New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set

Σχετικά έγγραφα
Commutative Monoids in Intuitionistic Fuzzy Sets

Homomorphism in Intuitionistic Fuzzy Automata

A Note on Intuitionistic Fuzzy. Equivalence Relation

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

Homomorphism of Intuitionistic Fuzzy Groups

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SOME PROPERTIES OF FUZZY REAL NUMBERS

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

2 Composition. Invertible Mappings

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

SOME INTUITIONISTIC FUZZY MODAL OPERATORS OVER INTUITIONISTIC FUZZY IDEALS AND GROUPS

Other Test Constructions: Likelihood Ratio & Bayes Tests

Every set of first-order formulas is equivalent to an independent set

EE512: Error Control Coding

The operators over the generalized intuitionistic fuzzy sets

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Intuitionistic Fuzzy Ideals of Near Rings

Congruence Classes of Invertible Matrices of Order 3 over F 2

Reminders: linear functions

Fractional Colorings and Zykov Products of graphs

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

A new modal operator over intuitionistic fuzzy sets

C.S. 430 Assignment 6, Sample Solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Statistical Inference I Locally most powerful tests

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Finite Field Problems: Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 8.3 Trigonometric Equations

ST5224: Advanced Statistical Theory II

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Matrices and Determinants

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

On a four-dimensional hyperbolic manifold with finite volume

CRASH COURSE IN PRECALCULUS

Homomorphism and Cartesian Product on Fuzzy Translation and Fuzzy Multiplication of PS-algebras

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Generating Set of the Complete Semigroups of Binary Relations

Generalized Point Operators for Aggregating Intuitionistic Fuzzy Information

Concrete Mathematics Exercises from 30 September 2016

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Solution Series 9. i=1 x i and i=1 x i.

Tridiagonal matrices. Gérard MEURANT. October, 2008

New bounds for spherical two-distance sets and equiangular lines

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

The k-α-exponential Function

Example Sheet 3 Solutions

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

1. Introduction and Preliminaries.

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Areas and Lengths in Polar Coordinates

Homework 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order Partial Differential Equations

Approximation of distance between locations on earth given by latitude and longitude

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

PARTIAL NOTES for 6.1 Trigonometric Identities

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Lecture 2. Soundness and completeness of propositional logic

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Areas and Lengths in Polar Coordinates

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

Math221: HW# 1 solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

On the k-bessel Functions

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

Instruction Execution Times

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Assalamu `alaikum wr. wb.

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

derivation of the Laplacian from rectangular to spherical coordinates

F A S C I C U L I M A T H E M A T I C I

The Simply Typed Lambda Calculus

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

Uniform Convergence of Fourier Series Michael Taylor

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Inverse trigonometric functions & General Solution of Trigonometric Equations

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

The k-bessel Function of the First Kind

Μηχανική Μάθηση Hypothesis Testing

Trigonometry 1.TRIGONOMETRIC RATIOS

A Note on Characterization of Intuitionistic Fuzzy Ideals in Γ- Near-Rings

Section 7.6 Double and Half Angle Formulas

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

Chapter 3: Ordinal Numbers

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

λρ-calculus 1. each λ-variable is a λρ-term, called an atom or atomic term; 2. if M and N are λρ-term then (MN) is a λρ-term called an application;

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ. Πτυχιακή εργασία Η ΚΑΤΑΘΛΙΨΗ ΣΕ ΕΦΗΒΟΥΣ ΜΕ ΣΑΚΧΑΡΩΔΗ ΔΙΑΒΗΤΗ ΤΥΠΟΥ 1

Transcript:

Mathematics and Statistics (): 6-7 04 DOI: 0.89/ms.04.000 http://www.hrpub.org New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set Said Broumi * Florentin Smarandache Faculty of Arts and Humanities Hay El Baraka Ben M'sik Casablanca B.P. 795 Hassan II University Mohammedia-Casablanca Moroo Department of Mathematics University of New Mexico 705 Gurley Avenue Gallup NM 870 USA *Corresponding Author: broumisaid78@gmail.com Copyright 04 Horizon Research Publishing All rights reserved. Abstract Hesitancy is the most common problem in decision making for which hesitant fuzzy set can be considered as a useful tool allowing several possible degrees of membership of an element to a set. Recently another suitable means were defined by Zhiming Zhang [] called interval valued intuitionistic hesitant fuzzy sets dealing with uncertainty and vagueness and which is more powerful than the hesitant fuzzy sets. In this paper four new operations are introduced on interval-valued intuitionistic hesitant fuzzy sets and several important properties are also studied. Keywords Fuzzy Sets Intuitionistic Fuzzy Set Hesitant Fuzzy Sets Interval-Valued Intuitionistic Hesitant Fuzzy Set Interval Valued Intuitionistic Fuzzy Sets. Introduction In recent decades several types of sets such as fuzzy sets [] interval-valued fuzzy sets [] intuitionistic fuzzy sets [4 5] interval-valued intuitionistic fuzzy sets [6] type fuzzy sets [7 8] type n fuzzy sets [7] and hesitant fuzzy sets [9] neutrosophic sets have been introduced and investigated widely. The concept of intuitionistic fuzzy sets was introduced by Atanassov [4 5]; it is interesting and useful in modeling several real life problems. An intuitionistic fuzzy set (IFS for short) has three associated defining functions namely the membership function the non-membership function and the hesitancy function. Later Atanassov and Gargov provided in [6] what they called interval-valued intuitionistic fuzzy sets theory (IVIFS for short) which is a generalization of both interval valued fuzzy sets and intuitionistic fuzzy sets. Their concept is characterized by a membership function and a non-membership function whose values are intervals rather than real number. IVIFS is more powerful in dealing with vagueness and uncertainty than IFS. Recently Torra and Narukawa [9] and Torra [0] proposed the concept of hesitant fuzzy sets a new generalization of fuzzy sets which allows the membership of an element of a set to be represented by several possible values. They also discussed relationships among hesitant fuzzy sets and other generalizations of fuzzy sets such as intuitionistic fuzzy sets type- fuzzy sets and fuzzy multisets. Some set theoretic operations such as union intersection and complement on hesitant fuzzy sets have also been proposed by Torra [9]. Hesitant fuzzy sets can be used as an efficient mathematical tool for modeling people s hesitancy in daily life than the other classical extensions of fuzzy sets. We ll further study the interval valued intuitionistic hesitant fuzzy sets. Xia and Xu [] made an intensive study of hesitant fuzzy information aggregation techniques and their applications in decision making. They also defined some new operations on hesitant fuzzy sets based on the interconnection between hesitant fuzzy sets and the interval valued intuitionistic fuzzy sets. To aggregate the hesitant fuzzy information under confidence levels Xia et al. [] developed a series of confidence induced hesitant fuzzy aggregations operators. Further Xia and Xu [ 4] gave a detailed study on distance similarity and correlation measures for hesitant fuzzy sets and hesitant fuzzy elements respectively. Xu et al. [5] developed several series of aggregation operators for interval valued intuitionistic hesitant fuzzy information such as: the interval valued intuitionistic fuzzy weighted arithmetic aggregation (IIFWA) the interval valued intuitionistic fuzzy ordered weighted aggregation (IIFOWA) and the interval valued intuitionistic fuzzy hybrid aggregation (IIFHA) operator. Wei and Wang [6] Xu et al. [7] introduced the interval valued intuitionistic fuzzy weighted geometric (IIFWG) operator the interval valued intuitionistic fuzzy ordered weighted geometric (IIFOWG) operator and the interval valued intuitionistic fuzzy hybrid geometric (IIFHG) operator. Recently Zhiming Zhang [] have proposed the concept of interval valued intuitionistic hesitant fuzzy set study their some basic properties and developed several series of aggregation operators for interval valued intuitionistic hesitant fuzzy environment and have applied them to solve multi-attribute group decision making

