FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D Jülich, Tel. (02461)

Σχετικά έγγραφα
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

DuPont Suva 95 Refrigerant

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

2. Chemical Thermodynamics and Energetics - I

DuPont Suva 95 Refrigerant

Numerical Analysis FMN011

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Concrete Mathematics Exercises from 30 September 2016

Matrices and Determinants

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

( ) 2 and compare to M.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

EE512: Error Control Coding

4.6 Autoregressive Moving Average Model ARMA(1,1)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

PARTIAL NOTES for 6.1 Trigonometric Identities

Other Test Constructions: Likelihood Ratio & Bayes Tests

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Approximation of distance between locations on earth given by latitude and longitude

Section 8.3 Trigonometric Equations

Areas and Lengths in Polar Coordinates

2 Composition. Invertible Mappings

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

APPENDIX A. Summary of the English Engineering (EE) System of Units

Higher Derivative Gravity Theories

CE 530 Molecular Simulation

Example Sheet 3 Solutions

6.3 Forecasting ARMA processes

Areas and Lengths in Polar Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

CH 3 CH 2 COOCH 2 CH 2 CH 3 + H 2 O

Correction Table for an Alcoholometer Calibrated at 20 o C

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Math221: HW# 1 solutions

derivation of the Laplacian from rectangular to spherical coordinates

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

STEAM TABLES. Mollier Diagram

SPECIAL FUNCTIONS and POLYNOMIALS

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Uniform Convergence of Fourier Series Michael Taylor

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Homework 3 Solutions

Math 6 SL Probability Distributions Practice Test Mark Scheme

Solutions to Exercise Sheet 5

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

w o = R 1 p. (1) R = p =. = 1

Srednicki Chapter 55

D Alembert s Solution to the Wave Equation

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.

Second Order RLC Filters

Section 7.6 Double and Half Angle Formulas

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Notes on the Open Economy

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Variational Wavefunction for the Helium Atom

ST5224: Advanced Statistical Theory II

[1] P Q. Fig. 3.1

Problem Set 3: Solutions

If we restrict the domain of y = sin x to [ π 2, π 2

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

The Simply Typed Lambda Calculus

Space-Time Symmetries

Reminders: linear functions

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 26: Circular domains

Strain gauge and rosettes

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

1 String with massive end-points

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

TMA4115 Matematikk 3

C.S. 430 Assignment 6, Sample Solutions

By R.L. Snyder (Revised March 24, 2005)

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Assalamu `alaikum wr. wb.

Tridiagonal matrices. Gérard MEURANT. October, 2008

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Quadratic Expressions

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Section 9.2 Polar Equations and Graphs

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

On the Galois Group of Linear Difference-Differential Equations

Pof moist air and uses these properties to analyze conditions and

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Empirical best prediction under area-level Poisson mixed models

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

A Note on Intuitionistic Fuzzy. Equivalence Relation

Congruence Classes of Invertible Matrices of Order 3 over F 2

Transcript:

FORSCHUNGSZENTRUM JÜLICH GmbH Zentralinstitut für Angewandte Mathematik D-545 Jülich, Tel. (046) 6-640 Interner Bericht Calculation of Chemical Equilibrium Compositions Johannes Grotendorst, Jürgen Dornseiffer* KFA-ZAM-IB-9406 Februar 994 (Stand 08.06.94) (*) Institut für Angewandte Physikalische Chemie, Forschungszentrum Jülich This worksheet will be published in a collection of application on worksheets for the next Maple release.

