Solutions Manual for A Course in Ordinary Differential Equations. by Randall J. Swift Stephen A. Wirkus

Σχετικά έγγραφα
Section 8.3 Trigonometric Equations

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Differential equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

Homework 8 Model Solution Section

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Matrices and Determinants

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Inverse trigonometric functions & General Solution of Trigonometric Equations

2 Composition. Invertible Mappings

PARTIAL NOTES for 6.1 Trigonometric Identities

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

derivation of the Laplacian from rectangular to spherical coordinates

Solutions to Exercise Sheet 5

Math221: HW# 1 solutions

Section 7.6 Double and Half Angle Formulas

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Second Order RLC Filters

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

D Alembert s Solution to the Wave Equation

Areas and Lengths in Polar Coordinates

CRASH COURSE IN PRECALCULUS

Solution to Review Problems for Midterm III

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

1 String with massive end-points

Finite Field Problems: Solutions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

( y) Partial Differential Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Lecture 26: Circular domains

The Simply Typed Lambda Calculus

Concrete Mathematics Exercises from 30 September 2016

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lifting Entry (continued)

Section 9.2 Polar Equations and Graphs

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Problem Set 3: Solutions

Homework 3 Solutions

C.S. 430 Assignment 6, Sample Solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Second Order Partial Differential Equations

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Forced Pendulum Numerical approach

Srednicki Chapter 55

ST5224: Advanced Statistical Theory II

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Uniform Convergence of Fourier Series Michael Taylor

6.3 Forecasting ARMA processes

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

10.7 Performance of Second-Order System (Unit Step Response)

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Exercises to Statistics of Material Fatigue No. 5

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

If we restrict the domain of y = sin x to [ π 2, π 2

Math 6 SL Probability Distributions Practice Test Mark Scheme

Reminders: linear functions

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Differentiation exercise show differential equation

Numerical Analysis FMN011

Variational Wavefunction for the Helium Atom

Answer sheet: Third Midterm for Math 2339

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Parametrized Surfaces

Review Exercises for Chapter 7

F-TF Sum and Difference angle

( ) 2 and compare to M.

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Approximation of distance between locations on earth given by latitude and longitude

Every set of first-order formulas is equivalent to an independent set

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Quadratic Expressions

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Math 5440 Problem Set 4 Solutions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Finite difference method for 2-D heat equation

Orbital angular momentum and the spherical harmonics

Tridiagonal matrices. Gérard MEURANT. October, 2008

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Lecture 2. Soundness and completeness of propositional logic

Transcript:

Solutions Manual for A Course in Ordinary Differential Equations by Randall J. Swift Stephen A. Wirkus

Preface This solutions manual is a guide for instructor s using A Course in Ordinary Differential Equations. Many problems have their solution presented in its entirety while some merely have an answer and few are skipped. This should provide sufficient guidance through the problems posed in the tet. As with the book, code for Matlab, Maple, or Mathematica is not given. It is our eperience that the synta given in the book is sufficient to learn the relevant commands used to obtain solutions to the various problems in the book. Please give Appendi A a chance, if you have not done so already. This solutions manual was put together by many people and we note a few of them here. We owe a big thanks to our former students David Monarres, for help in preparing portions of this book, and Walter Sosa and Moore Chung, for their help in preparing solutions. More recently Scott Wilde has helped tremendously in shaping this manual. Jenny Switkes and other colleagues and students have also given feedback on various drafts of this manual and all have been helpful. This book has evolved over the last few years and we have tried to make this solution manual stay in step. However, we realize that there are probably many typos throughout and we encourage you to contact us with your corrections. Hopefully future printings of this manual will have an eponentially decreasing number of such errors. We would appreciate any comments that you might have regarding the book and the manual. Randall J. Swift (e-mail: rjswift@csupomona.edu Stephen A. Wirkus (e-mail: swirkus@csupomona.edu URL for typos and errata: http://www.csupomona.edu/ swirkus/acourseinodes

Contents Traditional First-Order Differential Equations. Some Basic Terminology................................... Separable Differential Equations............................. 5. Physical Problems with Separable Equations...................... 4.4 Eact Equations...................................... 7.5 Linear Equations.......................................6 Chapter : Additional Problems............................. 4 Geometrical and Numerical Methods for First-Order Equations 5. Direction Fields the Geometry of Differential Equations............... 5. Eistence and Uniqueness for First-Order Equations.................. 56. First-Order Autonomous Equations Geometrical Insight............... 59.4 Population Modeling: An Application of Autonomous Equations........... 8.5 Numerical Approimation with the Euler Method.................... 8.6 Numerical Approimation with the Runge-Kutta Method............... 87.7 An Introduction to Autonomous Second-Order Equations............... 9.8 Chapter : Additional Problems............................. 9 Elements of Higher-Order Linear Equations 9. Some Terminology..................................... 9. Essential Topics from Linear Algebra........................... 94. Reduction of Order The Case of n..........................4 Operator Notation..................................... 4.5 Numerical Consideration for nth Order Equations................... 6.6 Chapter : Additional Problems............................. 4 Techniques of Higher-Order Linear Equations 5 4. Homogeneous Equations with Constant Coefficients................... 5 4. A Mass on a Spring.................................... 4. Cauchy-Euler (Equidimensional Equation........................ 9 4.4 Nonhomogeneous Equations................................ 4.5 Method of Undetermined Coefficients via Tables.................... 8 4.6 Method of Undetermined Coefficients via the Annihilator Method........... 46 4.7 Variation of Parameters.................................. 54 4.8 Chapter 4: Additional Problems............................. 65

5 Fundamentals of Systems of Differential Equations 67 5. Systems of Two Equations Motivational Eamples.................. 67 5. Useful Terminology..................................... 7 5. Linear Transformations and the Fundamental Subspaces................ 74 5.4 EigenvaluesandEigenvectors... 77 5.5 Matri Eponentials.................................... 8 5.6 Chapter 5: Additional Problems............................. 8 6 Techniques of Systems of Differential Equations 85 6. A General Method, Part I: Solving Systems with Real, Distinct Eigenvalues..... 85 6. A General Method, Part II: Solving Systems with Repeated Real or Comple Eigenvalues............................................ 88 6. Solving Linear Homogeneous and Nonhomogeneous Systems of Equations...... 9 6.4 Nonlinear Equations and Phase Plane Analysis..................... 95 6.5 Epidemiological Models.................................. 4 6.6 Chapter 6: Additional Problems............................. 7 7 Laplace Transforms 7. Fundamentals of the Laplace Transform......................... 7. PropertiesoftheLaplaceTransform... 4 7. Step Functions, Translated Functions, and Periodic Functions............. 4 7.4 The Inverse Laplace Transform.............................. 5 7.5 Laplace Transform Solution of Linear Differential Equations.............. 6 7.6 Solving Linear Systems using Laplace Transforms.................... 7 7.7 The Convolution...................................... 7 7.8 Chapter 7: Additional Problems............................. 8 8 Series Methods 8. Power Series Representations of Functions........................ 8. ThePowerSeriesMethod... 8. Ordinary and Singular Points............................... 4 8.4 The Method of Frobenius................................. 5 8.5 Bessel Functions...................................... 6 8.6 Chapter 8: Additional Problems............................. 9 B Graphing Factored Polynomials C Selected Topics from Linear Algebra C. A Primer on Matri Algebra............................... C. Gaussian Elimination, Matri Inverses, and Cramer s Rule............... 5 C. Coordinates and Change of Basis............................. 8

Chapter Traditional First-Order Differential Equations. Some Basic Terminology. With y(,wehavey ( 6. Substituting into the ODE gives (6 (, which is true for (,.. y, dy d d dy (. Substituting y and d d into the ODE, we get (,which is true for all. Thusy is a solution to dy d (y on (,.. y( 5 +4 (5 +4, dy d (5 +4 (5 5 +4 4 dy. Substituting y and 5 d 5 (5 +4 5 5 dy. y and (5 +4 d into the ODE, we get ( 5 +4 5( (5 +4 5 (5 +4 do not eist when which is true for { 4 5 }.Thusy 5 +4 is a solution to the ODE on ( 4 5,. 4. Since y( e, wecalculatey ( e. Substituting into the ODE gives (e + (e e +( e + e +e e + e + e e + which is true for all (,. 5. y(, dy d. Substituting y and dy into the ODE, we get d ( /

