Advanced Multidimensional NMR-I

Σχετικά έγγραφα
CRASH COURSE IN PRECALCULUS

Section 8.3 Trigonometric Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Finite Field Problems: Solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Second Order RLC Filters

Homework 8 Model Solution Section

Matrices and Determinants

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Math221: HW# 1 solutions

Reminders: linear functions

EE512: Error Control Coding

6.003: Signals and Systems. Modulation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

derivation of the Laplacian from rectangular to spherical coordinates

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Inverse trigonometric functions & General Solution of Trigonometric Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

2 Composition. Invertible Mappings

Section 8.2 Graphs of Polar Equations

w o = R 1 p. (1) R = p =. = 1

Section 9.2 Polar Equations and Graphs

PARTIAL NOTES for 6.1 Trigonometric Identities

Second Order Partial Differential Equations

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Section 7.6 Double and Half Angle Formulas

Forced Pendulum Numerical approach

ECE 468: Digital Image Processing. Lecture 8

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Derivation of Optical-Bloch Equations

Durbin-Levinson recursive method

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions


Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Answer sheet: Third Midterm for Math 2339

Example Sheet 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Space-Time Symmetries

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

4.6 Autoregressive Moving Average Model ARMA(1,1)

Higher Derivative Gravity Theories

Srednicki Chapter 55

Trigonometry 1.TRIGONOMETRIC RATIOS

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

Assalamu `alaikum wr. wb.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

[1] P Q. Fig. 3.1

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

Spherical Coordinates

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

the total number of electrons passing through the lamp.

Approximation of distance between locations on earth given by latitude and longitude

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Graded Refractive-Index

ΜΕΛΕΤΗ ΚΑΙ ΠΡΟΣΟΜΟΙΩΣΗ ΙΑΜΟΡΦΩΣΕΩΝ ΣΕ ΨΗΦΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ.

Areas and Lengths in Polar Coordinates

SPECIAL FUNCTIONS and POLYNOMIALS

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Capacitors - Capacitance, Charge and Potential Difference

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

TMA4115 Matematikk 3

Statistical Inference I Locally most powerful tests

Solar Neutrinos: Fluxes

Magnetically Coupled Circuits

D Alembert s Solution to the Wave Equation

Strain gauge and rosettes

Note: Please use the actual date you accessed this material in your citation.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ST5224: Advanced Statistical Theory II

Homework 3 Solutions

C.S. 430 Assignment 6, Sample Solutions

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Spectrum Representation (5A) Young Won Lim 11/3/16

Quadratic Expressions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Notes on the Open Economy

Concrete Mathematics Exercises from 30 September 2016

Instruction Execution Times

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Congruence Classes of Invertible Matrices of Order 3 over F 2

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

1 String with massive end-points

Transcript:

Advanced Multidimensional NMR-I K.V.R. Chary chary@tifr.res.in Workshop on NMR and it s applications in Biological Systems TIFR November 24, 2009 1

RECAP 2

[I 1x, I 1y ] = ii 1z [I 1y, I 1z ] = ii 1x [I 1z, I 1x ] = ii 1y [I 2x, I 2y ] = ii 2z [I 2y, I 2z ] = ii 2x [I 2z, I 2x ] = ii 2y 3

Evolution of spin operator under a pulse (π/2 X Pulse: X 1 Η I z -I y I y -I z 4

Evolution of spin operator under a pulse (π/2 Y Pulse: Y 1 Η I z I x -I x -I z 5

Evolution of spin operator under a pulse β y I z I z cos(β I x sin(β β x I z I z cos(β I y sin(β 6

Evolution under Chemical Shift (H δ = Ω Η I z Y M x Cos (Ωt M y Sin (Ωt Ωt Y X X M x 7

Evolution under Chemical Shift (H δ = Ω Η I z Rotation about the z-axis I1x I 1x cos(ωt I 1y sin(ωt I1y I 1y cos(ωt I 1x sin(ωt I1z I 1z 8

Evolution under Chemical Shift (H δ = Ω Ι I z X/Y Magnetization : y 1 Η H δ = Ω Ι I z I x I y Angle = Ω Ι t -I y -I x 9

