The Wilson-Fisher Fixed Point via ERG

Σχετικά έγγραφα
ERG for a Yukawa Theory in 3 Dimensions

Approximation of distance between locations on earth given by latitude and longitude

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Numerical Analysis FMN011

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Higher Derivative Gravity Theories

Partial Differential Equations in Biology The boundary element method. March 26, 2013

2 Composition. Invertible Mappings

Matrices and Determinants

Inverse trigonometric functions & General Solution of Trigonometric Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Example Sheet 3 Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Concrete Mathematics Exercises from 30 September 2016

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Space-Time Symmetries

4.6 Autoregressive Moving Average Model ARMA(1,1)

Solutions to Exercise Sheet 5

D Alembert s Solution to the Wave Equation

TMA4115 Matematikk 3

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

1 String with massive end-points

Homework 3 Solutions

Reminders: linear functions

derivation of the Laplacian from rectangular to spherical coordinates

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Areas and Lengths in Polar Coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Forced Pendulum Numerical approach

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Statistical Inference I Locally most powerful tests

Exercises to Statistics of Material Fatigue No. 5

6.3 Forecasting ARMA processes

Homework 8 Model Solution Section

Second Order Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

Every set of first-order formulas is equivalent to an independent set

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Uniform Convergence of Fourier Series Michael Taylor

Section 8.3 Trigonometric Equations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Finite Field Problems: Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Symmetric Stress-Energy Tensor

Strain gauge and rosettes

If we restrict the domain of y = sin x to [ π 2, π 2

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Finite difference method for 2-D heat equation

Math221: HW# 1 solutions

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Other Test Constructions: Likelihood Ratio & Bayes Tests

Congruence Classes of Invertible Matrices of Order 3 over F 2

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Parametrized Surfaces

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

w o = R 1 p. (1) R = p =. = 1

Section 9.2 Polar Equations and Graphs

Lecture 2. Soundness and completeness of propositional logic

ST5224: Advanced Statistical Theory II

Non-Gaussianity from Lifshitz Scalar

8.324 Relativistic Quantum Field Theory II

C.S. 430 Assignment 6, Sample Solutions

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Differential equations

Notes on the Open Economy

PARTIAL NOTES for 6.1 Trigonometric Identities

Problem Set 3: Solutions

Second Order RLC Filters

Instruction Execution Times

Tridiagonal matrices. Gérard MEURANT. October, 2008

Variational Wavefunction for the Helium Atom

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

CRASH COURSE IN PRECALCULUS

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

An Inventory of Continuous Distributions

MA 342N Assignment 1 Due 24 February 2016

Local Approximation with Kernels

The Simply Typed Lambda Calculus

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

The challenges of non-stable predicates

Physics 523, Quantum Field Theory II Homework 9 Due Wednesday, 17 th March 2004

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

5. Choice under Uncertainty

From the finite to the transfinite: Λµ-terms and streams

Lecture 10 - Representation Theory III: Theory of Weights

On a four-dimensional hyperbolic manifold with finite volume

Transcript:

The Wilson-Fisher Fixed Point via ERG Hidenori SONODA Physics Department, Kobe University 24 February 2010 at INT-10-45W RG workshop Abstract I construct the RG flows of the Wilson action for the real scalar field theory in D = 3 using the exact renormalization group. The construction results in a systematic and analytical way of computing the critical exponents at the Wilson-Fisher fixed point. Typeset by FoilTEX

Introduction 1 1. We consider a real scalar theory in D dimensional Euclid space: S = p 1 K (p/λ) 2 φ(p)φ( p) p 2 d D x ( m 2 0 2 φ2 + λ ) 0 4! φ4 where K is a cutoff function with K(p) { = 1 (p 2 1) 0 (p 2 ) 1 K(p) Λ plays the role of a momentum cutoff. 0 1 We study the correlation functions S = [dφ] e S / [dφ]e S. p 2

2. Critical behavior The critical value m 2 0,cr(λ 0 ) depends on λ 0. m 2 0 > m 2 0,cr (unbroken phase) φ = 0 m 2 0 < m 2 0,cr (broken phase) φ 0. The critical behavior is characterized by 2 critical exponents 2 y E = 1 ν > 0, η > 0 For m 2 m 2 0,cr the scaling formula holds: φ(r)φ(0) = 1 r D 2+ηF ±(r/ξ) { + if m 2 > m 2 0,cr if m 2 < m 2 0,cr where ξ is the correlation length: ξ m 2 m 2 0,cr(λ) 1 y E = m 2 m 2 0,cr(λ) ν

3. We can understand the critical behavior from the RG flows in the space of Wilson actions with a fixed momentum cutoff Λ. 3 critical trajectory λ 1 dim renormalized trajectory 2 m 0 WF fixed point 2 m (λ ) 0,cr 0 2 dim renormalized trajectories 0 Gaussian fixed point m 2 m 2 and λ parametrize the renormalized trajectories out of the GFP.