Section. which is true for all. Thusy is a solution to the ODE on (,. 6. y(, dy d ( Substituting y and dy d dy. y and ( d into the ODE, we get ( ( ( ( ( do not eist when. which is true for { }. Thusy is a solution to the ODE on (,. 7. Taking the derivative of y( gives us y ( and y ( +. Substitution gives ( + ( + which is true where both sides are defined, which occurs when. 8. y( sin +cos, dy d cos sin, y andd d sin cos. Substituting y and d y d into the ODE, we get ( sin cos+(sin +cos which is true for all. Thusy sin +cos is a solution to the ODE on (,. 9. y(, dy d,and d y d. Substituting y and d y into the ODE, we get d ( + ( which is true for all. Thusy is a solution to the ODE on (,.. y( + C sin, dy d +Ccos, and d y d C sin. Substituting y and d y d ODE, we get ( C sin +( + C sin into the which is true for all. Thus y + C sin is a solution to the ODE on (, for any constant C.. (a y e, y e,y e y y +y e e +e (b y e, y e, y 4e y y +y 4e 6e +e

Section.. (a y e, y e,y e y y + y e e + e (b y e, y e + e,y e +e y y + y e +e e e + e. (a y sin, y cos, y 9sin y +9y 9sin +9sin YES (b y sin, y cos, y sin y +9y sin +9sin NO (c y cos, y sin, y 9cos y +9y 9cos +9cos YES (d y e, y e, y 9e y +9y 9e +9e NO (e y, y,y 6 y +9y 6 +9 (unless NO 4. y +6y +9y (a y e, y e,y e e +6e +9e NO (b y e, y e y 9e 9e 8e +9e YES (c y e, y e + e y 9e 6e 9e 6e 8e +6e +9e YES (d y 4e,y e, y 6e 6e +7e +6e NO (e y e ( +, y e ( 5, y e (9 + e (8 + 8 8 + 8 + 9 NO 5. y 7y +y (a y e, y e, y 4e 4e 4e +e NO (b y e, y e, y 9e 9e e +e YES (c y e 4, y 4e 4, y 6e 4 6e 4 8e 4 +e 4 YES (d y e 5, y 5e 5, y 5e 5 5e 5 5e 5 +e 5 NO (e y e +e 4,y e +8e 4, y 9e +e 4 e 4 +9e e 56e +e +4e 4 YES 6. y +4y +5y (a y e, y e,y 4e 4e 8e +5e NO (b y e sin, y e cos e sin, y 8e cos 8e cos +8e cos 8e sin +5e sin NO

4 Section. (c y e cos, y e cos e sin, y 8e sin 8e sin 8e cos 8e sin +5e cos NO (d y cos, y sin, y 4cos 4cos 8sin +5cos NO 7. y e r, y re r,andy r e r.theodegives r e r +re r +e r e r (r +r + e r (r +(r + r, 8. y +4y +4y y e r, y re r + e r,y r e r +re r e r ( r +r +4r +4+4 r +(+4r +(4+4 r 4 ± 4 4 4 4 or or We can disregard the value involving, which leaves only r. 9. (a y + y sin (i nd order (ii linear (iii N/A (b y +siny (i nd order (ii nonlinear (iii N/A (c y ( +(siny ( + y, y(, y (, y ( (i rd order (ii linear (iii IVP (d y + e y y 4, y( (i st order (ii nonlinear (iii IVP (e y + y y (i nd order (ii linear (iii N/A (f y + e y + y,y(, y(π (i nd order (ii nonlinear (iii BVP. (a y yy (i nd order (ii nonlinear (iii N/A (b y sin (i nd order (ii linear (iii N/A (c y +y,y(, y ( (i nd order (ii linear (iii BVP (d y,y(, y ( (i nd order (ii linear (iii IVP (e y 4y +4y,y(, y ( (i nd order (ii linear (iii IVP (f y + y +(lny (i nd order (ii linear (iii N/A

.. SEPARABLE DIFFERENTIAL EQUATIONS 5. Separable Differential Equations.. 4y d +( +dy 4 + d y dy 4 dy + d y Letting u +, du dy u y ln u + C ln y ln( ++C ln y e ln( ++C y y e C ( +, since e C > y C (, + where C ±ec tan dy+yd dy d y tan ln y ln sin + C y sin e C y C csc, c ±e C. (e +cosydy+ e (sin y +d,y(. Then cos y sin y + dy e e + d Substitute Then Therefore, u siny + u e + du cosydy du e d [ ln sin y + ln e + + C sin y +A (e + A Apply IC: (sin + (e A (sin+ + sin y + +sin e +

6 Section. 4. We have (y +d +( 4 +dy,y(. Then Therefore, Finally, ( 4 +ds (s +dr dy y + 4 + d u du d arctan(y arctan(u+c arctan(y arctan( +C arctan( arctan( + C + arctan( C }{{} C π π/4 u + du 5. y d +( +dy have ln y 6. arctan(y arctan( + π π y tan( arctan( dy y y A( +e d. Substituting u +, u, du d, we + ( (u du u u du ln + + C (y + / d y dy d d y y + dy y y + dy Let u y +anddu ydy,so du ydy.thenwehave d du u ln + C (/ u (/ ln + C y +

Section. 7 7. We have ( y +y andy(. Then ( dy d y dy y d dy y y y d ln + C ln + C IC: ln + C C y ln + 8. We have y cot + y andy(. Then dy cot y + d dy tan d y ln y ln cos + C y e C cos y ±e C (cos +A(cos + Since y(, A + A. Thus y (cos + 9. y +y dy d y dy y d y dy d Use a u e u ln a.then y + C y + C y log + C

8 Section.. d dt + t d ( t dt d ( t dt t t + C t t +C ± t t + C, C C. Let u y du d dy d du d +cosu du d cosu du cos u d tan(u/ tan( y y +tan (/. Let u + y du d +dy d u u u u + du u + d ln(u + e u + + y y e +. We have ( +yy,y(. Let u y +. Then du d dy d + Substituting into the ODE gives ( u u This is separable: u u u +u + u u u +u du d

Section. 9 Note that Then ( u +u u + +u +u du +u d u ln +u + C Substitute back u +y: ( +y ln + +y + C Apply IC: + ( ln ++( +C 4 ln C The solution is given in implicit form as y ln + +y +4+ln 4. y 4 +y. Let u 4 +y du d 4+dy d u u +4 du d u +4 ( ln ( u + u ( ( ln 4 +y + 4 +y 5. We have (y +d + y( +4dy,y(. Then ( +4ydy (y +d y y + dy d +4 ( d dy y + +4 y ln y + ln +4 + C e y ln y+ ln +4 +C e y + ey e C Apply IC: y( +4 e y (y + ± ec ( +4 A ( +4 A e e ( + A ( +4 e y (y + e ( +4 6. We have 8 cos yd+csc dy,y(π/ π/4. Then csc dy 8cos yd sec ydy 8 sin d ( tan y 8 4 sin + C where A ±e C tan y sin 4 + C, where C 8C

Section. Using y(π/ π/4, we solve for C: ( π tan 4 ( π sin π 6 + C C π So tan y sin 4 + π 7. We have dy d y +y, y(. Separating variables and integrating gives + y +y dy + d ( y (y + + ( dy y ( + + Now apply IC: The solution is then 4 ln y + + ln y ln + + ln + C 4 ln( ++ ln( ln( + + ln( + C C ln 4 4 ln 4 ln(y ++ ln(y ln + + ln + ln 4 4 ln 8. We have y e, y(. Then dy d e dy e d y e d Apply IC: ydy y( y( y( e t dt e t dt e t dt

Section. 9. We have y ye, y(. Then dy e d y ln y e + C C ln y e, when,y Thus C y is even since we have only an term. ln y y e / e ( / y ±e / e. (a We have y cos y, lim + y 9π/4. Then dy cosy + d First we use a trigonometric identity as follows: cos y + (cos y sin y+(cos y +sin y cos y Thus we obtain dy cos y sec ydy d d tany + C tan y + C C tany + ( 9π 4 lim + C tan + Thus tan y ( or y arctan

Section. (b We have y y +6 y.then y dy d (y 8 y y 8 dy d ln y 8 + C y 8 e C e y ±e C e +8 y [Ce +8 / where C ±e C Notice that no value for C bounds y since e C.. dn rn dt dn rdt N N dn rdt ln N rt + C Note N is number of population, i.e. >. e ln N e rt+c N e C e rt N C e rt Note C is >, dealing with possible population. Thus N C e rt is a solution to the ODE. Case. For values r we have eponential growth as t. Case. For values r< we have eponential decay as t.