Evolution under Couplings (H J = 2πJ 12 I 1z I 2z I 1x I 1x cos(πj 12 t 2I 1y I 2z sin(πj 12 t I 1y I 1y cos(πj 12 t 2I 1x I 2z sin(πj 12 t 2I 1x I 2z 2I 1x I 2z cos(πj 12 t I 1y sin(πj 12 t 2I 1y I 2z 2I 1y I 2z cos(πj 12 t I 1x sin(πj 12 t 10

Evolution under Couplings (H J = 2πJ 12 I 1z I 2z X Magnetization : y 1 Η H J =2πJ 12 I 1z I 2z I 1x 2I 1y I 2z Angle =2πJ 12 t -2I 1y I 2z -I 1x 11

Evolution under Couplings (H J = 2πJ 12 I 1z I 2z Y Magnetization : x 1 Η H J =2πJ 12 I 1z I 2z I 1y 2I 1x I 2z Angle =2πJ 12 t -2I 1x I 2z -I 1y 12

Evolution under Couplings (H J = 2πJ 12 I 1z I 2z I 1x I 1x cos(πj 12 t 2I 1y I 2z sin(πj 12 t I 1y I 1y cos(πj 12 t 2I 1x I 2z sin(πj 12 t 2I 1x I 2z 2I 1x I 2z cos(πj 12 t I 1y sin(πj 12 t 2I 1y I 2z 2I 1y I 2z cos(πj 12 t I 1x sin(πj 12 t 13

Vector repre tion of in-phase and antiphase magnetization Z Z I 1X Y I 1Y Y Z X X 2I 1x I 2z Y X 14

Vector repre tion of in-phase and antiphase magnetization Z Z I 1X Y 2I 1Y I 2Z Y X Z Z -X -2I 1Y I 2Z Y -I 1X Y X 15

In-phase/anti-phase magnetization α l β l α k β k α l β l α k β k I kx I lx I ky I ly Ω k Ω l Ω k Ω l α l β l α k β k α l β l α k β k 2I kx I lz 2I kz I lx 2I ky I lz 2I kz I ly Ω k Ω l Ω k Ω l 16

2D Homonuclear NMR 17

General 2D Experiment PREPA- RATION PERIOD EVOLU- TION PERIOD MIXING PERIOD DETECTION PERIOD H (1 H (2 t 2 18

Preparation Evolution Mixing Detection Period Period ( Period Period (t 2 1 2 3 (n-1 P E M D ν Α Cross peak Diagonal peak ν Β ν Β ν Α 19

Jeener s Idea (2D NMR (π/2 y 2I x S z -2I z S x I & S spins are through-bond (J coupled Jean Jeener A single non-selective 90 0 r.f. pulse transfers the magnetisation of spin I to S 20

R.R.Ernst s Experimentation COSY (J Φ 21

Threonine 1 H N 1 H α O N OH C α C C β 1 H β C γ Η γ 3 22

Threonine (π/2 x,y Transmitter Receiver t Fourier Transformation H H α O H γ 3 H N C C OH H β H α H β C OH CH γ 3 Threonine 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm 23

Threonine (Thr; T COSY THR 1 H α Η γ 3 1 H β 24

2D COSY φ φ 1 2 3 4 φ = φ = x σ 1 = I kz σ 2 = -I ky σ 3 = -I ky cos(ω k I kx sin(ω k σ 3 = [-I ky cos(πj kl 2I kx I lz sin(πj kl ]cos(ω k [I kx cos(πj kl 2I ky I lz sin(πj kl ]sin(ω k σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k [I kx cos(πj kl -2I kz I ly sin(πj kl ]sin(ω k 25

2D COSY φ φ 1 2 3 4 σ 3 = [-I ky cos(πj kl -2I kx I lz sin(πj kl ]cos(ω k [I kx cos(πj kl 2I ky I lz sin(πj kl ]sin(ω k (π/2 X σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k [I kx cos(πj kl -2I kz I ly sin(πj kl ]sin(ω k 26