4. The RG flows are given in the infinite dimensional space of Wilson actions. 4 5. The flows out of the gaussian fixed point make a two-dimensional subspace, where the RG flows are given by { d dt m2 = 2m 2 + β m (m 2, λ) d dt λ = λ + β(m2, λ) with the gaussian fixed point at m 2 = λ = 0. 6. The Wilson-Fisher fixed point lies on this subspace, and it is given by (m 2, λ ) satisfying { 2m 2 + β m (m 2, λ ) = 0 λ + β(m 2, λ ) = 0

7. The goal is a concrete realization of Wilson s picture for D = 3 using the exact renormalization group. Especially, construction of the renormalized trajectories parametrized by m 2, λ analytical calculation of the critical exponents y E, η (Cf. Parisi s method with the Callan-Symanzik equation) 5 8. The ǫ expansions for the critical exponents with ǫ 4 D [Fisher & Wilson] { ye = 2 ǫ 3 + η = ǫ2 54 + high precision results from high order calculations [Brézin, Le Gillou, Zinn-Justin] Drawback The expansions do not work for theories that can be defined only for specific dimensions such as chiral theories or supersymmetric theories.

9. Outline 6 (a) introduce ERG for the Wilson action (b) construction of 2-dim renormalized trajectories out of the GFP (c) analytical formulas for β m, β in terms of the Wilson action (d) perturbative calculation of the exponents y E, η

Brief introduction to ERG 7 1. The initial action S Λ0 = 1 2 p p 2 ( m K(p/Λ 0 ) φ(p)φ( p) d D 2 x 0 2 φ2 + λ ) 0 4! φ4 }{{} =S I,Λ0 We define the Wilson action by S Λ = 1 2 p p 2 K (p/λ) φ(p)φ( p) + S I,Λ where exp [S I,Λ [φ]] Z [dφ ] exp " 1 2 Z p # p 2 K(p/Λ 0 ) K (p/λ) φ (p)φ ( p) + S I,Λ0 [φ + φ ]

2. A consequence of the gaussian functional integration: exp [S I,Λ [φ]] = Z [dφ ] exp " 1 2 Z p # p 2 K(p/Λ ) K (p/λ) φ (p)φ ( p) + S I,Λ [φ + φ ] 8 3. Equivalently, the Λ dependence is given by the Polchinski equation: Λ Λ S Λ = Z p (p/λ) p 2 " p 2 K (p/λ) φ(p) δs Λ δφ(p) + 1 ( δsλ δs Λ 2 δφ( p) δφ(p) + δ 2 S Λ δφ( p)δφ(p) )# where (p) (p) 2p 2 d dp 2K(p) 0 1 p 2

4. S Λ have the same correlation functions as S Λ0 : 9 { 1 φ(p)φ( p) φ(p)φ( p) K(p/Λ) 2 SΛ + 1 1/K(p/Λ) p 2 φ(p 1 ) φ(p n ) N i=1 1 K(p i /Λ) φ(p 1) φ(p N ) SΛ are independent of Λ.

Renormalization for D = 3 10 1. The solution S Λ of the Polchinski equation is determined uniquely by the initial condition at Λ = Λ 0. 2. Renormalization: for lim Λ0 S Λ to exist, m 2 0 must be given an appropriate Λ 0 dependence. 3. Notation: S Λ = n=1 p 1,,p 2n δ(p 1 + p 2n ) u 2n (Λ; p 1,,p 2n )φ(p 1 ) φ(p 2n )

4. Equivalently, S Λ (m 2, λ; µ) for the renormalized theory can be constructed by the following conditions: (a) Conditions at Λ = µ: { u2 (Λ = µ; p, p) = m 2 p 2 + O(p 4 ) u 4 (Λ = µ; p i = 0) = λ (b) Asymtptotic conditions for Λ : u 2 (Λ; p, p) Λ linear in p 2 u 4 (Λ; p 1, p 2, p 3, p 4 ) Λ independent of p i u 2n 6 (Λ; p 1,,p 2n ) Λ 0 5. S Λ is now parametrized by m 2, λ, and a renormalization scale µ. 11

