Monochromatic Radiation is Always 100% Polarized

Σχετικά έγγραφα
Aperture Radiation: Huygen s Equation

6.4 Superposition of Linear Plane Progressive Waves

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

4.4 Superposition of Linear Plane Progressive Waves

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Class 03 Systems modelling

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2


2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

2 2 2 The correct formula for the cosine of the sum of two angles is given by the following theorem.

is like multiplying by the conversion factor of. Dividing by 2π gives you the

CYLINDRICAL & SPHERICAL COORDINATES

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Lecture 34 Bootstrap confidence intervals

Section 8.3 Trigonometric Equations

EE101: Resonance in RLC circuits

For a wave characterized by the electric field

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

CHAPTER 10. Hence, the circuit in the frequency domain is as shown below. 4 Ω V 1 V 2. 3Vx 10 = + 2 Ω. j4 Ω. V x. At node 1, (1) At node 2, where V

Forced Pendulum Numerical approach

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

What happens when two or more waves overlap in a certain region of space at the same time?

Areas and Lengths in Polar Coordinates

Homework 8 Model Solution Section

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

( ) Sine wave travelling to the right side

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

TECNICAL BOOKLET ANTENNES amateur radio antennas

6.003: Signals and Systems. Modulation

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

Second Order RLC Filters

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

D Alembert s Solution to the Wave Equation

Calculating the propagation delay of coaxial cable

Solutions to Exercise Sheet 5

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Finite Field Problems: Solutions

Example Sheet 3 Solutions

Durbin-Levinson recursive method

( y) Partial Differential Equations

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Parametrized Surfaces

4.6 Autoregressive Moving Average Model ARMA(1,1)

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Example 1: THE ELECTRIC DIPOLE

= 0.927rad, t = 1.16ms

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ST5224: Advanced Statistical Theory II

w o = R 1 p. (1) R = p =. = 1

Uniform Convergence of Fourier Series Michael Taylor

Trigonometric Formula Sheet

Lecture 21: Scattering and FGR

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

The Simply Typed Lambda Calculus

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Section 7.6 Double and Half Angle Formulas

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

EE512: Error Control Coding

Math221: HW# 1 solutions

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

C.S. 430 Assignment 6, Sample Solutions

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Answer sheet: Third Midterm for Math 2339

Matrices and Determinants

Higher Derivative Gravity Theories

Geodesic Equations for the Wormhole Metric

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Graded Refractive-Index

10.7 Performance of Second-Order System (Unit Step Response)

Magnetically Coupled Circuits

Finite difference method for 2-D heat equation

Approximation of distance between locations on earth given by latitude and longitude

From the finite to the transfinite: Λµ-terms and streams

2 Composition. Invertible Mappings

Fractional Colorings and Zykov Products of graphs

Solution Series 9. i=1 x i and i=1 x i.

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Second Order Partial Differential Equations

Solution to Review Problems for Midterm III

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

m i N 1 F i = j i F ij + F x

Tutorial Note - Week 09 - Solution

Partial Differential Equations in Biology The boundary element method. March 26, 2013

6.3 Forecasting ARMA processes

Introduction. Setting up your PC for the first time. Visual Quick Set up Guide. Figure 1: Guide to ports and sockets. 2 P age

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Chapter 7 Transformations of Stress and Strain

Transcript:

Mnchrmatic Radiatin is lwas % Plarized Plarizatin llipse z Prpagatin Right-Hand Plarizatin v b z θ a ϕ (t) v 3 Parameters Specif llipse e.g. a, b, ϕ a, ϕ, θ v, v, θ ls, (need + r t right r left elliptical) Lec3a.3- // V

Let Plarizatin f Narrwband Radiatin ( t) v ˆ (t)cs v (t) and v (t) are slwl varing and randm; v, v, and δ ma be nn-zer Stkes Parameters [ ωt + φ(t) ] + v ˆ (t)cs[ ωt + φ(t) + δ(t) ] I Q U S S S [ ] v (t) + v (t) η [ ] v (t) v (t) v ( t) η v (t) cs δ(t) η [W m - ] ttal pwer -ness 45 -ness Lec3a.3- // V S3 v ( t) v (t) sin δ(t) η circularit V