Mathematics and Statistics (): 6-7 04 6 problems. In this paper our aim is to propose four new operations on interval valued intuitionistic hesitant fuzzy sets and study their properties. Therefore the rest of the paper is set out as follows. In Section some basic definitions related to intuitionistic fuzzy sets hesitant fuzzy sets and interval valued intuitionistic hesitant fuzzy set are briefly discussed. In Section four new operations on interval valued intuitionistic hesitant fuzzy sets have been proposed and some properties of these operations are proved. In section 4 we conclude the paper.. Preliminaries In this section we give below some definitions related to intuitionistic fuzzy sets interval valued intuitionistic fuzzy sets hesitant fuzzy set and interval valued hesitant fuzzy sets. Definition.. [4 5] (Set operations on IFS) Let IFS(X) denote the family of all intuitionistic fuzzy sets defined on the universe X and let α β IFS(X) be given as αα = (μμ αα νν αα ) β = (μμ ββ νν ββ ). Then nine set operations are defined as follows: (i) αα =(νν αα μμ αα ); (ii) αα ββ =(max(μμ αα μμ ββ )min(νν αα νν ββ )); (iii) αα ββ =(min(μμ αα μμ ββ )max(νν αα νν ββ )); (iv) αα ββ =(μμ αα μμ ββ μμ αα μμ ββ νν αα νν ββ ); (v) αα ββ =(μμ αα μμ ββ νν αα νν ββ νν αα νν ββ ); (vi) αα @ ββ = ( μμ αα μμ ββ νν αα νν ββ ) ; (vii) αα $ ββ = ( μμ αα μμ ββ νν αα νν ββ ) ; (viii) αα # ββ = ( μμ αα μμ ββ μμ αα μμ ββ νν αα νν ββ νν αα νν ββ ) ; (ix) αα ββ = ( μμ αα μμ ββ νν αα νν ββ ) ; ( μμ αα μμ ββ ) (νν αα νν ββ ) In the following we introduce some basic concepts related to IVIFS. Definition.. [6] (Interval valued intuitionistic fuzzy sets) An Interval valued intuitionistic fuzzy sets (IVIFS ) α in the finite universe X is expressed by the form α = {<x μμ α (x) νν α (x)> x X } where μμ α (x) = [ μμ αα (x) μμ αα (x)] [I] is called membership interval of element to IVIFS α while [ νν αα (x) νν αα (x)] [I] is the nonmembership interval of that element to the set α with the condition 0 μμ αα (x) νν αα (x) must hold for any x X. For convenience the lower and upper bounds of μμ α (x) and νν α (x) are denoted by μμ α μμ α νν α νν α respectively. Thus the IVIFS α may be concisely expressed as α = (μμ αα νν αα )= {<x [ μμ αα μμ αα ] [νν αα νν αα ]> x X } () Where 0 μμ αα νν αα Definition. [9 ] Let X be a fixed set. A hesitant fuzzy set (HFS) on X is in terms of a function that when applied to X returns a subset of [0 ] the HFS is expressed by a mathematical symbol E={<x h EE (xx)> x X} () where h EE (xx)> is a set of some values in[0 ] denoting the possible membership degree of the element x X to the set EE. For convenience Xia and Xu [] called h=h EE (xx) a hesitant fuzzy element (HFE) and HH be the set of all HFEs. Given three HFEs represented by h h and h Torra [9] defined some operations on them which can be described as: ) h ={-γγ γγ h } ) h h ={max(γγ γγ ) γγ h γγ h } ) h h ={min(γγ γγ ) γγ h γγ h } Furthermore in order to aggregate hesitant fuzzy information Xia and Xu [] defined some new operations on the HFEs h h and h : ) h h ={γγ γγ -γγ γγ γγ h γγ h } ) h h ={γγ γγ γγ h γγ h } ) h λλ ={γγ λλ γγ h } 4) λλ h={ ( γγ) λλ γγ h } Definition.4 [] (Interval valued intuitionistic hesitant fuzzy sets) Let X be a fixed set an interval-valued intuitionistic hesitant fuzzy set (IVIHFS) on X is given in terms of a function that when applied to X returns a subset of Ω. The IVIHFS is expressed by a mathematical symbol EE ={<x h EE (xx)> x X} () where h EE (xx) is a set of some IVIFNs in X denoting the possible membership degree intervals and non-membership degree intervals of the element x X to the set EE. For convenience an interval-valued intuitionistic hesitant fuzzy element (IVIHFE) is denoted by h = h EE (xx) and h be the set of all IVIHFEs. If αα h then an IVIFN can be denoted by α = (μμ αα νν αα )= ([ μμ αα μμ αα ][νν αα νν αα ]). For any h if α is a real number in [0] then h reduces to a hesitant fuzzy element (HFE) [9]; if α is a closed subinterval of the unit interval then h reduces to an interval-valued hesitant fuzzy element (IVHFE)[]; if α is an intuitionistic fuzzy number (IFN) then h reduces to an intuitionistic hesitant fuzzy element (IHFE). Therefore HFEs IVHFEs and IHFEs are special cases of IVIHFEs. Definition.5. [ 9] Given three IVIHFEs represented by h h and h one defines some operations on them which can be described as: h ={αα αα h } = {([νν αα νν αα ][ μμ αα μμ αα ]) αα h } h h ={max (αα αα ) αα h αα h }

64 New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set = { ([max( μμ αα μμ αα ) max( μμ αα μμ αα )][min(νν αα νν αα ) min( νν αα νν αα )]) αα h αα h } h h ={min(αα αα ) αα h αα h } = { ([min( μμ αα μμ αα )min( μμ αα μμ αα )][max(νν αα νν αα )max( νν αα νν αα h αα h } h h = μμ αα μμ αα μμ αα μμ αα μμ αα μμ αα )]) αα μμ αα μμ αα ] [ νν αα νν αα νν αα νν αα ] αα h αα h h h = = {([ μμ αα μμ αα μμ αα μμ αα ][νν αα νν αα νν αα νν αα νν αα νν αα νν αα νν αα ] αα h αα h } λλ h = μ α λλ μ α λλ [ ( νν αα ) λλ ( νν αα ) λλ ] αα h. Four New Operations on IVIHFEs Definition. Let h and h IVIHFE (X) we propose the following operations on IVIHFEs as follows: ) h @ h = {([ μμ αα μμ αα μμ αα μμ αα υυ αα υυ αα υυαα ][ υυ αα ) h $ h = {([ μμ αα μμ αα μμ αα μμ αα ][ υυ αα υυ αα υυ αα υυ αα ) h # h = {([ μμ αα μμ αα 4) h h = {([ μμ αα μμ αα ][ υυαα υυ αα υυαα υυ αα ] μμ αα μμ αα μμ αα μμ αα υυ αα υυ αα υυ αα υυαα μμ αα μμ αα μμ αα μμ αα ][ υυαα υυ αα υυ αα υυαα (μμ αα μμ αα ) (μμ αα μμ αα ) (υυ αα υυ αα ) (υυ αα υυ αα ] αα h αα h } ] αα h αα h } ] αα h αα h } ) ] αα h αα h } Obviously for every two IVIHFEs h and h ( h @h ) (h $h ) (h #h ) and (h *h ) are also IVIHFEs. Example. Let h (x)= {([0. 0.][0.5 0.6])([0.5 0.8][0. 0.])} and h (x)= {([0.4 0.6][0. 0.4]) ([0. 0.5][0. 0.]) be two interval valued intuitionistic hesitant fuzzy elements. Then we have (h @ h ) = {([0. 0.45][0.4 0.5])([0.4 0.65][0. 0.])} (h $ h ) ={([0.8 0.4][0.8 0.48])([0.8 0.6][0. 0.])} (h #h ) = {([0.6 0.4][0.7 0.48])([0.7 0.6][0. 0.])} (h *h ) = {([0.7 0.8][0.4 0.40])([0.4 0.46][0.09 0.9])} With these operations several results follow. Theorem. For every h IVIHFE(X) the following are true (i) h @ h = h ; (ii) h $ h =h ; (iii) h # h =h ; Proof. we prove only (i) (ii). (i) Let h IVIHFEs h @ h = { [ μμ αα μμ αα μμ αα μμ αα ][ υυ αα υυ αα υυ αα υυ αα ] αα h } =[ μμ αα μμ αα ] [ υυ αα υυ αα ] Then h @ h = h (ii) Let h IVIHFEs h $ h = {([ μμ αα μμ αα μμ αα μμ αα ][ υυ αα υυ αα υυ αα υυ αα ] αα h } =[ μμ αα μμ αα ] [ υυ αα υυ αα ] Then h $ h = h Theorem.4 For h h IVIHFEs (i) h @ h = h @h ;