2D COSY φ φ 1 2 3 4 σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k NO superposition of ZQ and 2Q coherences [I kx cos(πj kl -2I kz I ly sin(πj kl ]sin(ω k in-phase anti-phase SQC SQC 27

2D COSY φ φ 1 2 3 4 σ 4 = [I kx cos(πj kl -2I kz I ly sin(πj kl ]sin(ω k in-phase anti-phase SQC SQC x-magnetization y-magnetization of spin k of spin l Diagonal peak Cross peak 28

COSY diagonal peak φ φ 1 2 3 4 DP = I kx cos(πj kl sin(ω k I kx corresponds to an in-phase k spin doublet centered at F 2 = ω k. Its amplitude depends on ω k. The modulation Coefficient cos(πj kl sin(ω k can be expanded as ½ [sin(ω k πj kl sin(ω k -πj kl ] 29

In-phase/anti-phase magnetization α l β l α k β k α l β l α k β k I kx I lx I ky I ly Ω k Ω l Ω k Ω l α l β l α k β k α l β l α k β k 2I kx I lz 2I kz I lx 2I ky I lz 2I kz I ly Ω k Ω l Ω k Ω l 30

Fine structure of diagonal-peaks COSY Two-spin ( k & l system 31

COSY diagonal peak 32

COSY cross peak φ φ 1 2 3 4 CP = -2I kz I ly sin(πj kl sin(ω k -2I kz I ly corresponds to an anti-phase l spin doublet centered at F 2 = ω l. Its amplitude depends on ω k. The modulation Coefficient sin(πj kl sin(ω k can be expanded as ½ [-cos(ω k πj kl cos(ω k -πj kl ] 33

In-phase/anti-phase magnetization α l β l α k β k α l β l α k β k I kx I lx I ky I ly Ω k Ω l Ω k Ω l α l β l α k β k α l β l α k β k 2I kx I lz 2I kz I lx 2I ky I lz 2I kz I ly Ω k Ω l Ω k Ω l 34

Fine structure of cross-peaks COSY Two-spin ( k & l system 35

COSY cross peak 36

Fine structure of cross-peaks COSY Two-spin ( k & l system 37

A Ω Α - - Cross peak Diagonal peak Ω 1 Ω X - - B Ω X Ω 2 Ω Α Ω 1 Ω 2 38

COSY 2D-COSY of HSPI (94 amino acid residues long protein 39

2D Relayed COSY A J AM M J MX X A M X Prep Evol Mix Det J AM & J MX = 0 40

2D Relayed COSY A J AM M J MX X A M X Prep Evol Mix Det τ M t 2 J AM & J MX = 0 41

2D Relayed COSY X M M A M X A M X Relay Peak 42

2D Relayed COSY H α i H α j H β i / Hβ j H γ j H γ i H α H δ H β2 Hβ3 H γ2hγ3 C D Relay Peak 43

2D Relayed COSY 1 2 3 4 5 τ M t 2 J kl & J lm = 0 Requires three spin sytem k, l & m spins (AMX Spin system (π/2 X, H δ, H J(kl, H J(lm σ 1 σ 5 44

2D Relayed COSY 1 2 3 4 5 τ M t 2 σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k [I kx cos(πj kl -2I kz I ly sin(πj kl ]sin(ω k σ 4 = -2I kz I ly sin(πj kl sin(ω k H J(kl, H J(lm -2I kz I ly cos(πj kl τsin(πj kl sin(ω k [I lx cos(πj lm τ 2I ly I mz sin (πj lm τ] sin(πj kl τsin(πj kl sin(ω k 45

2D Relayed COSY 1 2 3 4 5 τ M t 2-2I kz I ly cos(πj kl τsin(πj kl sin(ω k [I lx cos(πj lm τ 2I ly I mz sin (πj lm τ] sin(πj kl τsin(πj kl sin(ω k (π/2 X 2I ky I lz cos(πj kl τsin(πj kl sin(ω k [I lx cos(πj lm τ- 2I lz I my sin (πj lm τ] sin(πj kl τsin(πj kl sin(ω k 46