Calculation of Chemical Equilibrium Compositions Johannes Grotendorst Central Institute for Applied Mathematics Research Centre Juelich D-545 Juelich Germany Juergen Dornseiffer Institute for Applied Physical Chemistry Research Centre Juelich D-545 Juelich Germany The catalytic reaction between steam and hydrocarbon into mixtures of hydrogen, carbon monoxide, carbon dioxide and methane forms the basic feedstock (synthesis gas) to produce ammonia, methanol and other chemicals. For reactor design and to find the most economic reaction conditions it is necessary to study theoretically the reaction behaviour with respect to the operating parameters. In the present thermodynamic study we examine the temperature dependence of chemical compositions at equilibrium. We consider the following simple system of steam reforming reactions:. The methane-steam equality CH4 + HO <-> CO + 3H. The water-gas shift CO + HO <-> CO + H To set up a practical computation model we formulate the equilibrium condition for each separate reaction in terms of the reaction extents xi[ and xi[. If ne[j is the number of moles of chemical species B[j (j..5) present at equilibrium and n[j is the initial number of moles of that species, then > ne[j n[j+sum(alpha[j,i*xi[i, i..); ne [ j n + [ j i α [, j i [ i holds, where alpha[i,j are the stoichiometric coefficients of species B[j in each of the equations (i) [O&W, 80. The matrix of stoichiometric coefficients for these molecular mass balance equations is given by

> with(linalg): alpha : matrix ([[-, 0, [-, -, [, -, [3,, [0, ); Warning: new definition for norm Warning: new definition for trace - 0 - - α : - 3 0 A feed mixture of n[ moles of methane with n[ moles of steam results in the following composition of the participating components at equilibrium: > xi : vector(): print(xi); n : vector(5): for k from 3 to 5 do n[k:0 print(n); ne : add(n, multiply (alpha, xi)); [ [ [ n n [ 0 0 0 ne : [ n - n - - - 3 + The equilibrium constants of the reactions in terms of the partial pressures > p : vector([p[ch4, P[HO, P[CO, P[H, P[CO); p : [ P P [ HO P [ CO P [ H P [ CO are calculated by > for i from to do eqn[i : K[i Product(p[j^alpha[j,i, j..5); print("); print(value(")); K 5 j [ K [ α [ j, p [ j 3 P CO P [ H P P [ HO

K 5 j [ K [ α [ j, p [ j P H P [ CO P [ HO P [ CO Now, if we insert the relation p[j x[j*p, where p[j denotes the partial pressure, P the total pressure and x[j the mole fraction of chemical component B[j, then we obtain > for j from to 5 do p[j : x[j * P j: j : for i from to do print(value(eqn[i)); P [ K [ 3 x 3 x [ 4 x x [ K [ x 4 x [ 5 x x [ 3 The individual mole fractions x[j are calculated by dividing ne[j by the total number of moles. Thus, the sum over the component index should yield unity. > nsum : sum(ne[j, j..5); x : map (y -> y/nsum, ne); Sum(x[j, j..5) simplify(sum(x[j, j..5)); x : n - % nsum : n + + [ n - - % n - % 3 [ + % % % : n + + [ n 5 j x j The equilibrium mixture defined by xi[ and xi[ must simultaneously satisfy the equilibrium condition for each reaction, i.e. we have to solve the following equations for the reaction extents simultaneously: [ 3

> for i from to do f[i : ln(value(rhs(eqn[i))) - ln(lhs(eqn[i))0; print("); ln P 3 ( - ) ( 3 + ) - ( n - [ ) ( ) ln ( [ ) n + + n ( n - - ) ( 3 + ) ln - ( - - ) ( ) ln( K [ ) - 0 n [ [ K 0 Before solving this system of nonlinear equations we determine the temperature dependence of the constants K[ and K[. To obtain an expression for the reaction enthalpy we apply Kirchhoff s law with a polynomial ansatz for the description of the molar heat capacity. We have > diff(h[p(t), T) sum(a[j*(s*t)^j, j0..6); expand(dsolve(", H[P(T))); assign("); H ( ) T [ P T A + + + + + + [ 0 A s T A s T A [ 3 s 3 T 3 A [ 4 s 4 T 4 A [ 5 s 5 T 5 A [ 6 s 6 T 6 H [ P ( T) A [ 0 T + A s T + A s T 3 + A 3 s 3 T 4 + A 4 s 4 T 5 + A 5 s 5 T 6 + A 6 s 6 T 7 + _C 7 [ 3 [ 4 [ 5 [ 6 [ Here, s (0^(-3)) denotes a scaling factor of the temperature T as used in thermochemical tables. Inserting the expression for H[P(T) into the equation of van t Hoff and then integrating yields > diff(lnk[p(t),t) H[P(T) /(R*T^); expand(dsolve(", lnk[p(t))); assign("); lnk ( ) [ P T 4 A [ 6 s 6 T 6 R lnk ( ) T [ P T H [ P R T ( T) A [ 5 s 5 T 5 A [ 4 s 4 T 4 A [ 3 s 3 T 3 + + + + 30 R 0 R R 6 A s T A [ 0 ln( T) _C + + - + _C R R R T A s T R 4