Mathematics and Statistics (): 6-7 04 65 (ii) h $ h = h $ h ; (iii) h # h = h # h ; (iv) h h = h h ; Proof. These also follow from definitions. Theorem.5 For h h IVIHFE(X) ( h @ h ) =h @h Proof. In the following we prove (i) (ii) and (iii) results (iv) (v) and (vi) can be proved analogously. ( h @ h ) = [ νν αα νν αα ] [μμ αα μμ αα ] αα h @ [ νν αα νν αα ] [μμ αα μμ αα ] αα h ( h @ h ) = [ νν αα νν αα ] [μμ αα μμ αα ] αα h @ [ νν αα νν αα ] [μμ αα μμ αα ] αα h = h @ h = {[ νν αα υυ αα = {[ μμ αα μμ αα νν αα νναα ] [ μμ αα μμ αα μμ αα ] [ νν αα This proves the theorem. Note : One can easily verify that. ( h $ h ) h $ h. ( h # h ) h # h. ( h h ) h h Theorem.6 μμ αα υυ αα μμ αα μμ αα ] αα h αα h } νν αα νναα ] αα h αα h } For h h and h IVIHFE(X) we have the following identities: (i) (h h ) @ h = (h @ h ) (h @ h ); (ii) (h h ) @ h =( h @ h ) (h @ h ) (iii) (h h ) $ h = (h $ h ) ( h $h ); (iv) (h h ) $ h = (h $ h ) ( h $ h ); (v) ((h h )) # h = (h # h ) ( h # h ); (vi) (h h ) # h = (h # h ) ( h # h ); (vii) (h h ) h = (h h ) ( h h ); (viii) (h h ) h = (h h ) ( h h ); (ix) (h @ h ) h = (h h ) @( h h ); (x) (h @h ) h =(h h )@ ( h h ) Proof. We prove (i) (iii) (v) (vii) and (ix) results (ii) (iv) (vi) (viii) and (x) can be proved analogously Using definitions in. and.we have (h h ) @ h = {[max( μμ αα μμ αα ) max( μμ αα μμ αα )][min (νν αα νν αα )min( νν αα νν αα )] αα h αα h } @{[ μμ αα μμ αα ][νν αα νν αα ] αα h } ={[ max μμ αα μμ αα μμ αα ={[max( μμ αα μμ αα μμ αα μμ αα = (h @ h ) (h @ h ) max μμ αα μμ αα μμ αα ) max( μμ αα μμ αα This proves (i) (iii) From definitions in. and. we have ][ min νν αα νν αα νν αα μμ αα μμ αα min νν αα νναα νναα )][ min ( νν αα νν αα h αα h αα h } νν αανν αα ] αα h αα h αα h } ) min ( νν αα νν αα νν αα νναα (h h ) $ h = {[max( μμ αα μμ αα ) max( μμ αα μμ αα )][min (νν αα νν αα )min( νν αα νν αα )] αα h αα h }${[ μμ αα μμ αα ][νν αα νν αα ] αα h } )] αα

