Heisenberg Uniqueness pairs

Σχετικά έγγραφα
Fractional Colorings and Zykov Products of graphs

Example Sheet 3 Solutions

The Pohozaev identity for the fractional Laplacian

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

2 Composition. Invertible Mappings

Distances in Sierpiński Triangle Graphs

Areas and Lengths in Polar Coordinates

Congruence Classes of Invertible Matrices of Order 3 over F 2

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Every set of first-order formulas is equivalent to an independent set

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

w o = R 1 p. (1) R = p =. = 1

5. Choice under Uncertainty

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

On a four-dimensional hyperbolic manifold with finite volume

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Divergence for log concave functions

D Alembert s Solution to the Wave Equation

Uniform Convergence of Fourier Series Michael Taylor

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Intuitionistic Fuzzy Ideals of Near Rings

( y) Partial Differential Equations

On the Galois Group of Linear Difference-Differential Equations

ST5224: Advanced Statistical Theory II

SOME PROPERTIES OF FUZZY REAL NUMBERS

Homomorphism in Intuitionistic Fuzzy Automata

A General Note on δ-quasi Monotone and Increasing Sequence

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE512: Error Control Coding

Reminders: linear functions

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

New bounds for spherical two-distance sets and equiangular lines

12. Radon-Nikodym Theorem

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Iterated trilinear fourier integrals with arbitrary symbols

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Finite Field Problems: Solutions

Lecture 2. Soundness and completeness of propositional logic

Commutative Monoids in Intuitionistic Fuzzy Sets

The challenges of non-stable predicates

A Note on Intuitionistic Fuzzy. Equivalence Relation

arxiv: v1 [math-ph] 4 Jun 2016

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Other Test Constructions: Likelihood Ratio & Bayes Tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 8.3 Trigonometric Equations

Bounding Nonsplitting Enumeration Degrees

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Phase-Field Force Convergence

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Second Order Partial Differential Equations

Parametrized Surfaces

Second Order RLC Filters

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Lecture 34 Bootstrap confidence intervals

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Quadratic Expressions

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

1. Introduction and Preliminaries.

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

A Hierarchy of Theta Bodies for Polynomial Systems

Homework 3 Solutions

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Jordan Form of a Square Matrix

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Asymptotics for Christoel functions

Cyclic or elementary abelian Covers of K 4

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

4.6 Autoregressive Moving Average Model ARMA(1,1)

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

TMA4115 Matematikk 3

F19MC2 Solutions 9 Complex Analysis

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

The circle theorem and related theorems for Gauss-type quadrature rules

Concrete Mathematics Exercises from 30 September 2016

Matrices and Determinants

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Online Appendix I. 1 1+r ]}, Bψ = {ψ : Y E A S S}, B W = +(1 s)[1 m (1,0) (b, e, a, ψ (0,a ) (e, a, s); q, ψ, W )]}, (29) exp( U(d,a ) (i, x; q)

Solution Series 9. i=1 x i and i=1 x i.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Homework 8 Model Solution Section

Transcript:

Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay

Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s, t). Γ : finite union of disjoint curves M(Γ) : measures supported on Γ AC(Γ) : µ M(Γ) absolutely continuous w.r.t arc length. Λ R 2 : set of lines Definition (Γ, Λ) Heisenberg Uniqueness Pair (HUP) if µ AC(Γ), µ = 0 on Λ µ = 0.

Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s, t). Γ : finite union of disjoint curves M(Γ) : measures supported on Γ AC(Γ) : µ M(Γ) absolutely continuous w.r.t arc length. Λ R 2 : set of lines Definition (Γ, Λ) Heisenberg Uniqueness Pair (HUP) if µ AC(Γ), µ = 0 on Λ µ = 0.

Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s, t). Γ : finite union of disjoint curves M(Γ) : measures supported on Γ AC(Γ) : µ M(Γ) absolutely continuous w.r.t arc length. Λ R 2 : set of lines Definition (Γ, Λ) Heisenberg Uniqueness Pair (HUP) if µ AC(Γ), µ = 0 on Λ µ = 0.

Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s, t). Γ : finite union of disjoint curves M(Γ) : measures supported on Γ AC(Γ) : µ M(Γ) absolutely continuous w.r.t arc length. Λ R 2 : set of lines Definition (Γ, Λ) Heisenberg Uniqueness Pair (HUP) if µ AC(Γ), µ = 0 on Λ µ = 0.

Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s, t). Γ : finite union of disjoint curves M(Γ) : measures supported on Γ AC(Γ) : µ M(Γ) absolutely continuous w.r.t arc length. Λ R 2 : set of lines Definition (Γ, Λ) Heisenberg Uniqueness Pair (HUP) if µ AC(Γ), µ = 0 on Λ µ = 0.

Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s, t). Γ : finite union of disjoint curves M(Γ) : measures supported on Γ AC(Γ) : µ M(Γ) absolutely continuous w.r.t arc length. Λ R 2 : set of lines Definition (Γ, Λ) Heisenberg Uniqueness Pair (HUP) if µ AC(Γ), µ = 0 on Λ µ = 0.

Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s, t). Γ : finite union of disjoint curves M(Γ) : measures supported on Γ AC(Γ) : µ M(Γ) absolutely continuous w.r.t arc length. Λ R 2 : set of lines Definition (Γ, Λ) Heisenberg Uniqueness Pair (HUP) if µ AC(Γ), µ = 0 on Λ µ = 0.

References H. HEDENMALM & A. MONTES-RODRÍGUEZ Heisenberg uniqueness pairs and the Klein-Gordon equation. Ann. of Math. (2), 173 (2011), 1507-1527. N. LEV Uniqueness theorems for Fourier transforms. Bull. Sci. Math., 135 (2011), 134-140. P. SJÖLIN Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin. Bull. Sci. Math., 135 (2011), 125-133. P. SJÖLIN Heisenberg uniqueness pairs for the parabolla. Jour. Four. Anal. Appl., to appear.

References H. HEDENMALM & A. MONTES-RODRÍGUEZ Heisenberg uniqueness pairs and the Klein-Gordon equation. Ann. of Math. (2), 173 (2011), 1507-1527. N. LEV Uniqueness theorems for Fourier transforms. Bull. Sci. Math., 135 (2011), 134-140. P. SJÖLIN Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin. Bull. Sci. Math., 135 (2011), 125-133. P. SJÖLIN Heisenberg uniqueness pairs for the parabolla. Jour. Four. Anal. Appl., to appear.

References H. HEDENMALM & A. MONTES-RODRÍGUEZ Heisenberg uniqueness pairs and the Klein-Gordon equation. Ann. of Math. (2), 173 (2011), 1507-1527. N. LEV Uniqueness theorems for Fourier transforms. Bull. Sci. Math., 135 (2011), 134-140. P. SJÖLIN Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin. Bull. Sci. Math., 135 (2011), 125-133. P. SJÖLIN Heisenberg uniqueness pairs for the parabolla. Jour. Four. Anal. Appl., to appear.

Aim Aim Get rid of explicit computation get a hint on the geometric nature of the problem Unify proofs.

Aim Aim Get rid of explicit computation get a hint on the geometric nature of the problem Unify proofs.

Aim Aim Get rid of explicit computation get a hint on the geometric nature of the problem Unify proofs.

HUP 2 Inv 1 Fix (s 0, t 0 ), (x 0, y 0 ) R 2. Then ( Γ, Λ ) is a HUP if and only if ( Γ (s0, t 0 ), Λ (x 0, y 0 ) ) is a HUP. Inv 2 Fix T a linear invertible transformation R 2 R 2 and denote by T its adjoint. Then ( Γ, Λ ) is a HUP if and only if ( T 1 (Γ), T (Λ) ) is a HUP. If Γ = {s, γ(s), s I} (Γ, λ) HUP f L 1 (I) s.t. (x, y) Λ f (s)e i(sx+γ(s)y) ds = 0 f = 0 I