The coefficients A[j are determined by the corresponding coefficients of the pure substances in each reaction [Pro, 69. > U0:matrix([[a0[CH4, a0[ho, a0[co, a0[h, a0[co, [a[ch4, a[ho, a[co, a[h, a[co, [a[ch4, a[ho, a[co, a[h, a[co, [a3[ch4, a3[ho, a3[co, a3[h, a3[co, [a4[ch4, a4[ho, a4[co, a4[h, a4[co, [a5[ch4, a5[ho, a5[co, a5[h, a5[co, [a6[ch4, a6[ho, a6[co, a6[h, a6[co); a0 [ CH4 a0 [ HO a0 [ CO a0 [ H a0 [ CO a a [ HO a [ CO a [ H a [ CO a a [ HO a [ CO a [ H a [ CO U0 : a3 a3 [ HO a3 [ CO a3 [ H a3 [ CO a4 a4 [ HO a4 [ CO a4 [ H a4 [ CO a5 a5 [ HO a5 [ CO a5 [ H a5 [ CO a6 a6 [ HO a6 [ CO a6 [ H a6 [ CO > U:subs(a0[CH47.98404, a0[ho7.988860, a0[co7.849, a0[h6.8304, a0[co4.34933, a[ch4-.47, a[ho-.5067, a[co-6.66893, a[h4.70657, a[co0.80895, a[ch463.73457, a[ho6.66376, a[co7.896, a[h-0.935, a[co-.94590, a3[ch4-75.569, a3[ho-4.655970, a3[co-7.8709, a3[h.54086, a3[co6.84483, a4[ch443.969, a4[ho.696464, a4[co8.8605, a4[h-7.0663, a4[co-7.935665, a5[ch4-.5673, a5[ho-0.3706, a5[co-.3489, a5[h.93395, a5[co.67, a6[ch4.469695, a6[ho0.0399444, a6[co0.447785, a6[h-0.08409, a6[co-0.40873, eval(u0)); 7.98404 7.988860 7.849 6.8304 4.34933 -.47 -.5067-6.66893 4.70657 0.80895 63.73457 6.66376 7.896-0.935 -.94590 U : -75.569-4.655970-7.8709.54086 6.84483 43.969.696464 8.8605-7.0663-7.935665 -.5673 -.3706 -.3489.93395.67.469695.0399444.447785 -.08409 -.40873 5