Let % Plarized Narrwband Waves ( t) v ˆ (t)cs [ ωt + φ(t) ] + v ˆ (t)cs[ ωt + φ(t) + δ(t) ] v (t) and v (t) are slwl varing and randm; v, v, and δ ma be nn-zer δ ( t) δ and v v (t) cnstant fied ellipse, variable size (t) ls : S S + S + S 3 Therefre, an 3 Stkes parameters specif plarizatin Lec3a.3-3 // V3

Partiall Plarized Narrwband Radiatin Stkes Parameters I S [ v (t) + v (t) ] η [W m - ] ttal pwer Q S [ v (t) v (t) ] η -ness U S v (t) v (t) cs δ(t) η 45 -ness circularit V S 3 v (t) v (t) sin δ(t) η Nte: Fr uncrrelated waves superimpsed (+B), we have S i+b S i + S ib where i,,, 3 Fr % plarizatin, Stkes: S ; S S S 3 Therefre, fr partiall plarized wave: [S, S, S, S 3 ] [S u,,, ] + [S S u, S, S, S 3 ] where (S S u ) S + S + S 3 Lec3a.3-4 // Define percentage plarizatin S S u S % m, m V4

Cherenc Matri η { } { } (t) ( (t)e R (t)e R t e t e ω ω + e.g. X-plarizatin RCP (right-circular) S RC Unplarized S u V5 Lec3a.3-5 // var slwl ), t where (t) where S

Finding Orthgnal Plarizatin RC e.g. X-plarizatin S RCP (right-circular) Unplarized RC u S S Nte : + u RC + LC u B, and If then + B T T B r r u Therefre, we can find rthgnal plarizatin B n Lec3a.3-6 // V6

Plarized ntennas Define e.g. G ( θ, φ) i G ( θ, φ) i ( θ, φ) ( θ, φ ) i + { i, } {,}, { r, },{ a, b }( b a) Far Fields ; claim P rec T r t inc [m ][Wm ] [ W] fr incident plane wave Lec3a.3-7 // W

Plarized ntennas t ; claim P T [ W] rec r inc [m ][Wm ] fr incident plane wave S P rec [ + + + ] fr incident unifrm plane wave n antenna Fr Ω s : P rec 4 π T r t ( θ, φ) ( θ, φ) dω Lec3a.3-8 // W

Measure 4 pwers; use 4 antennas W3 T Measure Plarizatin d c b a M M M M d d c b b a a a a e.g. M ( ) ˆ M Ĵ s Lec3a.3-9 //, estimate is singular? Is

Fr,, RC, LC POL: T Measure Plarizatin M ( ) ˆ M Ĵ s W4 Can nt distinguish vs det Fr, 45, RC, LC: det Lec3a.3- //, estimate is singular? Is k" "

ample f a Plarimeter Right Circular.5 MHz Dipleer 3.5 MHz.5 MHz Lcal 3 MHz Oscillatr 3 MHz [Chen, Prc. IR,, 958] Left Circular 5. MHz Lcal Oscillatr 5. MHz Lcal Oscillatr 5 MHz 4.999 MHz ( ) KHz Phase Cmparatr dt ρ ρ r r ρ ρ 4 measurements 4 Stkes parameters Lec3a.3- // W5

ntenna Phase rrrs phase frnt Sstematic antenna phase errrs: ) pr design and fabricatin ) gravit, wind, thermal (gravit and thermal limits near arc minute) 3) feed ffset Randm antenna phase errrs: ) machine tlerances, surface rughness ) adustment errrs 3) feed ffset Lec3a.3- // X

amples f ntenna Phase rrrs Randm antenna phase errrs: ) matching tlerances, surface rughness ) adustment errrs 3) feed ffset 3-ft parablic reflectr antenna at NRO, Greenbank, West Virginia ) sstematic sag fi backup; ftprints n mesh ) steamrlled mesh lng waves 3) ~ new panels: θ B >. 5 arc minute Lec3a.3-3 // X