66 New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set = {[ mmmmmm μμ αα μμ αα μμ αα max( μμ αα μμ αα ) μμ αα ][ min( νν αα νν αα ) νν αα min( νν αα νν αα ) νν αα ] αα h αα h αα h } ={[ max( μμ αα μμ αα μμ αα μμ αα ) max( μμ αα μμ αα μμ αα μμ αα )][min( νν αα νν αα νν αα νν αα ) min( νν αα νν αα νν αα νν αα )] αα h αα h αα h } =(h $h ) ( h $h ); This proves (iii). (v) Using definitions. and.we have ((h h )) # h = {[max( μμ αα μμ αα ) max( μμ αα μμ αα ) ][min (νν αα νν αα )min( νν αα νν αα )] αα h αα h } # {[ μμ αα = {[ max ( μμ αα μμ αα ) μμ αα μμ αα ][νν αα νν αα ] αα h } max ( μμ αα μμ αα ) μμ αα ][ min (νν αα νν αα ) νν αα min ( νναα νναα ) νναα max ( μμ αα μμ αα ) μμ αα max ( μμ αα μμ αα ) μμ αα min (νν αα νν αα ) νν αα min ( νν αα νναα ) νναα ={[ max ( μμ αα μμ αα =(h #h ) ( h #h ) μμ αα μμ μμ αα μμ αα αα μμ αα μμ αα μμ αα μμ αα μμ μμ αα μμ αα αα μμ αα μμ αα νν αα νν αα νν αα νναα ) max ( μμ αα This proves (v) (vii) From definitions. and. we have (h h ) h = (h h ) ( h h ) )][ min ( νν αα )] αα h αα h αα h } ] αα h αα h αα h } νν αα νν αα νν νν αα νν αα αα νν αα νν αα ) min ( νν αα νν αα ={[max( μμ αα μμ αα ) max( μμ αα μμ αα ) ][min (νν αα νν αα )min( νν αα νν αα )] αα h αα h } *{[ μμ αα μμ αα ][νν αα ] αα h } νν αα = {[ max μμ αα μμ αα μμ αα (max μμ αα μμ αα μμ αα = {[ max ( μμ αα μμ αα = (h h ) ( h h ) max μμ αα μμ αα μμ αα ][ min νναα νν αα νν αα min νν αα ) max μμ αα μμ αα μμ αα (min νν αα νν αα νν αα ) (min νν αα νναα νναα μμ αα μμ αα (μμ αα μμ αα ) (μμ αα μμ αα ( νν αα νναα (vv αα νν αα ) This proves (vii). (ix) Using definitions. and. we have (h @ h ) h = (h h ) @( h h ); = {[ μμ αα μμ αα ={[ μμ αα μμ αα - υυ αα υυαα μμ αα μμ αα ][ υυ αα μμ αα - μμ αα μμ αα υυ αα μμ αα (μμ αα μμ αα ) νν αα νναα ) ) max ( μμ αα (νν αα νν αα μμ αα μμ αα (μμ αα μμ αα νναα νναα ) )][ min ( νν αα ) )] αα h αα h αα h } vv αα νναα ) ] αα h αα h αα h } νν αα νν αα νν αα (νν αα νν αα ) (νν αα νν αα υυ αα υυαα ] αα h αα h } {[ μμ αα μμ αα ][νν αα νν αα ] αα h } μμ αα μμ αα μμ αα νν αα ] αα h αα h αα h } ={[ (μμ αα μμ αα μμ αα μμ αα )(μμ αα μμ αα μμ αα μμ αα ) (νν αα νναα νναα νναα )(νναα νναα νναα = (h h ) @( h h ) This proves (ix) Theorem.7 νναα ) μμ αα - μμ αα μμ αα μμ αα ][ υυ αα υυ αα νν αα - υυ αα υυ αα (μμ αα μμ αα μμ αα μμ αα )(μμ αα μμ αα μμ αα μμ αα ) ][ (νν αα νν αα νν αα νν αα ] αα h αα h αα h } For h and h IVIHFS (X) we have the following identities: (i) (h h ) ( h h ) = h h ; νν αα υυ αα υυαα ) ) min νν αα )(νν αα νν αα νν αα νν αα )