6. The µ dependence of S Λ is given by the RG equation: 12 8 >< >: µ S Λ µ = βo λ + β m O m + γn O m m 2S Λ O λ λ S Λ N R» j φ(p) δs Λ p δφ(p) + K(p/Λ)(1 K(p/Λ)) p 2 δs Λ δs Λ δφ(p) δφ( p) + δ2 S Λ δφ(p)δφ( p) β, β m, η are functions of m 2, λ,µ. N counts the number of φ insertions: Nφ(p 1 ) φ(p n ) = n φ(p 1 ) φ(p n ) ff 7. This is equivalent to the RG equation: ( µ ) µ + β λ + β m m 2 φ(p 1 ) φ(p n ) = nγ φ(p 1 ) φ(p n )

Universality 13 1. How does S Λ depend on the arbitrary choice of K(p)? 2. An infinitesimal change δk(p) of the cutoff function changes S Λ by δs Λ = δz Z» Λ δk (p/λ) 2 N p K (p/λ) φ(p) δs Λ δφ(p) + 1 p 2δK (p/λ) 1 ( δsλ δs Λ 2 δφ(p) δφ( p) + δ 2 S Λ δφ(p)δφ( p) where δz Λ is determined so that δs Λ satisfies the normalization condition p 2δu 2(Λ = µ; p, p) = 0 p2 =0 )

3. Equivalence: 14 1 K(p) φ(p)φ( p) 2 S(t) + 1 1/K(p) p 2» 1 = (1 δz(t)) (K + δk)(p) φ(p)φ( p) 2 (S+δS)(t) ny 1 K(p i ) φ(p 1) φ(p n ) S(t) i=1 = 1 n 2 δz(t) «n Y i=1 1 (K + δk)(p i ) φ(p 1) φ(p n ) (S+δS)(t) 4. δk is absorbed by the change of m 2, λ, and normalization of φ. { δm 2 = δu 2 (Λ = µ; p = 0) δλ = δu 4 (Λ = µ; p i = 0) 1 1/(K + δk)(p) + p 2

Construction of Wilson s RG flows 15 It takes 3 steps to construct Wilson s RG flows. Step 1: Combine Polchinski s equation and the RG equation: Λ Λ µ Z» «(p/λ) = K (p/λ) γ p µ + β λ + β m m 2 «φ(p) δs Λ δφ(p) S Λ + 1 p 2 ( (p/λ) 2γK (p/λ) (1 K (p/λ))) 1 2 ( δsλ δs Λ δφ(p) δφ( p) + δ 2 S Λ δφ(p)δφ( p) )

Step 2: rescaling by dimensional analysis m 2 has dimension 2, λ has 1, and φ(p) has D+2 2 : Λ Λ + µ «µ + 2m2 m 2 + λ λ S Λ = Z p p µ φ(p) + D + 2 p µ 2 This amounts to rescaling that restores the original Λ. Combining Step 1 & 2, (λ + β) λ + (2m 2 + β m ) m 2 S Λ Z» j φ(p) D + 2 = p µ + γ + (p/λ) «p p µ 2 K (p/λ) ( (p/λ) 2γK(1 K) 1 δsλ δs Λ + p 2 2 δφ(p) δφ( p) + ff δsλ φ(p) δφ(p) 16 «δsλ φ(p) δφ(p) δ 2 S Λ δφ(p)δφ( p) )

Step 3: Set Λ = µ (fixed) and write S Λ = S(m 2, λ). Finally, we obtain (λ + β) λ + (2m 2 + β m ) m 2 S(m 2, λ) (1) Z» j φ(p) D + 2 = p ν + γ + (p/µ) «ff δs φ(p) p p ν 2 K(p/µ) δφ(p) + 1 p ( (p/µ) 2γK(1 K))) 1 ( ) δs δs 2 2 δφ(p) δφ( p) + δ 2 S δφ(p)δφ( p) From now on we can set µ = 1. 17

The RG flow is given by 18 and we obtain the scaling formula { d dt m2 = 2m 2 + β m (m 2, λ) d dt λ = λ + β(m2, λ) φ(p1 e t ) φ(p n e t ) m 2 e 2 t (1+ t β m ), λe t (1+ t β) = e t {D+n( D+2 2 +γ )} φ(p1 ) φ(p n ) m 2,λ

Determination of β, β m in terms of S 19 1. Expansion S(m 2, λ)[φ] = n=1 p 1,,p 2n δ(p 1 + +p 2n ) u 2n (m 2, λ;p 1,,p 2n ) φ(p 1 ) φ(p 2n ) where u 2, u 4 are normalized by { u2 (m 2, λ; p, p) = m 2 p 2 + u 4 (m 2, λ; p i = 0) = λ (2) 2. Substituting the normalization conditions (2) into (1), we obtain