2D Relayed COSY 1 2 3 4 5 τ M t 2 2I ky I lz cos(πj kl τsin(πj kl sin(ω k [I lx cos(πj lm τ- 2I lz I my sin (πj lm τ]sin(πj kl τsin(πj kl sin(ω k -2I lz I my sin(πj lm τsin(πj kl τsin(πj kl sin(ω k I mx sin(πj lm t 2 sin(πj lm τsin(πj kl τsin(πj kl sin(ω k 47

2D Relayed COSY 1 2 3 4 5 τ M t 2 I mx sin(πj lm t 2 sin(πj lm τsin(πj kl τsin(πj kl sin(ω k Thus, the transfer function is sin(πj lm τsin(πj kl τ 48

Threonine (Thr; T COSY THR 1 H α Η γ 3 1 H β 49

Threonine (Thr; T Relayed COSY THR 1 H α Η γ 3 1 H β Relayed peaks 50

2QF-COSY σ resultant = -[2I kx I ly 2I ky I lx ] sin(πj kl cos(ω k (π/2 X σ detected = [2I kx I lz 2I kz I lx ] sin(πj t cos(ω t kl 1 k 1 DP CP 51

2QF-COSY σ detected = [2I kx I lz 2I kz I lx ] sin(πj t cos(ω t kl 1 k 1 DP CP Both of them are anti-phase coherences. Both have same modulation coefficient. 2I kx I lz corresponds to an anti-phase k spin doublet centered at F 2 = ω k. 2I kz I lx corresponds to an anti-phase l spin doublet centered at F 2 = ω l. 52

2QF-COSY σ detected = [2I kx I lz 2I kz I lx ] sin(πj t cos(ω t kl 1 k 1 DP CP The modulation Coefficient sin(πj kl cos(ω k can be expanded as ½ [sin(ω k πj kl - sin(ω k -πj kl ] 53

Fine structure of cross-peaks 2QF COSY Two-spin ( k & l system Anti-symmetric w.r.t chemical shift axis. 54

Fine Structures of cross-peaks Fine structures Fine Structures of cross-peaks of cross-peaks 2QF COSY k and l active spins in the presence of one passive spin Characteristic of even quantum filtered COSY 55

Fine structure of cross-peaks 2QF COSY Two-spin ( k & l system Anti-symmetric w.r.t chemical shift axis. 56

Fine Structures of cross-peaks Fine structures Fine Structures of cross-peaks of cross-peaks 2QF COSY k and l active spins in the presence of one passive spin Characteristic of even quantum filtered COSY 57

A Ω Α - - Cross peak Diagonal peak Ω 1 Ω X - - B Ω X Ω 2 Ω Α Ω 1 Ω 2 58

COSY 2D-COSY of HSPI (94 amino acid residues long protein 59

Advanced Multidimensional NMR-I K.V.R. Chary chary@tifr.res.in Workshop on NMR and it s applications in Biological Systems TIFR November 24, 2009 60

Multiple Quantum Filtering 61

Multiple Quantum Filtering Multiple Quantum Filtered COSY: Singlets are suppressed Purely absorptive peaks Diagonal peaks are anti-phase Multiplets structures and symmetry properties of cross-peaks can give new information With p-quantum filter, it is possible to suppress resonances of spin systems with less than p-coupled spins ; particularly those stemming from solvents 2QF COSY : singlets 3QF COSY : singlets, AB & AX Sensitivity goes down rapidly as higher orders are selected. 62

Multiple Quantum Filtering The effects of MQ Filtering on COSY spectra have been ratinalised by the following cohenrence transfer rules: A DP in pqf-cosy spectrum can only appear when the active spin has resolved couplings to at least p-1 further spins. A pqf-cosy cross-peak between two resonances can only appear when the two active spins have (p-2 additional common coupling partners with resolved couplings. These rules hold for weakly coupled systems δ >> J 63

What is I kx I ly? <α k β l I kx I ly α k β l > = <α k I kx α k > <α l I ly α l > = <α k β k > <α l β l > = 0 64