Section.. lim N K t. We have ( + y d dy. Then dn dt ( r N N K dn rn ( N K dt (Let u N/K du dn dt K dt K du dt ruk( u du dt ru(u dt du ru(u ln u ln u t r ( r ln ( N K e tr ( N K N K e tr N K K e tr Let Then Substituting for u gives 4. We have Let Then ( + y dy d + y dy d u y y u u u + u +u u u ln + C y (ln + C dy d y +y y + y u y y u + u u + u u +u u u + u

4 Section. This equation is separable: Use partial fractions to rewrite Thus u(u + A u + du u + u d ln + C u + u. ( u(u + du u u + Plugging in u y/ then gives 5. We have B A(u ++Bu u(a + B+A u + } A + B B A du ln u ln u + ln u u + ln u u + ln + C u u + eln +C e C u C u C(u + u + u( CC u C C y Let u y y u + u. Substituting gives C C dy d + y dy d +y (u + u +u u +u u (u This is separable: Letting w u, dw du, du (u d u ln + C u ln + C u ln + C Plugging in u y/ gives y ln + C

Section. 5 6. y y + y y + y + y y + y + y ( y ( y + + (homogeneous Let y v, y v + v. Then dv d + v +v + v dv d +v +v dv d arcsinh v ln + C Substituting back in, we have y sinh(ln + C y sinh(ln + C 7. We have ( +y d dy. Then +y dy d +y dy d dy ( y d + Let y v, y v + v. Then (homogeneous dv d + v +v dv d +v dv v + d ln v + + C v + Ce y Ce y Ce 8. We have (y y d + dy dy y y y ( y ( d

6 Section. Let u y, y u + u. Then u + u u u u u u ln u +ln u ln + C u u eln +C C y/ (y/ C y y C y y C y Cy C y C +C 9. We have y y( y. Then dy d y ( y dy ( y d ( ( y Let u y, dy d du + u. Then d du d + u u ( u du d u u du u ln + C y ln + C y ± ln + C d

Section. 7. We have ( + y y y. Then. dy d y + y dv d + v v + v dv d + v v +v dv d v +v v dv v v v d +v dv d v v +v +v v v dv dv v( v dv + v ( v dv d ln v ln v ln + C v v C y ( y C y C y C y Cy C y C(y ( y v, y v + v,v y y y tan(y/ y y ( y +tan (Homogeneous v + v v +tanv dv tan v d ln ln sin v + C e C sin v e C sin y y sin e C y sin e C. ( + y d (4 +y dy dy d y + C

8 Section.. We have y + y yy.then Let y v + v. Then y y (y y y y y 4 y dy d y (y (y dy yd (y dy +( y d dv d + v v v y v dv v d v v v dv v v(v d v dv d v v + v v dv v v d v v v dv d ln(v ln v ln + C ln +ln v ln + C v v(v C (y(y ( y C ( y C y(y C 4. ( y+(y y y (fory y + C. If y, the equation is true trivally.

Section. 9 5. ( +4yy +y y +y +4y +(y/ +4(y/ ( y v, y v + v, v y v + v +v +4v d ( + 4vdv +v 4v (Partial fractions yields: ln [ ln( + v( v 5 6 ln [ ln( + (y/( (y/ 5 6 6. We have Let u y, y u + u. Then ( y d +( + y dy dy d y y + y ( +u + u +u du u + u u +u du d u +u u + y du u d +u +u +u du d d arctan u + ln +u ( y arctan + ( ( y ln +

Section. 7. yd ( + y dy dy d (y/ +(y/ (y v, y v + v v + v v +v v v + v v + +v v + v dv d ( v + ln ln + C v v + v e C (y/+ (y/ e C 8. ( ( y (y/ y + y +(y/ ( y v, y v + v, v y v + v v ( + v v v v ( + v ( + v v v dv d ( (v 4 ln v ( ((y/ 4 ln (y/ + v ln + C +(y/ ln + C 4. (a M(, y t Homog. deg. n M(t, ty t n M(, y ( n M(, y M(, y n M(, y (b Repeat above echanging M for N. (c M(, yd + N(, ydy dy M(, y M(, y d N(, y N(, y Define g (t M(,t, g (t N(,t, g(t g (t g (t dy d M(, y N(, y g ( y g ( y g( y

Section. 4. In (.F (, y ( + yd dy F (t, ty (t + tytd t t dy t (( + yd dyt F (, y Homogeneous of degree. The others are similar. 4. Given that M(, y d + N(, y dy is homogeneous, then dy M(, y M(, (y/ and the substitution d N(, y N(, (y/ r cos t d r sin tdt+costdr y r sin t dy r cos tdt+sintdr dy M(, tan t M d N(, tan t N dy r cos tdt+sintdr d r sin tdt+costdr M r cos tdt+sintdr N r sin tdt+costdr (r cos tdt+sintdrn M( r sin tdt+costdr N sin tdr+ M cos tdr Nrcos tdt+ Mrsin tdt ( dr N cos t + M sin t r dt N sin t + M cos t Since the function M and N are functions of t, the right hand side is a function of r times a function of t. Hence, it is seperable. 44. (a From 4. with r ( + y and t tan y [ ( + y ep ln ( dr r cos t +(cost +sintsint r dt cos t sin t +(cost +sintcost ( cos t +sintcos t +sin t r cos t ( +sintcos t r cos t ( dr +sintcos t r cos dt t ( ln r ln cos +tant t [ ( r ep ln cos +tant + C t, we finally have cos (tan ( y ( + tan(tan y +C (b

Section. 45. (a dy d y y + (y/ (y/+ which is homogeneous. As before, y v and v + v v v + v v + (v +dv d v + v + C ln Ke (v /4 (v/ K ep( y 4 y (b i. ( y d +(y + +5dy M(, y y M(t, ty t ty tm(, y. Hence, M is not homogeneous. Similarly for N, and so the equation is not homogeneous. ii. X, y Y, d dx, dy dy and dy d dy dx Y X Y +X iii. X K ep( Y 4X Y + X (y + K ep( 4( + y + ( + 46. Lines are parallel, so there is no point of intersection. 47. Lines are parallel, so there is no point of intersection. 48. dy +y 5 which gives point of intersection to be (4,. Thus, we let X 4and d +4y y Y +andgetto dy dx X +Y X +4Y +(Y/X +4(Y/X Y vx Y v X + v v X v +4v ln X 5ln v 4X ln +4 5ln y +4 4( +4

Section. 49. Point of intersection is (,. Thus we let X +andy Y andget dy dx Y X + Y dx X + Y dy Y (/y+ X uy dx dy u Y + u u Y + u u + du u + dy Y ln u + ln Y + C Y K u + K (X/Y + ( y + ±K y + + ( y + 5. y and as in 49., + y ( dy Y dx X + Y dx ( X dy Y + X uy dx dy u Y + u u + u X u + u + u X (u + du u + dx X tan (u ln X + C ( tan ln + C y +

4 Section.. Physical Problems with Separable Equations. r kv, v e 6m/s, v,m 75kg, s 8m, s e 5m m dv dt mg kv 75v 75(9.8 kv 75 kv 75 dv dt 75 kv.8 ln kv 7. kv+7. t + C k kv 7. [ kt + C ep kv +7..8 From the given information lim v(t 6 t k6 7. k.47 k6 + 7. v C.45v 7. Thus, we have.45v +7. e (.6t and after some simplification ( +e.6t v(t 6 e.6t. r kv, r.48n when v k.48.4 dv dt (.4(9.8.48v dv dt 9.8.v dv 9.8.v dt If air resistance is neglected, then s(t 4.9t +t, v(t 9.8t + t.4, s(.4.4ft 4. v(t gt + v, v( g + v v g s(ft/s 96ft/s 5. (a v,v(t gt t, v(4 8ft/s 4 (b Ave velocity tdt64ft/s 4 (c v(t t, s(t6t + s,s(4 s(4 6 + s s 56 cliff was 56 ft tall 6. a(t,v(t t + v t, s(t 6t + s, s(5 6(5 + s s 4 cliff was 4 ft tall

