andA 1 A 2... PthenA 0 A 1 A 2... P. B k 2 B k 1 B k B k+1 B k+2... P,analogously... B 0 B 1 B 2... P.

Weak until Theweak-until(or:unless)operator: φwψ def = (φuψ) φ asopposedtountil,φwψdoesnotrequireaψ-statetobe reached Until U andweakuntil W aredual: (φuψ) (φ ψ)w( φ ψ) (φwψ) (φ ψ)u( φ ψ) Until and weak until are equally expressive: ψ ψwfalseandφuψ (φwψ) ψ Untilandweakuntilsatisfythesameexpansionlaw butuntilisthesmallest,andweakuntilthelargestsolution!

Expansion for weak until P W =Words(φWψ)satisfies: P W = Words(ψ) {A 0 A 1 A 2... Words(φ) A 1 A 2... P W } and is the greatest LT-property P such that: Words(ψ) {A 0 A 1 A 2... Words(φ) A 1 A 2... P} P ( )

Proof: Words(φ W ψ) is the greatest LT-prop. satisfying(**) LetPbeanyLT-propertythatsatisfies(**).Weshowthat P Words(φWψ). LetB 0 B 1 B 2.../ Words(φWψ). Thenthereexistsak 0such thatb i B i+1 B i+2... φ ψforevery0 i<kand B k B k+1 B k+2... φ ψ. Wederive B k B k+1 B k+2... / P becauseb k B k+1 B k+2... / Words(ψ)and B k B k+1 B k+2... / Words(φ)and B k 1 B k B k+1 B k+2... / P becauseb k B k+1 B k+2... / PandB k 1 B k B k+1 B k+2... / Words(ψ) B k 2 B k 1 B k B k+1 B k+2... / P,analogously... B 0 B 1 B 2... / P.

(Weak-until) positive normal form Canonical form for LTL-formulas negationsonlyoccuradjacenttoatomicpropositions disjunctiveandconjunctivenormalformisaspecialcaseofpnf foreachltl-operator,adualoperatorisneeded e.g., (φuψ) ((φ ψ)u( φ ψ)) (φ ψ) thatis: (φuψ) (φ ψ)w( φ ψ) Fora AP,thesetofLTLformulasinPNFisgivenby: φ = true false a a φ 1 φ 2 φ 1 φ 2 φ φ 1 Uφ 2 φ 1 Wφ 2 and arealsopermitted: φ φwfalseand φ =trueuφ

(Weak until) PNF is always possible For each LTL-formula there exists an equivalent LTL-formula in PNF Transformations: true false false true φ φ (φ ψ) φ ψ (φ ψ) φ ψ φ φ (φuψ) (φ ψ)w( φ ψ) (φwψ) (ϕ ψ)u( ϕ ψ) φ φ φ φ but an exponential growth in size is possible

Example ConsidertheLTL-formula ((aub) c) ThisformulaisnotinPNF,butcanbetransformedintoPNFas follows: ((aub) c) ((aub) c) ( (aub) c) ((a b)w( a b) c) can the exponential growth in size be avoided?

The release operator Thereleaseoperator:φRψ def = ( φu ψ) ψalwaysholds,arequirementthatisreleasedassoonasφ holds Until U andrelease R aredual: φuψ φrψ ( φr ψ) ( φu ψ) Until and release are equally expressive: ψ falserψandφuψ ( φr ψ) Release satisfies the expansion law: φrψ ψ (φ (φrψ))

Semantics of release σ φrψ iff (*definitionof R *) j 0. (σ[j..] ψ i <j.σ[i..] φ) iff (* semantics of negation*) j 0.(σ[j..]/ ψ i <j.σ[i..]/ φ) iff (*dualityof and *) iff iff iff j 0. (σ[j..]/ ψ i <j.σ[i..]/ φ) j 0.( (σ[j..]/ ψ) i <j.σ[i..]/ φ) j 0.(σ[j..] ψ i <j.σ[i..] φ) (*demorgan slaw*) (* semantics of negation*) j 0.σ[j..] ψ or i 0.(σ[i..] φ k i. σ[k..] ψ)

Positive normal form(revisited) Fora AP,LTLformulasinPNFaregivenby: φ = true false a a φ 1 φ 2 φ 1 φ 2 φ φ 1 Uφ 2 φ 1 R φ 2

PNFinlinearsize For any LTL-formula φ there exists an equivalent LTL-formula ψ in PNF with ψ = O( φ ) Transformations: true false false true φ φ (φ ψ) φ ψ (φ ψ) φ ψ φ φ (φuψ) φr ψ (φrψ) φu ψ φ φ φ φ