Tpes f ptical and radi prpagatin phase errrs Sstematic: h T(h) ρ (h) velcit f light c c < c c insphere c arth Randm phase: + amplitude? ~ RMS < λ RMS >> λ π, π, arth weak fluctuatins strng fluctuati ns vs pathlength L nλ interference and nulls Lec3a.3-4 // Thin screen (cnstant amplitude) Thick screen X3

ffect f Phase Variatin n Directivit aperture Fr -plarizatin: ϕ ϕ z ~ ( ϕ ϕ ) ( ), R, ( τ ) ~ ( ϕ ) D( ϕ), G ( ϕ) D ( f, θ, φ ) [ ( ) ] R π + csθ λ () τ e π ( ϕ τ) λ (,) dτ dd dτ Lec3a.3-5 // X4

ffect f Phase Variatin n Directivit D ( [ ( ) ] R f, θ, φ ) π + csθ λ π (+ csθ) () τ e (,) { } { (, θ, φ )} R () τ λ (,) dd D f π ( ϕ τ) λ e dτ dd ( r ) ( r τ ) ( ) ( r) r e dτ π ( ϕ τ) λ d r dτ dτ Therefre { } { ()} () R () r ( r τ R τ τ e ) Spatial statinari t : { () ( )} r r τ () () r e e { } Lec3a.3-6 // X5

Definitin f Characteristic Functin It is the Furier transfrm f prbabilit distributin p() (als called the mment-generating functin) [ ω ] ω p ()e d F.T.[ p ()] e Γ ( ω ;) characteristic functin f p() One use f the Furier transfrm f p() is when we seek p ( +... + ) + n π i ( ) p ( ) p ( ) F.T. F.T.[ p ( )] n p... n i Lec3a.3-7 // X6

Cmputatin f { } ( ()) ω, ; ( () + ω ω ), e () τ τ Thus Γ ω { ( ) } R τ Recall : If, are GRV, then (, ω,, ) Γ ω e [ ω ω ] ω ω Here, (), () τ Therefre : { ()} ()- τ e Γ ω, ω ; (), () τ ( ) Lec3a.3-8 // X7

Cmputatin f ( ) (, ω,, ) Γ ω e Here, (), [ ω ω ] () τ { } R τ ω ω Since: ( ) { ()} ()- τ e Γ ω, ω ; (), () τ () φ () () () τ φ ( ) e ( ω, ω ; (), () τ ) Lec3a.3-9 // Therefre : τ Therefre e [ ] ( ) φ () ( ) () φ( ) φ ( τ) () τ φ ( τ ) φ( τ) φ() { ( )} () φ ( τ ) φ () R τ τ e φ τ R b statinari t X8

Cmputatin f pected Directivit π ( + cs θ) { D( f, θφ, )} e R τ e d τ dτ λ () r φ ( τ ) ( ) ( τ) φ ( τ ) φ () e σ e L π - ( ) ϕτ i φτ φ () ( ) λ da crrelatin length L f phase irregularities τ B(τ) e ( ) φ ) φ τ σ + ( e τ σ φ () σ L τ L τ τ Lec3a.3- // X9

e Slutin t pected Directivit φ ( τ ) φ () B(τ) σ e π (+ csθ) σ { ( )} () D f, θ, φ λ () e + B τ R () τ r da L τ + e σ e τ π ϕ τ λ dτ dτ σ { D ( f, θ, φ )} e D ( f, θ, φ ) + B( ϕ ) D ( f, θ, φ ) gain degradatin sidelbe increase B(ϕ ) λ /L ϕ Lec3a.3- // X

amples f Randm ntenna Surface Let b RMS surface tlerance f reflectr antenna On-ais gain f randm antenna G σ ( b π λ ) ( b 4 π λ G e G e G e ) If b b b λ λ λ 4π 6 3 G G G e. 54. 9 new lg G (pwer shifts t sidelbes) n aperture antenna, fied illuminatin - lg G lg λ + lg 4 π e Lec3a.3- // ~minimum useful wavelength lg λ X