Section. 5 7. s 5, v,s(t 6t 5 t average velocity km 5/4 5 8km 4.48km/s 5s 8. T (t (T T s e kt + T s,t s, T 5,T( 5 T ( 7e k 5 k ( 7 ln 7. Then to find eating time (t eat, T (eat 7e k(eat eat ln(/7 4.8hrs 5pm ln(7/7 9. Let t bepm. T ( 79, T( 68, T s 6. T (t 9e kt +6,T( 9e k +668 Thus the person died about :pm 9e k 8 k ln.4.88 T (t 9e.88t +6 (Solve for t when T 98.6 98.6 t.46. T (t 8e kt +,T( 8e k +6 k.69 T (t 8e.69t ln 6 +5 t 4min ln. N(t amount of N in tank after t seconds. N( 6. dn dt rate in - rate out. N (. dn N dt N(t e( t/+c, N( 6 e C C ln4.9 N(t e ( t/+.9. We want to solve N(t (.99 9.8 fort. t (ln(..9 599 seconds min. 4. s(tamount ( of salt at time t. s(. ds s(tkg dt (5L/m s(t L s(t e ( t/+c C ln s(t e ( t/+ln s(6 4.97 5kg 5. (a ds s(t (4lb/gal(gal/m (s(tlb/5gal(gal/min8 dt 5 s(t 6+9e ( t/5 concentration s(t/5. (b ds dt s 8 s(t 4 5 5 e( t/5 conc s(t/5 t. 6. s(t amount of salt in pond, s,v(t volume of pond, v, dv dt 5 v(t 5t. ( ( ds 5kg dt s(tkg (5m /d m ( 5tm (m /d 6.5 s(t 5t Yes, after days, there is no water in the pond which will result in no salt in the pond.

6 Section. ( ( 7. C(t amount of CO, C (.5(.m, dc dt m Cm min (.4 m (m /min.8.c This gives us that the concentration will be half of what it started (i.e. there will be.5m of CO in.45 minutes. 8. da dt ka, da A kdt A(t ekt+c A e kt. A( A /A e k e k k ln(/. A(t.A A e.t t ln(.. days 9. A(.56 e k k.5798 t.95 years. p amount of decayed tin, Moriginal amount of tin. dp k(m p(p wherem p is the amount of tin left dt dp kdt p(m p ( p M ln kt + C M p M p(t M +e Mkt+C where C would be determined by the original amount of decayed tin in the organ.. Let (, y be the point of tangency and c be the -intercept of the tangent line. Then c y a c a y. dy d y c y a y y y a dy y a d y ± a Because of symmetry, either graph will give the desired result.. Let (, y be the point of tangency and c be the -intercept of the tangent line. Then c + y b. dy d y c y b y b ln y y This is an implicitly defined function.

.4. EXACT EQUATIONS 7. Let A(t be the amount of snow on the ground. Then A(t kt since it is falling at a constant rate and there was none when it started. Let P (t be the distance plowed. Then dp dt m A(t m kt. Thus dp m kt dt P m k ln t + C, P ( C P (t m k ln t +. P ( m k ln + m k.44. P (t.44 lnt +. Set P (t togett 4which says it started snowing at about 8am..4 Eact Equations. We have y +(+ y dy d. UsingM y and N + y,wehave M y 6y, N 6y so the equation is eact. We need to solve f f M and y N: f f d y d y + g(y This f y + g(y mustalsosatisfy f y N. + y y ( y + g(y y + g (y g (y g(y y Thus the solution is given by f C: y + y C. We have (y ++( +4y dy,y(. Use M y +andn +4y. Then M y N so the equation is eact. We set f f M and y N and solve. f f y dy ( +4y dy y +y + h( This f must also satisfy f M: y + ( y +y + h( y + h ( h ( h( The solution is given by Initial conditions yield C,so y +y + C y +y +

8 Section.4. We have (y sec +sectan + (tan +y dy withy(. Setting M (ysec + sec tan andn tan +y leads to M y sec N so the ODE is eact. Then, F (y sec +sectan d F y tan +sec + g(y tan +y f y tan + g (y y g (y g(y y The solution is y tan +sec + y C. With initial conditions, ( + + C C, so y tan +sec + y 4. We have (y sin cos + y sin +(sin y cos dy with y(. Let M y sin cos + y sin and N sin y cos. Then M y sin cos +ysin N sin cos y( sin so the equation is eact. We set f Then f f M and y N and solve. f y dy (sin y cos dy y sin y cos + h( y sin cos + y sin (f y sin cos + y sin + h ( h ( h( C The solution is given by y sin y cos C Initial conditions give us sin cos, so C 9 and y sin y cos 9 5. We have y +( y dy. Setting M y and N y, Then M y N f y f(, y y + g(y f y + g (y y g (y y g(y y

Section.4 9 Thus the solution satisfies y y C 6. We have ( 9y +(4y 6 ydy. UsingM ( 9y and N (4y 6 y gives M y 8 y N Then f 9 y f(, y y + g(y f y 6 y + g (y 4y 6 y g(y y 4 Thus the solution satisfies y + y 4 C With initial conditions y(, ( ( + 4 C gives C, so y + y 4 7. We have e y (y + e 4 dy withy(. Using M e y and N y e y we have M y e y N We need to solve f Md e y d e y + g(y Substituting into f y N, y (e y + g(y e y + g (y y e y g (y y g(y y The solution is given by e y + y C. Now apply initial conditions: e ( C, so C 9 e. The solution is then e y y e 9 8. We have ( + y sin +( y cos dy. Then so the equation is not eact. y [ + y sin y sin [ y cos 4y sin

Section.4 ( 9. We have ( ln y+ y y dy. Then y [ + ln y y [ y y y so the equation is eact. f + ln y f(, y + ln y + φ(y f y y + φ (y y y φ(y y + C Then f(, y + ln y y + C. (+ y ( d + y dy M y, N F the equation is eact. Thus + y F y + g(y. F y + g (y y g (y y, g(y y /+C F (, y y + y + C (. We have sin y + d + ( +cosy dy. Then cos y [ y sin y + cot[ycsc[y [ ( +cosy cos y cos y cos y We find cos + cos(y cos y cos cos y cos y So so it is eact. Then N cos y (cos cos y sin cot y csc y y f sin y f(, y + + φ(y sin y f y cot y csc y + φ (y cos y +cosy cos y cos y sin y + cos y siny cot y csc y cot y csc y

Section.4 So and φ (y cot y csc y φ(y csc(y f(, y csc y + + csc(y+c + C. Solve a a y a d + (( a a y a dy. (i As a separable equation, (ii As an eact equation, a a y a d (a a y a dy a a (a y a a d y a dy a (a d dy y a ln + C (a ln(y y (a C a y [aa y a a( a a y a y [( aa y a a( a a y a f aa y a f(, y a y ( a + φ(y f y ( aa y a + φ (y ( a a y a φ (y C f(, y a y ( a + C. Determine A R such that the equation is eact. Then solve the resulting equation. (a ( +y d +(A +4y dy. Then so A anda.then y [ +y [A +4y A f +y f(, y + y + φ(y f y + φ (y +4y φ(y y + C So f(, y + y +y + C

Section.4 (b ( Ay + y ( d + dy. Wehave [ Ay y + y [ A + + so A. Then Therefore f y y f(, y y + y + φ(y f y + + φ (y φ(y C f(, y y y + C 4. Assume M y N F. We want to find F (, y such that M, F N. As in the proof y of Thm..4., proceed replacing the argument of F M(, y withonefor F N(, y and continuing in the same manner. y 5. Determine the most general function N(, y sothat is eact. For the equation to be eact, ( + y d + N(, y dy so y [ + y y N N(, y y d y + φ(y 6. Determine the most general function M(, y such that M(, y d +(ye + y e dy is eact. We have So M y [ye + y e ye +y e M(, y ye +y e dy y e + y e + φ( 7. Show that (A + By d +(C + Dy dy is eact if B C. To prove this, assume that B C. Then [A + By y B [C + Dy C