Mathematics and Statistics (): 6-7 04 67 (ii) (h h ) ( h h ) = h h ; (iii) (h h ) ( h @ h ) = h @ h ; (iv) (h h ) ( h @ h )= h h ; (v) (h h ) ( h @ h )= h h ; (vi) (h h ) ( h @h )= h @ h ; (vii) (h h ) ( h $ h )= h $ h ; (viii) (h h ) ( h $ h )= h h ; (ix) (h h ) ( h $ h )= h h ; (x) (h h ) ( h $h )= h $ h ; (xi) (h h ) ( h # h )= h # h ; (xii) (h h ) ( h #h )= h h ; (xiii) (h h ) ( h #h )= h h ; (xiv) (h h ) ( h #h )= h #h Proof. We prove (i) (iii) (v) (vii) (ix) (xi) and (xii) other results can be proved analogously. From definitions..5 and. we have (h h ) ( h h ) = μ α μ α ={[ min (μ α μ α μ α μ α μ α μ α μ α [ νν αα νν αα νν αα νν αα ] {[ μμ αα μμ αα μμ αα μμ αα ] [νν αα νν αα νν αα νν αα ] αα h αα h } μ α μ α μ α μμ αα μμ αα ) min (μ α μ α μ α μ α μμ αα μμ αα )] [ max (νν αα νν αα νν αα νν αα νν αα νν αα ) max (νν αα νν αα νν αα νν αα νν αα νν αα )] αα h αα h } =[μμ αα μμ αα μμ αα μμ αα )][ νν αα νν αα νν αα νν αα νν αα νν αα νν αα νν αα ] αα h αα h } =h h This proves (i) iii) Using definitions..5 and. we have (h h ) ( h @h ) = h @h ; ={ μ α μ α μμ αα μμ αα ][ υυ αα υυ αα = {[ min (μ α νν αα μ α μ α μ α μ α μ α μ α [ νν αα νν αα νν αα νν αα ] αα h αα h } {[ μμ αα μμ αα μ α υυ αα υυαα ] αα h αα h } μ α μ α μμ αα μμ αα ) min (μ α μ α μ α μ α μ α μμ αα μμ αα [ max (νν αα νν αα υυ αα υυ αα ) max (νν αα νν αα υυ αα υυαα )] αα h αα h } ={[ μμ αα μμ αα μμ αα μμ αα ][ υυ αα υυ αα This proves (iii). (v) From definitions..5 and. we have (h h ) ( h @h ) = h h ; ={[ μμ αα μμ αα μμ αα μμ αα ] [νν αα [ υυ αα υυ αα νν αα υυ αα υυαα ] αα h αα h } ={[ min (μμ αα μμ αα μμ αα μμ αα [ max (νν αα νν αα υυ αα υυαα ] αα h αα h }= h @h νν αα νν αα νν αα νν αα νν αα νν αα ] αα h αα h } {[ μμ αα μμ αα ) min (μμ αα μμ αα μμ αα μμ αα )] νν αα νν αα υυ αα υυ αα ) max (νν αα νν αα νν αα νν αα υυ αα υυαα )] αα h αα h } ={[ μμ αα μμ αα μμ αα μμ αα ][νν αα νν αα νν αα νν αα νν αα νν αα νν αα νν αα ] αα h αα h }= h h This proves (v) (vii) Using definitions..5 and. we have (h h ) ( h $ h )= h $ h )] νν αα νν αα νν αα μμ αα μμ αα ]

68 New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set = μ α υυ αα υυ αα μ α ] αα h αα h } μ α μ α μ α μ α μ α μ α [ νν αα νν αα νν αα νν αα ] {[ μμ αα μμ αα μμ αα μμ αα ][ υυ αα υυ αα = {[ min (μ α μ α μ α μ α μμ αα μμ αα ) min (μ α μ α μ α μ α μμ αα μμ αα )][max ( νν αα νν αα υυ αα υυ αα ) max (νν αα νν αα υυ αα υυ αα )] αα h αα h } ={[ μμ αα μμ αα μμ αα μμ αα ][ υυ αα υυ αα υυ αα υυ αα ] αα h αα h } = h $ h This proves (vii) (ix) From definitions..5 and. we have (h h ) ( h $ h )= h h ; ={([ μμ αα μμ αα μμ αα μμ αα ] [νν αα μμ αα μμ αα ][ υυ αα υυ αα υυ αα υυ αα νν αα ] αα h αα h } νν αα νν αα νν αα νν αα νν αα νν αα ]) αα h αα h } {[ μμ αα μμ αα = {[ min (μμ αα μμ αα μμ αα μμ αα ) min (μμ αα μμ αα μμ αα μμ αα )][max (νν αα νν αα νν αα νν αα υυ αα υυ αα ) max (νν αα νν αα νν αα νν αα υυ αα υυ αα )] αα h αα h } ={[ μμ αα μμ αα μμ αα μμ αα ][ νν αα νν αα νν αα νν αα νν αα νν αα νν αα νν αα ] αα h αα h } =h h This proves (ix) (xiii) From definitions..5 and. we have (h h ) ( h # h )= h h ; ={[ μμ αα μμ αα μμ αα μμ αα ] [νν αα νν αα νν αα νν αα νν αα νν αα νν αα νν αα μμ αα μμ αα ][ υυαα υυ αα υυαα υυ αα μμ αα μμ αα υυ αα υυ αα υυ αα υυαα μμ αα μμ αα μμ αα μμ αα υυ αα υυ αα υυ αα υυαα ={[ min (μμ αα μμ αα νν αα νν αα ] αα h αα h } ) min (μμ αα μμ αα ] αα h αα h } μμ αα μμ αα μμ αα μμ αα )][ max (νν αα ] αα h αα h } {[ μμ αα νν αα νν αα νν αα υυ αα υυ αα υυ αα υυ αα μμ αα μμ αα μμ αα ={[μμ αα μμ αα μμ αα μμ αα ][ νν αα νν αα νν αα νν αα νν αα νν αα νν αα νν αα ] αα h αα h }=h h This proves (xiii). Theorem.8 For h and h IVIHFE(X) then following relations are valid: (i) (h #h ) $ ( h #h ) = h # h ; (ii) (h h ) $ ( h h ) = h h ; (iii) (h h ) $ ( h h ) = h h ; (iv) (h h ) $ ( h h ) = h h ; (v) (h @ h ) $ ( h @ h ) = h @ h ; (vi) (h # h ) @ ( h # h ) = h # h ; (vii) (h h ) @ ( h h ) = h h ; (viii) (h h ) @ ( h h ) = h @ h ; (ix) (h h ) @ ( h h ) = h @h ; (x) (h h ) $ ( h h ) = h $ h ; (xi) (h h ) # ( h h ) = h # h ; (xii) (h h ) ( h h ) = h h ; (xiii) (h h ) @ ( h h ) = h h ; (xiv) (h h ) $ ( h h ) = h h. Proof The proofs of these results are the same as in the above proof ) max(νν αα νν αα Theorem.9. For every two h and h IVIHFE (X) we have:

Mathematics and Statistics (): 6-7 04 69 (i) ((h h ) ( h h )) @ (( h h ) ( h h )) = h @h ; (ii) ((h h )#( h h )) $ ((h h ) @ ( h h )) = h $h (iii) ((h h ) ( h h )) @ (( h h ) ( h h ))= h @h ; (iv) ((h h ) ( h @h )) @ (( h h ) ( h @h ))= h @h ; (v) ((h h ) ( h #h )) @ (( h h ) ( h #h )) = h @h ; (vi) ((h h ) ( h $h )) @ (( h h ) ( h $h )) = h @h ; (vii) ((h h ) ( h @h )) @ (( h h ) ( h #h )) = h $h. Proof.In the following we prove (i) and (iii) other results can be proved analogously. (i) From definitions. and. we have ((h h ) ( h h )) @ (( h h ) ( h h )) = ((h h ) ( h h )) = {[max( μμ αα μμ αα ) max( μμ αα μμ αα ) ][min (νν αα νν αα )min( νν αα νν αα )] αα h αα h } {[min( μμ αα μμ αα ) min( μμ αα μμ αα ) ][max (νν αα νν αα ) max( νν αα νν αα )] αα h αα h } ={[ max( μμ αα μμ αα ) min( μμ αα μμ αα ) - max( μμ α μμ αα ) min( μμ αα μμ αα (h h ) ( h h ) = ) max( μμ αα μμ αα ) min( μμ αα μμ αα ) - max( μμ αα )] μμ αα ) min( μμ αα μμ αα )][ min νν αα νν αα max (νν αα νν αα ) min( νν αα νν αα ) max( νν αα νν αα {[max( μμ αα μμ αα ) max( μμ αα μμ αα ) ][min (νν αα νν αα )min( νν αα νν αα )] αα h αα h } {[min( μμ αα μμ αα ) min( μμ αα μμ αα ) ][max (νν αα νν αα ) max( νν αα νν αα )] αα h αα h } = {[max( μμ αα μμ αα ) min( μμ αα μμ αα ) max( μμ αα μμ αα ) min( μμ αα μμ αα ) ] [min (νν αα νν αα ) max νν αα νν αα min (νν αα νν αα ) max (νν αα νν αα ) min( νν αα νν αα ) max( νν αα νν αα ) - min( νν αα νν αα ) max( νν αα νν αα ) ] αα h αα h } ((h h ) ( h h )) @ (( h h ) ( h h )) = {[ {max( μμ μμαα ) min( μμαα μμαα ) max( μμαα μμαα ) min( μμαα μμαα )}max( μμαα μμαα ) min( μμαα μμαα ) αα max μμ αα μμαα min μμ αα μμαα max μμ αα μμαα min μμ αα μμαα max( μμ αα μμαα ) min( μμαα μμαα ) [ min νν νναα αα max (νν αα νναα ) min (νναα νναα ) max νναα νναα min (νν αα νναα ) max (νναα νναα ) min νν αα νναα max νν αα νναα min( νν αα νναα ) max( νναα νναα ) min( νναα νναα ) max( νναα νναα ) =[ {max( μμ μμαα ) min( μμαα μμαα ) αα max μμ μμαα αα min μμ αα μμαα ] [ min νν νναα αα max (νν αα νναα ) min (νναα νναα ) max νναα νναα min (νν αα νναα ) max (νναα νναα ) min νν αα νναα max νν αα νναα min( νν αα νναα ) max( νναα νναα ) min( νναα νναα ) max( νναα νναα ) = {[ μμ μμαα αα ={[ μμ μμαα αα = h @h μμ μμαα αα ][ min (νν νναα αα ) max νναα νναα min( νν νναα αα μμ μμαα αα ][ νν νναα αα This proves (i). (ii) From definitions. and. we have νν νναα αα ] αα h αα h } ((h h ) ( h h )) @ (( h h ) ( h h )) = h @h ; (h h ) ( h h ) = { μ α μ α ] ) max( νναα νναα ) ] ] αα h αα h } ] αα h αα h } μ α μ α μ α μ α μ α μ α [ νν αα νν αα νν αα νν αα ] αα h αα h } {[ μμ αα μμ αα μμ αα μμ αα ][νν αα νν αα νν αα νν αα νν αα νν αα νν αα νν αα ] αα h αα h }