HUP 2 Inv 1 Fix (s 0, t 0 ), (x 0, y 0 ) R 2. Then ( Γ, Λ ) is a HUP if and only if ( Γ (s0, t 0 ), Λ (x 0, y 0 ) ) is a HUP. Inv 2 Fix T a linear invertible transformation R 2 R 2 and denote by T its adjoint. Then ( Γ, Λ ) is a HUP if and only if ( T 1 (Γ), T (Λ) ) is a HUP. If Γ = {s, γ(s), s I} (Γ, λ) HUP f L 1 (I) s.t. (x, y) Λ f (s)e i(sx+γ(s)y) ds = 0 f = 0 I

HUP 2 Inv 1 Fix (s 0, t 0 ), (x 0, y 0 ) R 2. Then ( Γ, Λ ) is a HUP if and only if ( Γ (s0, t 0 ), Λ (x 0, y 0 ) ) is a HUP. Inv 2 Fix T a linear invertible transformation R 2 R 2 and denote by T its adjoint. Then ( Γ, Λ ) is a HUP if and only if ( T 1 (Γ), T (Λ) ) is a HUP. If Γ = {s, γ(s), s I} (Γ, λ) HUP f L 1 (I) s.t. (x, y) Λ f (s)e i(sx+γ(s)y) ds = 0 f = 0 I

Basic lemma γ(s)

Basic lemma γ(s) t 3 t 1 t 4 t 2 s 1 s 2 s 3 s 4 s

Basic lemma γ(s) t 3 t 1 t t 4 t 2 γ 1 0 s 1 s 2 s 3 s 4 (t) γ 1 1 (t) γ 1 2 (t) γ 1 3 (t) γ 1 s 4 (t)

Basic lemma R f (s)e iγ(s)x ds =

Basic lemma R f (s)e iγ(s)x ds = m sk+1 k=0 s k f (s)e iγ(s)x ds

Basic lemma R f (s)e iγ(s)x ds = = m sk+1 k=0 s k tk+1 m k=0 t k f (s)e iγ(s)x ds ( f γ 1 k (t) ) γ ( γ 1 k (t) )eitx dt

Basic lemma R f (s)e iγ(s)x ds = = = m sk+1 k=0 s k tk+1 m k=0 t k max tk min t k m k=0 f (s)e iγ(s)x ds ( f γ 1 k (t) ) γ ( γ 1 k (t) )eitx dt 1 [tk,t k+1 ](t) f ( γ 1 k (t) ) γ ( γ 1 k (t) )eitx dt.

Basic lemma R f (s)e iγ(s)x ds = = = m sk+1 k=0 s k tk+1 m k=0 t k max tk min t k m k=0 f (s)e iγ(s)x ds ( f γ 1 k (t) ) γ ( γ 1 k (t) )eitx dt 1 [tk,t k+1 ](t) f ( γ 1 k (t) ) γ ( γ 1 k (t) )eitx dt. Thus (Γ, {x = 0}) HUP

Basic lemma R f (s)e iγ(s)x ds = = = Thus (Γ, {x = 0}) HUP m sk+1 k=0 s k tk+1 m k=0 t k max tk min t k m k=0 m k=0 f (s)e iγ(s)x ds ( f γ 1 k (t) ) γ ( γ 1 k (t) )eitx dt 1 [tk,t k+1 ](t) f ( γ 1 k (t) ) γ ( γ 1 k (t) )eitx dt. 1 [tk,t k+1 ](t) f ( γ 1 k (t) ) γ ( γ 1 k (t) ) = 0.

Example 1 γ is one-to-one, then (Γ, {x = 0}) HUP

Example 2 γ has one local extrema.

Example 2 γ has one local extrema. t γ 1 (t) γ 1 + (t)

Example 2 γ has one local extrema. t γ 1 (t) γ 1 + (t) f ( γ+ 1 (t)) γ ( γ+ 1 (t)) = f ( γ 1 (t)) γ ( γ 1 (t)).