.5. LINEAR EQUATIONS Then [A + By [C + Dy y which by Theorem.8. implies that the equation is eact. Now assume that the equation is eact. Then by Theorem.8. we know that B [A + By [C + Dy C y or that B C. 8. Show that the homogeneous equation (A + By + Cy d +(D + Ey + Fy dy is eact if and only if B D and E C. To prove this, assume that B D and E C. Then y [A + By + Cy B +Cy D + Ey [D + Ey + Fy Therefore, by Theorem.8., the equation is eact. Now assume that the equation is eact. Then by Theorem.8., B +Cy y [A + By + Cy [D + Ey + Fy D + Ey which implies that B D and C E..5 Linear Equations. y + y : Linear equation with a(, b(. Let A( d ln. Then e A( and e A(. The solution is given by ( y( [ d + C + C if < ( + C if Then y( + C for all.. y + y. Linear with a( +, b(.then A( + d ln + ln( + because + is always positive. Substituting u +, du d leads to e A( e ln(+ + ; e A( e ln(+ +

4 Section.5 Then b(e A( d ( ( + d + d arctan The solution is therefore. ( +y 4 +y leads to Using P where + y (+ ( arctan +(+ +C y y + 4 + 4 and Q + gives d ln + + e p( e p( e ln + + e ln + + 4 + + d sgn( + sgn( + The solution is y + ( sgn( ++C or { if +< if + y ( + ( + C 4. We have y + y tan sec with y(π. Then so y sec tan + C. N( sec d d [y sec sec 5. We have dy So y sin + C cos sinπ + C cos π C C y sin cos ( + y d. Then Let u du/ d. Then dy d y Q( N( e (/( d N( e (/ (/u du e ln (/

Section.5 5 So [ d y d Let u. Then du/ d and d u du y u / du +C so y +C and y ( + C 6. y y 4e and y( 4. Let P (, Q( 4e.Then d e p( e ; e p( d e 4e e d 4 d 4 The solution is y e (4 + C With initial conditions, 4 e (4( + C C 4,thus y 4e ( + 7. y + y, P (, Q(, μ( e / e / d e / + C. ( Thus the general solution is y e / e / + C 8. P (, Q( e,μ( e ln e d e e. Thus the general solution is y e ln (e e + C (e e + C 9. P (,Q(, μ( e e d e + 4 e + C. Thus the general solution is ( e y e + 4 e + C. We have dy d + y cos ( π with y 4 π and >. This time Q( which implies that d [y cos( y sin(+c d So with y( π 4 π,wehavethat π 4 ( π π sin + C +C so C and y( sin( + so N(,

6 Section.5. P ( Q( μ( e Q(μ( d e + C ( y e e + C. P ( Q( μ( e Q(μ( d ( +e y + C. P ( Q( cos μ( e Q(μ( d e (cos +sin+c ( e y e (cos +sin+c 4. P ( Q( e μ( e Q(μ( d e + C ( e y e + C

Section.5 7 5. y +y withy(. Then we have A( d e A( e, e A( e 4 b(e A( e d y(te A(t b(te At 6. We have ( + y dy yd gives + y y d dy or d dy y y Thus a(y y, b(y y, A(y y dy ln y. Then Then y[y+cy and e A(y e ln y y, e A(y y ( b(ye A(y dy y dy dy y y y + Cy 7. We have (e y y or(e y dy d. Soey d dy we have N(y e y. so the solution is d dy [ey e y and e y e y + C e y + Ce y 8. We have (sin y + cot yy. Rewriting,wehave (sin y + cot y d dy d cot y siny dy With Q( cot y we have N(y e ln(sin csc y, so d sin y [ csc y dy sin y d sinycos y [ csc y dy sin y csc y cosydy 9. (a y,y, y + P (y + csc y siny + C (y sin y + C sin y and d dy + ey.withq(y

8 Section.5 (b y y is a solution. y ky, y ky. Then ky + P (ky k(y + P (y k( (c y y + y, y y + y Then y + y + P ((y + y (y + P (y +(y + P (y +(Sincey and y are solutions. (a y y + y, y y + y Then y + y + P ((y + y (y + P (y +(y + P (y +r( (Since y and y are solutions r( (b y y + y, y y + y Then y + y + P ((y + y (y + P (y +(y + P (y r(+q( (Since y and y are solutions (c Solution to ( y +y e is y e (e + C andy +y cos is e y e ( cos +sin+c. 5 ( Thus y e e + e ( cos +sin+c is a solution to the original equation. 5. (a y P (y dy P ( d y ln y P ( d y c ±e P ( d (b y A(y c, y A (y c + A(y c. Then Q( y + P (y A (y c + A(y c + P (A(y c A (y c + A((y c + P (y c A (y c (c A (e P ( d Q( A ( Q(e P ( d A( Q(e P ( d d (d y p y c A(, ( y y c + y p y c + y c A( y c ( + A( e P ( d Q(e P ( d d. Let y be the amount of pollutant at time t. Then ( y y ( 5 + t 4 y 5 + t Then y + y 4 is linear with solution 5 + t ( y(t 4(t + 5 6 (t + 5 5 + C. C 4(5 6. y(t 4(t + 5 4(56,y( 87 (t + 5 5 Concentration 87 5.49g/gal

Section.5 9. (a dn dt rn + ra dn dt rn ra N(t a + Cert. N( A C N(t Ae rt A (b r ln. So,withA,N(t e rt t. N(4 5,, 645 N(6 6, 58, 4, 5 d 7. dt + a(t f(t, P(t a(t, μ(t e a(t dt ( (t e a(t dt e a(t dt f(t dt + C. ( ( lim (t lim e a(t dt e a(t dt f(t dt + C sincea(t >, e a(t dt t t ( 9. (a See section.5.. μ( ep ( (y d which gives an eact y DE and F (, y y + y + C ( M (b N y N ( (. So μ( which gives an eact De and F (, y ln y + C. M and N change roles, but the argument is eactly the same as (. M. y y, N ( M N y N. 4. 5. 6. 7. 8. 4. M y +, only in so μ( N + + + N + (y which a function only in so μ( e y ( M y N which a function + M y +y, N y ( N M M y y which a function only in y so μ(y y M y y +, M y, N N y +Which does not yield anything of a function in or y ( M N y N which a function only in so μ( ( M y N which a function only in so μ( e ( M y N which a function only in so μ( cos y ( M N y N 4 ( which a function only in + M y, N e N M y y +, N y N M y cos y, N so μ( ( + 4. n,v y v v which is linear and gives solution v ++Ce y ++Ce

4 Section.5 4. y y 4 cos + y tan, so Let v y.then So dy d +(y tan(y y4 cos dv dy y 4 [ d d 7dv d y4 dy d dv ( d +( tan(y y 4 cos dv +(tan(v cos d N e tan d e ln(/(cos sec d d [v sec cos d d [v sec + cos v sec 4 sin + C y sec 4 sin + C 44. n 4,v y v 9v which is linear and gives v Ce 9 + y Ce 9 + y Ce 9 + 45. We have y y + y.then y y y y y y y This is a Bernoulli equation with r, so r (. Thus we need to solve u + ( u (. Take a(, b(, anda( d ln. Then e A( e ln, e A( e ln ( b(e A( d d ( ( d d < ( d d ( u + C + C y + C y ( + C / 46. y is a trivial solution, so if y y y ln y 4 + C y ±e 4 +C 4 dy y (4 d

Section.5 4 47. We have ( +(y + y y. Then dy d + y y + dy d + y + y Let v y,so and that which implies that dv dy y d d dv d ( y dy d ( dv d ( y + y y + ( dv d y dv ( + d v + Q( +, N( e (/(+ d +,so [ d v d + + v + ln + 48. We have y y 4y. Then v (ln + ( + (ln + ( + y y ( +ln + dy d y 4 y ( 4 dy d + y y / (Bernoulli equation Let v y (/ y /,so dv d dy y / d.then ( dv d [y/ + 4 y y / ( dv d + v (N( [ d y d y ln + C y ln + C