2I kx I ly = 2 0 1/2 1/2 0 0 -i/2 -i/2 0 = 2 0 1/2 0 -i/2 i/2 0 0 -i/2 i/2 0 1/2 0 0 -i/2 i/2 0 0 -i/2 i/2 0 = 0 0 0 -i/2 0 0 i/2 0 0 -i/2 0 0 i/2 0 0 0 65

2I kx I ly Similarly, 2I ky I lx = = 0 0 0 -i/2 0 0 i/2 0 0 -i/2 0 0 i/2 0 0 0 0 0 0 -i/2 0 0 -i/2 0 0 i/2 0 0 i/2 0 0 0 66

2I kx I ly 2I ky I lx Pure 2QF Similarly, 2I ky I lx -2I ky I lx Pure ZQF = = 0 0 0 -i/2 0 0 0 0 0 0 0 0 i/2 0 0 0 0 0 0 0 0 0 -i/2 0 0 i/2 0 0 0 0 0 0 67

2QF COSY 68

2QF COSY φ φ β 1 2 3 5 φ = φ = x 4 σ 1 = I kz σ 2 = -I ky σ 3 = -I ky cos(ω k I kx sin(ω k σ 3 = [-I ky cos(πj kl -2I kx I lz sin(πj kl ]cos(ω k [I kx cos(πj kl 2I ky I lz sin(πj kl ]sin(ω k σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k [I kx cos(πj kl -2I kz I ly sin(πj kl ]sin(ω k 69

2QF-COSY φ = φ = x σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k [I kx cos(πj kl -2I kz I ly sin(πj kl ]sin(ω k We use this term, which we have ignored so far. It represents superposition of ZQ and 2Q coherences 70

2QF-COSY ================================ φ φ Receiver =============================== x x y y - -x -x -y -y - =============================== 71

2QF-COSY φ = φ = x σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k [I kx cos(πj kl -2I kz I ly sin(πj kl ]sin(ω k φ = φ = x σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k [-I kx cos(πj kl 2I kz I ly sin(πj kl ]sin(ω k φ = φ = y σ 4 = [-I kz cos(πj kl -2I ky I lx sin(πj kl ]cos(ω k [I ky cos(πj kl -2I kz I lx sin(πj kl ]sin(ω k φ = φ = y σ 4 = [-I kz cos(πj kl -2I ky I lx sin(πj kl ]cos(ω k [-I ky cos(πj kl 2I kz I lx sin(πj kl ]sin(ω k 72

2QF-COSY φ = φ = x σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k [I kx cos(πj X kl -2I kz I ly sin(πj X kl ]sin(ω k φ = φ = x σ 4 = [-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k X X [-I kx cos(πj kl 2I kz I ly sin(πj kl ]sin(ω k ============================= σ 4 = 2[-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k ============================= 73

2QF-COSY φ = φ = y σ 4 = [-I kz cos(πj kl -2I ky I lx sin(πj kl ]cos(ω k [I ky cos(πj kl -2I kz I lx sin(πj kl ]sin(ω k X X φ = φ = y σ 4 = [-I kz cos(πj kl -2I ky I lx sin(πj kl ]cos(ω k X X [-I ky cos(πj kl 2I kz I lx sin(πj kl ]sin(ω k ============================= σ 4 = 2[-I kz cos(πj kl -2I ky I lx sin(πj kl ]cos(ω k ============================= 74

2QF-COSY X σ 4 = 2[-I kz cos(πj kl -2I kx I ly sin(πj kl ]cos(ω k X σ 4 = 2[-I kz cos(πj kl -2I ky I lx sin(πj kl ]cos(ω k ============================= σ 4 = -[2I kx I ly 2I ky I lx ] sin(πj kl cos(ω k ============================= 75

2QF-COSY ============================================= σ resultant = -[2I kx I ly 2I ky I lx ] sin(πj kl cos(ω k ============================================= 76

3QF COSY 77

3QF COSY φ φ β 1 2 3 5 4 Requires three spin sytem k, l & m spins (AMX Spin system l o k o J kl = J km = 0 m o (π/2 X, H δ, H J(kl, H J(km σ 1 σ 3 78