Lemma f ( γ+ 1 (t)) γ ( γ+ 1 (t)) = f ( γ 1 (t)) γ ( γ 1 (t)). ( γ(α+ ) ), β = γ 1 ( γ(β+ ) ), and for α +, β + > s 1 and α = γ 1 we have β β+ f (s) ds = f (s) ds α + α

Theorem : two lines γ smooth, a > b, ψ(t) = γ(t) + at and χ(t) = γ(t) + bt ψ (resp. χ) have a unique local minimum in s 1 (resp s 2 ) ψ(t), χ(t) + when t ±. f L 1 (R) s.t. f (s)e iψ(s)x ds = f (s)e iχ(s)x ds = 0 then f = 0. R R

Theorem : two lines γ smooth, a > b, ψ(t) = γ(t) + at and χ(t) = γ(t) + bt ψ (resp. χ) have a unique local minimum in s 1 (resp s 2 ) ψ(t), χ(t) + when t ±. f L 1 (R) s.t. f (s)e iψ(s)x ds = f (s)e iχ(s)x ds = 0 then f = 0. R R

Theorem : two lines γ smooth, a > b, ψ(t) = γ(t) + at and χ(t) = γ(t) + bt ψ (resp. χ) have a unique local minimum in s 1 (resp s 2 ) ψ(t), χ(t) + when t ±. f L 1 (R) s.t. f (s)e iψ(s)x ds = f (s)e iχ(s)x ds = 0 then f = 0. R R

Theorem : two lines γ smooth, a > b, ψ(t) = γ(t) + at and χ(t) = γ(t) + bt ψ (resp. χ) have a unique local minimum in s 1 (resp s 2 ) ψ(t), χ(t) + when t ±. f L 1 (R) s.t. f (s)e iψ(s)x ds = f (s)e iχ(s)x ds = 0 then f = 0. R R

Theorem : two lines γ smooth, a > b, ψ(t) = γ(t) + at and χ(t) = γ(t) + bt ψ (resp. χ) have a unique local minimum in s 1 (resp s 2 ) ψ(t), χ(t) + when t ±. f L 1 (R) s.t. f (s)e iψ(s)x ds = f (s)e iχ(s)x ds = 0 then f = 0. R R

Proof 1

Proof 1 σ 0 σ 1

Proof 1 ψ 1 ( ψ(σ1 ) ) ψ(σ 1 ) σ 0 σ 1

Proof 1 ( χ ψ 1 ( ψ(σ1 ) )) ψ(σ 1 ) ψ 1 ( ψ(σ1 ) ) σ 0 σ 1 σ 2 σ k +.

Proof 2 If f 0, σ k+1 σ k f (s) ds 0 σk+2 + 0 σ k+1 f (s) ds = f (s) ds = k 0 σk+1 σ k σk+1 σ k f (s) ds. f (s) ds = +.

Proof 2 If f 0, σ k+1 σ k f (s) ds 0 σk+2 + 0 σ k+1 f (s) ds = f (s) ds = k 0 σk+1 σ k σk+1 σ k f (s) ds. f (s) ds = +.

Proof 2 If f 0, σ k+1 σ k f (s) ds 0 σk+2 + 0 σ k+1 f (s) ds = f (s) ds = k 0 σk+1 σ k σk+1 σ k f (s) ds. f (s) ds = +.

A better picture t = γ(s) σ 2 σ 0 σ 1 t = as

Hyperbola, case 1 t = γ(s) σ 2 σ 1 σ 0 σ 1 σ 0 t = as σ 2 t = γ(s)

Hyperbola, case 2 t = γ(s) σ 1 σ 0 σ 1

Hyperbola, case 3 t = γ(s) J 2 I 2 I 2 I 1 J 1 J 1 J 2 I 1

Closed curve

Closed curve

Closed curve

Closed curve

Closed curve

Closed curve

One local max, one local min

One local max, one local min

One local max, one local min

One local max, one local min

That s all! Thank you for your attention!