4 Section.5 49. We have y +y + 5 y e. Then dy d +y + 5 y e dy d + y ( 5 e y (Bernoulli equation dv d v y dv d ( y + y ( 5 e y y dy d dv d ( y dv d 4 y (5 e [ Now use N(,so d 4 d v [e. Then 4 v 4 e ( + C v 4 e ( + C 4 5. We have y dy (y + d. Then y ( Let v y + y,so dv d y dy Using N( e ( + C dy d dy d (y y + dy d y + y ( dy d + y y (Bernoulli equation dv d ( y we have d d + d.then ( [ v,so y y dv d + v + C y + C 5. Use the Bernoulli method to solve the logistic equation ( dn dt rn N K We have Let v N,so dv dt ( v dn dt rn r K N dn dt +( rn r K N N dn dt and dv dt ( N dn dt.then dv dt ( N +( rn r K N dv dt + rv r K

.6. CHAPTER : ADDITIONAL PROBLEMS 4 Using N e rt gives d dt [vert r K ert,so ve rt K ert + C v k + Ce rt N K + ce rt N(t.6 Chapter : Additional Problems. False - It is linear, but no initial condition is given. True - y makes it non-linear. False - y( f( is an eplicit solution K + Ce rt 4. The point is to get linear DE into an eact DE by multiplying by an integrating factor. So even if this were true, there would be no reason to do so. 5. False - Solutions can be defined on a restricted portion of the real line 6. True 7. True - dy f(y d 8. y C4 e 4 4 (y 4 ( + Ce 4 4 (Ce 4 y 9. y Ce + y + Ce Ce y. y C y ±(C /, y ± C, y ±(C / y. Valid when C (. y ( + C, (y ( + C ( + C y. We have yy + y. Then y dy y d ydy y d ydy y d ln y + C y e C e / y Ce /, where C ±C y ± Ce / +

44 Chapter Review. We have y y with y(. Rewrite the equation as y y /. Separate variables and integrate: y / dy d y / + C It is easiest to apply the initial conditions now: ( / (+C leads to C 6, so 4. We have y y y. Then ( / y y / 6 y / y ( dy d (y +y dy y d (by partial fractions +y + / dy d y ln y + ln y + C ln y y +C y e C e y ± e C e y ± e C y +C where C ±e C 5. We have e ( + d dt. Then d dt e e e d e dt Letting v e, du e, du u dt ln u t + C u e C e t e ±e C e t e ±e C e t ln ±e C e t ln Ce t where C ±e C

Chapter Review 45 6. We have y + y y with y(.5. Then Apply initial conditions: y y y ln y ln y ln + C y y dy d y y ( y y A A( A y dy d Then we have + y + y 7. We have y y e y/. Rewriting we have y y ey/.letu y, dy d du d + u. Then du d + u u e u du d e u e u du d e u ln + C e y e / ln + C e y ln + C ( e / ln + C y ln e / 8. y y (+y ln(+ y which is Homogeneous. Let v y v + v v (+vln(+v dv ( + vln(+v d [u ln(+v du u d u e C ln( + y ec ln( + y ±ec

46 Chapter Review 9. We have y y cos ( ln ( y. Then ( ( y y y cos ln y y ( y (ln cos dv d + v v cos(ln(v dv d v(cos(ln(v v dv d v(cos(ln(v v(cos(ln(v dv d ( cot ln(v ln + C ( ( y cot ln ln + C (homogeneous. We have (y + y d dy.weusem(, y y + y and N(, y, so M(t, ty ty + t y t(y + y+tm(, y N(t, ty t t( tn(, y We need to solve dy d y y + dv d + v v + v dv d v dv v d v ln + C Then y ln +C y 4(ln y + C. We have dy d y + y. Then dy ( y ( y d + dv d + v v + v dv v d (homogeneous arcsin(v ln + C ( y arcsin ln + C

Chapter Review 47. dy d 4y + y 4(y/ +(y/ Homogeneous (y v v + v 4v +v +v v +v dv d ln ( v ( v ln + C [ ( (y/ ( (y/ ±e C. We have (y/+(y +ln dy. We find ( y y [y +ln so the equation is eact. Then, f 4 f(, y y ln + φ(y f y ln + φ (y y +ln φ(y 4 y4 + C So f(, y y ln + 4 y4 + C ( + y ( 5y dy 4. We have y + y. Then d [ + y y y 6 y [ 5y y 6 y

48 Chapter Review so the equation is eact. Solving, we get f y + f(, y y + + φ(y f y y φ (y 5 y φ(y 5 y + C f(, y y + + 5 y + C + φ (y y 5 y 5. We have ( + y d ydy. Then [ + y y [ y y so the equation is eact. Solving, y y φ (y leadstoφ(y C, so f + y f(, y + yd f(, y + ( y / + φ(y f y y + φ (y y f(, y + ( y / + C 6. y + y y which is Bernoulli n, v y, dv dy y d d.thenwehavedv d + v which is linear with solution v y + C y + C 7. M y y, N y N ( M y N which gives μ( and F (, y y y + C y + (y + which is only a function of

Chapter Review 49 8. dy d y y (Homog (y v v + v v v dv v d v + C y + C 9. Not linear, eact, homogeneous, Bernoulli, seperable. Not linear, eact, homogeneous, Bernoulli, seperable. y + y Linear y 4 5 + C [ e. Linear y e (cos +sin+c [ 5. Linear y e 8 e ( + C 4. Bernoulli n 4,v y,v v (linear v y + C 5. Bernoulli n,v [ y,v +v (linear e v y e ( + C 6. Bernoulli n,v ( y,v v 4 (linear v y e / 4e / + C 7. T (t (T T s e kt + T s 95e kt +5, k.55 soup will be edible in about 4 minutes. 8. T (t 5e kt +7,k.5 coffee is drinkable in about 5 minutes. 9. Let y(t amount of salt at time t, y( 6 dy 6+t dt 5 + t 4 t 5 + t y 9 ln t +5 t + C y( 6 C 46.8 The tank will fill in 5 minutes y(5.4lbs of salt

5 Chapter Review 4. y(t lbs of sugar at time t, y( 5 dy 5 + pt p dt t p 5 pt t dy p 5 pt dt t y (5 pln t p ln t pt + C C 5 5 ln We want y(95.5 p.74lbs/min 4. y(t amount of nitric acid, y( ( dy +.t d. 8 t 56 t t y(t 88 ln t +6t + 88 ln The solution reaches % when y(t.t which is when t 8 minutes. Since the tank empties in minutes, this will never happen. 4. If (, y is the point of tangency, then ( dy, is the point of intersection and d y y. Then dy y d y is such a curve.

Chapter Geometrical and Numerical Methods for First-Order Equations. Direction Fields the Geometry of Differential Equations. Looking at the point (,, y 9, which matches graph b.. Looking at the point (,, y 8, which matches graph c.. Looking at the point (,, y 9, which matches graph a. 4. Looking at the point (,, y 8, which matches graph d. 5. Graph B 6. Graph C 7. Graph D 8. Graph A 9. y y 4 #9 # - - - - - - - - - -. y cosy - - 5

5 Section.. y siny - - - - - -. y e y - - - - - -. y 4 - - - - - -

Section. 5 4. y cos - - - - - - 5. y sin - - - - - - 6. y e - - - - - -

54 Section. 7. y y - - - - - - 8. y + y - - - - - - 9. y ( +(y + - - - - - -

Section. 55. y e. y y - - - - - -. y y + - - - - - - - - - - - -

56 Section.. y y(y - - - - - - 4. y( + 5. y (y + y + - - - - - - - - - - - -. Eistence and Uniqueness for First-Order Equations. (a y y, y(, f y, f y eists and is unique on some interval. y. The theorem guarantees that a solution