3QF COSY φ φ β 1 2 3 5 σ 1 σ 3 4 (π/2 X, H δ, H J(kl, H J(km σ 3 σ 3 = [-I ky cos(πj kl 2I kx I lz sin(πj kl ]cos(ω k [I kx cos(πj kl 2I ky I lz sin(πj kl ]sin(ω k 79

3QF COSY φ φ β 1 2 3 5 σ 1 σ 3 4 (π/2 X, H δ, H J(kl, H J(km σ 3 σ 3 = 2I ky I lz sin(πj kl ]sin(ω k σ 3 = 2I ky I lz cos(πj km sin(πj kl sin(ω k -4I kx I lz I mz sin(πj km sin(πj kl sin(ω k 80

3QF COSY φ φ β 1 2 3 5 (π/2 X σ 3 σ 4 σ 3 = 2I ky I lz cos(πj km sin(πj kl sin(ω k -4I kx I lz I mz sin(πj km sin(πj kl sin(ω k transforms into σ 4 = -2I kz I ly cos(πj km sin(πj kl sin(ω k 4-4I kx I ly I my sin(πj km sin(πj kl sin(ω k 81

3QF COSY φ φ β 1 2 3 5 (π/2 X σ 3 σ 4 σ 4 = -4I kx I ly I my sin(πj km sin(πj kl sin(ω k can be expanded as σ 4 = ¼[4I kx I ly I my 4I ky I lx I my 4I ky I ly I mx - 4I kx I lx I mx ] sin(πj km sin(πj kl sin(ω k 4 82

3QF COSY φ φ β 1 2 3 5 (π/2 X σ 4 σ 5 σ 4 = ¼[4I kx I ly I my 4I ky I lx I my 4I ky I ly I mx - 4I kx I lx I mx ] sin(πj km sin(πj kl sin(ω k 4 transforms into σ 5 = ¼[4I kx I lz I mz 4I kz I lx I mz 4I kz I lz I mx - 4I kx I lx I mx ] sin(πj km sin(πj kl sin(ω k 83

3QF COSY φ φ β 1 2 3 5 σ detectable = ¼[4I kx I lz I mz 4I kz I lx I mz 4I kz I lz I mx - 4I kx I lx I mx ] sin(πj km sin(πj kl sin(ω k DP CP1 CP2 Non-observable 4 superposition of 3QC 3 spin SQC 84

3QF COSY φ φ β 1 2 3 5 CP1 = 4I kz I lx I mz sin(πj km sin(πj kl sin(ω k & CP2 = 4I kz I lz I mx sin(πj km sin(πj kl sin(ω k 4 85

3QF COSY φ φ β 1 2 3 5 CP1 = 4I kz I lx I mz sin(πj km sin(πj kl sin(ω k The modulation Coefficient sin(πj km sin(πj kl sin(ω k can be expanded as sin(ω k πj km /2πJ kl /2 -sin(ω k πj km /2-πJ kl /2 4 -sin(ω k -πj km /2πJ kl /2 sin(ω k -πj km /2-πJ kl /2 86

Fine Structures of cross-peaks Fine structures Fine Structures of cross-peaks of cross-peaks 3QF COSY K, l and m are active spins Characteristic of three quantum filtered COSY 87

3QF COSY φ φ β 1 2 3 5 In an AMX spin system, 4 Geminal cross-peak has ve center as both the Couplings with the third spin are vicinal and have the same sign. While, the vicinal cross-peaks have ve center as the couplings with the third spin have different sign. Hence, the distinction beween vicinal and geminal cross peaks. 88

Exclusive COSY 89

Fine Structures of cross-peaks Fine structures Fine Structures of cross-peaks of cross-peaks 2QF COSY k and l active spins in the presence of one passive spin Characteristic of even quantum filtered COSY 90

Fine Structures of cross-peaks Fine structures Fine Structures of cross-peaks of cross-peaks 3QF COSY K, l and m are active spins Characteristic of three quantum filtered COSY 91

Fine Structures of cross-peaks 2QF Fine COSY/-3QF Structures of COSY cross-peaks = E.COSY K, l and m are active spins = - = 92