70 New Operations over Interval Valued Intuitionistic Hesitant Fuzzy Set ={[ min ( μ α μ α μ α μ α μμ αα μμ αα ) min (μ α μ α μ α μ α μμ αα μμ αα )] [ max (νν αα νν αα νν αα νν αα νν αα νν αα ) max(νν αα νν αα νν αα νν αα νν αα νν αα )] αα h αα h } = {[μμ αα μμ αα μμ αα μμ αα ][νν αα νν αα νν αα νν αα νν αα νν αα νν αα νν αα ] αα h αα h } (h h ) ( h h ) = { μ α μ α μ α μ α μ α μ α μ α μ α [ νν αα νν αα νν αα νν αα ] αα h αα h } {[ μμ αα μμ αα μμ αα μμ αα ][νν αα νν αα νν αα νν αα νν αα νν αα νν αα νν αα ] αα h αα h } ={[max ( μ α μ α μ α μ α μμ αα μμ αα ) max (μ α μ α μ α μ α μμ αα μμ αα )] [ min (νν αα νν αα νν αα νν αα νν αα νν αα ) min(νν αα νν αα νν αα νν αα νν αα νν αα )] αα h αα h } ={[μ α μ α μ α μ α μ α μ α μ α μ α ][ νν αα νν αα νν αα νν αα ] αα h αα h } (((h h ) ( h h )) @ (( h h ) ( h h ))={[ [ νν νναα αα νναα νναα νναα νναα ={[ μ α μα μ α μα νν νναα αα νναα νναα νναα νναα ][ νν νναα αα νν νναα αα μμ αα μμαα μα μα μα μα ] αα h αα h } ] αα h αα h } μμ αα μμαα μα μα μα μα ] Hence ( ((h h ) ( h h )) @ (( h h ) ( h h )) = h @h This proves (ii).

Mathematics and Statistics (): 6-7 04 7 4. Conclusion In this paper we have defined four new operations on interval valued intuitionistic hesitant fuzzy sets which involve different defining functions. Some related results have been proved and the characteristics of the interval valued intuitionistic hesitant fuzzy sets have been brought out.. Acknowledgements The authors are very grateful to the anonymous referees for their insightful and constructive comments and suggestions which have been very helpful in improving the paper. [7] Dubois D Prade H Fuzzy sets and systems: theory and applications. Academic Press NewYork980. [8] Karnik N N Mendel J M Operations on type- fuzzy sets. Fuzzy Sets and Systems ()00pp.7-48. [9] Torra V Narukawa Y On hesitant fuzzy sets and decision. The 8th IEEE international Conference on Fuzzy Systems Jeju Island Korea009 pp.78-8. [0] Torra V Hesitant fuzzy sets. International Journal of Intelligent Systems 5(6)00 pp.59-59. [] Xia M Xu Z S Hesitant fuzzy information aggregation in decision making. International Journal of Approximate Reasoning 5()0 pp.95-407. [] Xia M M Xu Z S Chen N Induced aggregation under confidence levels. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems 9()0 pp.0-7 REFERENCES [] Zhiming Zhang Interval-Valued Intuitionistic Hesitant Fuzzy Aggregation Operators and Their Application in Group Decision-Making Journal of Applied Mathematics Volume 0 (0) Article ID 67085 pages http://dx.doi.org/0.55/0/67085. [] Zadeh.L A Fuzzy sets. Information and Control 8() 965pp.8-5. [] Zadeh L A The concept of a linguistic variable and its application to approximate reasoning-i.information Sciences 8()975 pp.99-49. [4] Atanassov K T Intuitionistic fuzzy sets. Fuzzy Sets and Systems 0()986 pp.87-96. [5] Atanassov K T Intuitionistic fuzzy sets. Springer Physica-Verlag Heidelberg999. [6] K. T. Atanassov and G. Gargov Interval valued intuitionistic fuzzy sets Fuzzy Sets and SystemsVol. Issue 989 pp. 4 49. [] Xu Z S Xia M M Distance and similarity measures on hesitant fuzzy sets. Information Sciences 8()0 pp.8-8. [4] Xu Z S Xia M M On distance and correlation measures of hesitant fuzzy information. Inter-national Journal of Intelligent Systems 6(5)0pp. 40-45. [5] Xu ZS Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control Decis() 007 pp.5-9. [6] Wei GW Wang XR Some geometric aggregation operators based on interval-valued intuitionistic fuzzy sets and their application to group decision making In Proceedings of the international conference on computational intelligence and security. Washington DC USA: IEEE Computer Society Press 007 pp. 495-499. [7] Xu ZS Chen J On geometric aggregation over interval-valued intuitionistic fuzzy information. In Proceedings o f the fourth international conference on fuzzy systems and knowledge discovery. Washington DC USA: IEEE Computer Society Press007pp. 466-47.