Section. 57 (b y y, y(, f y, f y y.thetheoremdoesnot guarantee that a solution eists or is unique on some interval. (c y y +, y(, f y +, f. Thetheoremdoesnot guarantee that y a solution eists or is unique on some interval.. (a f(, y (y + / f, y, which is discontinuous when y, so a (y + / solution eists and is unique everywhere ecept possibly along y. (b f(, y ( y /5, f y, which is discontinuous when y, so solutions 5( y 4/5 eist and are unique everywhere ecept possibly along y. Alternatively, f(, y ( y, f 5 y, so solutions eist and are unique everywhere. 5 (c f(, y y, f y y, which are both discontinuous when y, so solutions eist and are unique everywhere ecept possibly along y. (d f(, y ( + y f, y, which are both discontinuous when y, so ( + y solutions eist and are unique everywhere ecept possibly along y.. (a f y 4 y( / which is not continuous at y. Hence a solution eists and is unique everywhere ecept possibly along y. Actual solution: y 6. This solution crosses y when. 7 (b f y (/ which, along with f(, y, are continuous everywhere. Hence solution eists and is unique. Actual solution: y. (c f y y( 5/ which is not continuous at y. Hence a solution eists and is unique everywhere ecept possibly along y. ( (/5 5 Actual solution: y (6/5 This solution crosses y when. 6 (d f y y( / which is not continuous at y. Hence a solution eists and is unique everywhere ecept possibly along y. Actual solution: y 6 which crosses y when. 6 4. f(, y y is continuous for y and f y is continuous for y>. Hence, by the y theorem, a solution eists and is unique for y(. Actual solution is given by: y ( +. 5. f(, y 5(y /5 and y(. y y is discontinuous when y, so solutions (y /5 eist and are unique everywhere ecept possibly along y. Solving for the initial value, y 5(y /5 (y /5 dy 5 d 5 (y /5 5 + C

58 Section. 6. 7. 8. Applying initial conditions, 5 ( /5 5(+C C (y /5 y ±( 5/ Solutions passing through (, are NOT unique. y ± ( 5/ f y (/ ( y which is continuous everywhere (as is f, therefore, unique solution will eist everywhere. f y (y ( / which is continuous everywhere ecept y, so solutions eist and are unique everywhere ecept possibly along y. Actual solution: ± (/ f y y which is continuous everywhere ecept y, so solutions eist and are unique everywhere ecept possibly along y. ( / Actual solution: + 9. f(, y and f are not continuous at y, so solutions eist and are unique everywhere y ecept possibly along y. Actual solution: y + cos which IS unique.. f y f y lim h f f DNE at y ;ify>, then y andify<, then y. Hence, f(, y + h f(, y DNE. Therefore, the solutions will eist and be unique ecept h possibly at y. If y, y e C e which will never be. If y<, y e C e which will never be. Thus, the only solution to this DE is y which IS unique.

.. FIRST-ORDER AUTONOMOUS EQUATIONS GEOMETRICAL INSIGHT 59. First-Order Autonomous Equations Geometrical Insight. y y +,y + End behavior: +y (i y y 8 6 4 - - - y - y Root y Multiplicity (ii By the phase line diagram, y (iii y>, y as y<, y as (iv y-plane is an unstable equilibrium point. - - - - - -

6 Section.. y y +4y +4,y +4y +4,(y + Root y Multiplicity End behavior: y (i y y y 8 6 4-5 -4 - - - y (ii By the phase line diagram, y is a half-stable equilibrium point. (iii y>, y as y<, y as (iv y-plane - - - - -4-6

Section. 6. 6( ( + (i y y y - - y - -4-6 (ii is a stable equilibrium is an unstable equilibrium (iii If >, then (t as t. If < <, then (t ast. If <, then (t ast. (iv y-plane 4 - - - - - -

6 Section. 4. ( +( Equilibrium Multiplicity Highest power and coefficient: (+(+ + (i y y y 7.5 5.5 - - -.5-5 -7.5 y (ii, unstable; stable (iii For (,, as t For (,, ast For (,, as t (iv y-plane 4 - - - - -4

Section. 6 5. ( ( 9 ( ( +( Highest power coefficient: ( ( + 5 (i y y y 4-4 - 4 y - - - -4 (ii, unstable, stable (iii For (,, as t For (,, ast For (,, as t (iv y-plane Equilibrium Multiplicity 4 - - - - -4

64 Section. 6. y siny, π <y<π sin y, π <y<π End behavior: trigonometric sine wave (i y y y Roots y π y y π Multiplicity.5-6 -4-4 6 y -.5 - (ii By the phase line diagram, y π is a stable equilibrium point. y is an unstable equilibrium point. y π is a stable equilibrium point. (iii For y>π, y π as For <y<π, y π as For π <y<, y π as For y< π, y π as (iv y-plane 6 4-6 -4-4 6 - -4-6

Section. 65 7. y e y / e, e y / e. When y y 4 y 4 (i y y y.8.6.4. - - - y (ii By the phase line diagram, y is stable y is unstable (iii For y>, y For <y<, y For y<, y (iv y-plane - - - - - -

66 Section. 8. y y, y Root y Multiplicity End behavior: y (i y y y - - - y - - - -4 (ii By the phase line diagram, y is a half-stable equilibrium point. (iii For y>, y as. For y<, y as. (iv y-plane 4 - - - - -4

Section. 67 9. ( Highest power and coefficient: ( (i y y y - - - y - Equilibrium Multiplicity (ii is a half-stable point; isastablepoint. (iii For (,, ast. For (,, ast (iv y-plane - - - - - -

68 Section.. ( ( ( + Equilibrium Multiplicity Highest power and coefficient: ( ( (+ + 6 (i y y.75.5.5 - - - y -.5 -.5 -.75 y - (ii isstable; is half-stable; is unstable. (iii If >, then as t. If < <, then ast. If < <, then ast. If <, then ast. (iv y-plane.5.5.5 - - - -.5 -

Section. 69. y cosy +, π <y<π. cosy +,cosy. End behavior: cosine wave (i y y y Roots y π y π Multiplicity.5.5-6 -4-4 6 y (ii By the phase line diagram, y π is a half-stable equilibrium point. y π is a half-stable equilibrium point. (iii For y>π, y as. For π <y<π, y π as. For y< π, y π as. (iv y-plane 6 4-6 -4-4 6 - -4-6

7 Section.. ( + (5 + 7 ( ( 4 Equilibrium 5 Multiplicity 7 4 Highest power and coefficient: (+(+ 7 ( ( 4 6 (i y y 7.5 6 5 6.5 6-6 -4-4 y -.5 6-5 6-7.5 6-7 y (ii 5, are unstable points;, are stable points; is a half-stable point. (iii If < 5, then as t. If 5 < <, then ast. If < <, then ast. If < <, then ast. If < <, then ast. If >, then ast. (iv y-plane 5 - -5 5-5 -

Section. 7. v g k m v. Equilibrium satisfies g (k/mv,sov gm k v g (i v v k m v (ii v gm is a stable equilibrium point. k (iii For v [,, v gm k as t (iv Figures will vary. With g,m.5, k as in eample in. then 6 5 4 4 5 6 4. v g k m v. Equilibrium satisfies g (k/mv,sov gm/k yields v ± gm/k. Note that this is a free-fall problem where v> in the downward direction. We thus ignore v<. (i Graphs will vary gm (ii is a stable equilibrium point k (iii For v [,, v + gm/k as t (iv Graphs will vary 5. ( ( +, ( ( + End behavior: ( ( 5 Roots Multiplicity

7 Section. 4-4 - - - - (i (ii By the phase line diagram, is a stable equilibrium point; is a half-stable equilibrium point; is a half-stable equilibrium point. (iii For >, ast. For <<, ast. For <<, ast. For <, ast. (iv t-plane - - - - - - -4

Section. 7 6. ( ( + 4, ( ( +4 End behavior: ( ( 5 (i Roots ±i Multiplicity ignore 4 - - -.5.5.5 (ii By the phase line diagram, is a stable equilibrium point. (iii For >, ast. For <, ast. (iv t-plane.5.5.5 - - -

74 Section. 7. y ( y (y +4 Root Multiplicity Highest power and coefficient: ( y (y y 7 (i -.5.5.5 (ii By the phase line diagram, y is a stable equilibrium point. (iii If y <, then y as. If y >, then y as. (iv t-plane.5.5.5 - - -