20 β m = 1 1 2 q q 2 ( (q) ηk(q)(1 K(q))) u 4(m 2, λ;q, q, 0,0) 2γ = 1 1 2 p 2 q q 2 ( (q) ηk(q)(1 K(q)))u 4(m 2, λ; q, q, p, p) β 4λγ = 1 1 2 q 2 ( (q) ηk(q)(1 K(q))) u 6(m 2, λ;q, q, 0,0, 0,0) q These determine β m, β, γ in terms of S(m 2, λ). p 2 =0

Perturbative calculations 21 1. In practice, a mass independent scheme is more convenient: u m 2 2 (m 2, λ; p = 0) u p 2 2 (m 2, λ; p, p) u 4 (m 2, λ; p i = 0) m 2 =0 m 2 =p 2 =0 m 2 =0 = 1 = 1 = λ This gives { βm = C(λ) + β m (λ)m 2 β = β(λ)

2. RG flow equations 22 { d dt m2 = (2 + β m (λ))m 2 + C(λ) d dt λ = λ + β(λ) 3. Wilson-Fisher fixed point (m 2, λ ) { (2 + βm (λ ))m 2 + C(λ ) = 0 λ + β(λ ) = 0 4. Critical exponents: { ye = 2 + β m (λ ) η = 2γ(λ )

5. Lowest non-trivial loop expansions β m = λ 2 β q (q) ( = 3λ 2 q 2γ = λ2 2 p 2 q,r ) 1 q 2 m2 q 2 (q)(1 K(q)) q 4 (q) 1 K(r) q 2 r 2 1 K(q+r+p) (q+r+p) 2 p 2 =0 23 6. Fixed point gives λ = 3 R q 1 (1 K) q 4, m 2 = y E = 2 + β m (λ ) = 2 1 2 λ q η = 1 2 λ 2 p 2 q,r (q) 1 K(r) q 2 r 2 λ 2 R q 2 λ R q q 4 q 2 q 4 1 K(q+r+p) (q+r+p) 2 p 2 =0

7. Wegner-Houghton limit K(p) = θ(1 p 2 ) 24 η = { ye = 2 1 3 = 5 3 2 ln 2 1 54 = 0.38629... 54 = 0.007154... η comes out too small.

Application to the WZ model in D = 3 25 1. The bare action S Λ0 = 1 1 ( p 2 φ(p)φ( p) + χ( p) σ i pχ(p) + F(p)F( p) ) 2 p K(p/Λ 0 ) ( g d 3 ( x φ 2 if + χχφ ) ) gv2 2 2 if where χ χ T σ y. 2. Classical analysis: scalar potential (φ 2 v 2 ) 2 (a) v 2 > 0 Z 2 broken, SUSY exact (b) v 2 < 0 Z 2 unbroken, SUSY broken Z 2 : φ(x,y, z) φ(x, y, z), χ(x, y, z) σ y χ(x, y, z)

3. Critical exponents: 26 (a) Scale dimension of g (v 2 v 2 ): 1 + 1 3 q 23 q (1 K) 2 q 4 + q (1 K) 2 q 4 + 3 2 q (1 K) q 4 (1 K) q 4 WH = 1 + 3 7 = 1.428... (b) Anomalous dimension η = 1 23 q (1 K) q q 4 (1 K) 2 + 3 q 4 2 q (1 K) q 4 WH = 1 7 = 0.142...

Conclusions 27 1. Wilson s RG flows can be constructed concretely using ERG. 2. Fixed points and critical exponents can be calculated by loop expansions. 3. ERG is applicable to dimension specific theories such as chiral and supersymmetric theories. 4. The nature of expansions is unclear due to the absence of an obvious expansion parameter. 5. Optimization should help for better numerical accuracy.

Appendix: Redefinition of β m, β, γ 28 8 < : β m = C 1 λ + C 2 λ 2 + + m 2 (B 1 λ + B 2 λ 2 + ) β = A 1 λ 2 + A 2 λ 3 + γ = D 2 λ 2 + D 3 λ 3 + By redefining 8 >< >: m 2 c 1 λ + c 2 λ 2 + + m 2 (1 + b 1 λ + b 2 λ 2 + ) λ λ + a 1 λ 2 + a 2 λ 3 + φ (1 + d 1 λ + d 2 λ 2 + )φ we can make λ 2 d dt m2 = 2m 2 1 24(2π) 2 d dt λ = λ γ = 0