> V:multiply(U,alpha); 0.454-5.9334 0.38769 33.6947-85.877036-57.8586 V : 00.48370 5.38750-57.7788-5.50857 6.393307 6.730507 -.8900684 -.73398334 The integration constants _C and _C can be calculated by using special values for K[ and K[ at the temperature T98.5 Kelvin [Bar, 93. Inserting the value for the gas constant R and taking into account the conversion factor F between the unit cal (used in Prothero s termochemical table [Pro, 69) and the SI unit Joule we eventually arrive at: > R:8.34: H[:0685: H[:-465: lnk[:-57.36: lnk[:.546: s:0^(-3): F:4.868: > for i from to do for k from 0 to 6 do A[k:F*V[k+, i od; solve({h[isubs(t98.5, H[P(T))},_C); print(op("));assign("); solve({lnk[isubs(t98.5,lnk[p(t))},_c); print(op("));assign("); ln(k[i)eval(lnk[p(t)); print(");assign("); _C: _C :_C: _C : _C 9793.6485 _C -0.9747954 ln( K ) -.664 0-9 T 6 +.758049 0-5 T 5 -.4396968 0 - T 4 +.406958900 0-8 T 3 -.707740 0-5 T +.005333975 T + 5.6456333 ln( T) - 3068.75734 T - 0.9747954 6

_C -39066.8 _C 8.848534 ln( K ) -.8800535667 0-0 T 6 +.9796 0-5 T 5 -.64844540 0 - T 4 +.5409453 0-8 T 3 -.48567998 0-5 T +.0084839800 T -.66553963 ln( T) + 4698.9885 + 8.848534 T Thus, the complete expressions for the reactions extents xi[ and xi[ are given by > f:lhs(f[); f:lhs(f[); f : ln f : ln P 3 ( - ) ( 3 + ) ( ) - ( ) + + n ( - - ) n [ n [ n [ +.664 0-9 T 6 -.758049 0-5 T 5 +.4396968 0 - T 4 -.406958900 0-8 T 3 +.707740 0-5 T -.005333975 T - 5.6456333 ln( T) + 3068.75734 T + 0.9747954 ( 3 + ) ( - - ) ( ) n [ +.8800535667 0-0 T 6 -.9796 0-5 T 5 - [ +.64844540 0 - T 4 -.5409453 0-8 T 3 +.48567998 0-5 T -.0084839800 T +.66553963 ln( T) - 4698.9885 T - 8.848534 Next, we assume P5 bar and a steam to carbon atom ratio HO : C :, i.e. > P:5; n[:; n[:; P : 5 n : [ n : [ Now, solving the nonlinear equations for xi[ and xi[ at different values of T (800..00 Kelvin) results in the following temperature dependence of the reaction extents and of the various mole fractions for steam, hydrogen, carbon monoxide, carbon dioxide, and methane. > for k from to do l[k:null for k from to 5 do l[k:null 7

> for j from 0 to 0 do T : 800 + j*0: fsolve({f, f}, {xi[, xi[}, {xi[0..., xi[0...0.3}); assign("); xit:map(eval, xi); for k from to do l[k : l[k, [T, xit[k; od; xt:map(eval, x); for k from to 5 do l[k : l[k, [T, xt[k; od; xi[: xi[ ; xi[: xi[ ; > with(plots): T: T : > pl:plot({seq([l[k, k..)}, T800..00): > t[:textplot([050, 0.88, xi[, alignabove): t[:textplot([950, 0.3, xi[, alignabove): t[3:textplot([030, -0.045, (Kelvin), alignbelow): > display({pl, seq(t[i, i..3)}); > pl:plot({seq([l[k, k..5), }, T800..00): > t[:textplot([930, 0.4, CH4, alignabove): t[:textplot([000, 0.5, HO, alignabove): t[3:textplot([040, 0.3, CO, alignabove): t[4:textplot([000, 0.555, H, alignabove): t[5:textplot([850, 0.08, CO, alignabove): t[6:textplot([000,.0, Sum of x[j, alignabove): t[7:textplot([800,.04, x[j, alignleft): t[8:textplot([030, -0.045, (Kelvin), alignbelow): 8

> display({pl, seq(t[i, i..8)}); References [O&W, 80 A. Ovenston and J.R. Walls, Chem. Engineering Sci. 35, 67-633, (980). [Pro, 69 A. Prothero, Comb. Flame. 3, 399-408, (969). [Bar, 93 I. Barin Thermochemical Data of Pure Substances, VCH Verlagsgesellschaft, Weinheim (993). 9