Section. 75 8. y y (4 y(9 y Roots 4 Multiplicity Highest power and coefficient: y ( y( y y 5 (i - 4 5 - - - -4 (ii y, 4arestable;y is half-stable; y is unstable. (iii If y <, y as. If <y <, y as. If <<, y as. If <<4, y 4as. If >4, y 4as. (iv t-plane 4-4 - 4 - -4

76 Section. 9. 5 ( (, 5 ( ( End behavior: 5 ( ( 9 (i. Roots two normal Multiplicity 5 ignore.5 - -.5.5.5 -.5 -. (ii By the phase line diagram, is a half-stable equilibrium point; is an unstable equilibrium point. (iii For >, as t. For <<, ast. For <, as t. (iv t-plane - - - - - -

Section. 77. ( ( + (, ( ( + ( End behavior: (( ( 9 (i Roots two non-real ± Multiplicity ignore.5.5-4 - 4 -.5 - -.5 - (ii By the phase line diagram, is an unstable equilibrium point; is a half-stable equilibrium point; is a stable equilibrium point; is an unstable equilibrium point. (iii If >, as t. If <<, ast. If <<, ast. If <<, ast. If <, as t. (iv t-plane - - - - -

78 Section.. ( (, ( ( End behavior: ( ( 7 (i.8.6.4. Roots ± Multiplicity -4-4 -. (ii By the phase line diagram, is a stable equilibrium point; equilibrium point; is a stable equilibrium point. (iii If >, ast. If <<, ast. If <<, ast. If <, ast. (iv t-plane.5.5 - - - -.5 - -.5 is an unstable

Section. 79. ( +5( 4 ( +5 End behavior: 8 (i 5 5 Roots 4 5 Multiplicity -6-4 - 4-5 -5-75 (ii By the phase line diagram, is a stable equilibrium point; equilibrium point; is a stable equilibrium point. (iii If >, ast. If <<, ast. If <<, ast. If <, ast. (iv t-plane is an unstable - - - - - -

8 Section.. y ±, f (y y, f ( Unstablef ( Stable 4. y ±, f (y y, f ( Unstablef ( Stable 5. y, ±π, f (y cosy, f ( Unstablef (±π Stable 6. y, f (y y,f ( Unstable 7. y,f (y y,f ( Inconclusive. However, from the phase line diagram, y is stable. 8. If we Taylor epand the function about y and keep the lowest order non-zero term, we see that we have y f ( (y y as the approimate solution near the equilibrium point. Phase line analysis then shows the equilibrium point is stable. 9. (a y ry y y y.4 y. sqrt r sqrt r y -.5 - -.5.5.5 y sqrt r sqrt r y -. -.4 Figure.: Phase line for y ry y : r<, r,r> - - - - - - Figure.: Pitchfork bifurcation for y ry y

Section. 8 (b y ry + y y y.4 y. sqrt r sqrt r y -.5 - -.5.5.5 y sqrt r sqrt r y -. -.4 Figure.: Phaseline for y ry + y : r<, r, r> - - - - - - Figure.4: Pitchfork bifurcation for y ry + y

8 Section.4.4 Population Modeling: An Application of Autonomous Equations. (a is half-stable, is stable. For logistic equation, is unstable and k is stable. Yes, the are different. (b For small, logistic model growth is larger.. -Stable, - Unstable, 6-Stable. -Stable, - Unstable, -Stable 4. (a - Half-stable, - Unstable, 4-Stable (b For small, Allee effect model has larger growth rate. 5. (a Eponential growth - Unlimited growth rate. No limitations placed on organisms. (b Logistic model - Growth rate dependent on factors such as population amount or food availability. (c Allee effect - Growth rate dependent on factors such as population amount or food availability as well as a sufficient population to sustain itself. 6. (a - Unstable, a -Stable, 5 - Unstable (b For > 5, bacteria grows uninhibited. (c The parameter a could represent the strength of the immune system or ability of the body to fight off the given bacteria. A healthy person would likely have an a-value that is closer to than to 5 because the lower value of a represents a lower value of the bacteria (that is stable. 7. (a For a>, - Unstable 5 a -Stable 5+ a - Unstable -Stable (b For a, - Unstable 5 - Half-stable -Stable (c For a<, - Unstable -Stable (d Saddle-node (e Bacteria grows unchecked to a level of. No, the bacteria population eventually reaches and levels off at, which above the fatal level. (f The parameter a could again represent the strength of the immune system or ability of the body to fight off the given bacteria. 8. ( ( 6( 9. ( ( ( ( 8 or ( ( ( ( 8. (a ( ( 4

.5. NUMERICAL APPROXIMATION WITH THE EULER METHOD 8 (b - Half-stable, - Half-stable, 4 - Unstable. (a r( a( r, a > (b i. <a<, - Unstable, a -Stable, - Unstable ii. a, - Unstable, - Half-stable iii. a>, - Unstable, -Stable, a - Unstable (c When a<, the bacteria goes to the stable level a if it starts with a level less than and grows without bound otherwise. When a, the bacteria goes to the half-stable level a if it starts with a level less than and grows without bound otherwise. When a>, the bacteria goes to the stable level of if it starts with a level less than a and grows without bound otherwise..5 Numerical Approimation with the Euler Method. dy/d, y( ; eplicit solution: y 4 (4 + Euler Eplicit i y i y( i....6...684..459.464.4.656.74. dy/d 4 y, y( ; eplicit solution: y e (5 /5 Euler Eplicit i y i y( i....99..6.467..55.75.4.9574.44. dy d y cos, h., y( ; eplicit solution y +sin. +(.(. +(.(. +(.(. 4 +(.(4.4 y y +(.( ( cos(.9 y.9+(.( (.9 cos(..894 y.894 + (.( (.894 cos(..756 y 4.756 + (.( (.756 cos(..699

84 Section.5 Eplicit: y( y(. y(. y(. y(.4 +sin +sin(..998 +sin(..8458 +sin(..77897 +sin(.4.7975 Euler Eplicit i y i y( i...9.998..894.8458..756.77897.4.699.7975 4. y sin, y(π,h.. y π π +. π +. π +. 4 π +.4 y ( sin(π y +(. ( sin(π +. y +(..99875 ( sin(π +. y.995 + (. (.995.9966 ( sin(π +. y 4.985 + (. (.985.9955 Eplicit: y ( 4cos /4 y(π y(π +. ( 4cos(π +. /4.9997 y(π +. ( 4cos(π +. /4.9975 y(π +. ( 4cos(π +. /4.9949 y(π +.4 ( 4cos(π +.4 /4.996

Section.5 85 Euler Eplicit i y i y( i π π +..9997 π +..99875.9975 π +..9966.9949 π +.4.9955.996 5. dy/d ye, y( ; eplicit solution: y ep( e Euler Eplicit i y i y( i....998..995.987..977.959.4.99.95 6. dy/d y, y( ; eplicit solution: y Euler Eplicit i y i y( i....5...4..4.47.4.6.87.5.74.49.6.687.95.7.57.45.8.6.476 7. dy/d y +cos, y( ; eplicit solution: y (sin cos + e Euler Eplicit i y i y( i....5..95...85.45.4.4568.48.5.5946.65.6.748.787.7.8986.9466.8.649. 8. dy/d y +sin, y( ; eplicit solution: y (cos +sin 5e

86 Section.5 Euler Eplicit i y i y( i....55..4.464..699.749.4.997.74.5.98.44.6.77.86.7 4.8 4.99.8 4.665 4.8568 9. dy/d e y, y( ; eplicit solution: y ln( + e Euler Eplicit i y i y( i...5.4..69.67..4.98.4.5.57.5.659.655.6.786.78.7.9.95.8.4.8. dy/d + y, y( ; eplicit solution: y +e Euler Eplicit i y i y( i...5...4...499.4.64.98.5.5.487.6.76..7.487.8.8.46.455. dy/d ( +(y +, Euler Eplicit y( ; eplicit solution: y tan( + i y i y( i....54...6..64.594.4.48.56.5.656.75.6.8677.989.7.48.87.8.54.66