Temperature Correction Schemes

Σχετικά έγγραφα
Differential equations

5. Since the range of the radius is small, R dτ. dr >> 1, atmosphere is eectively plane parallel.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Exercises to Statistics of Material Fatigue No. 5

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Srednicki Chapter 55

Numerical Analysis FMN011

Matrices and Determinants

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lifting Entry (continued)

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Derivation of Optical-Bloch Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Συστήματα Διαχείρισης Βάσεων Δεδομένων

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Homework 8 Model Solution Section

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Forced Pendulum Numerical approach

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

derivation of the Laplacian from rectangular to spherical coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

Example Sheet 3 Solutions

The Simply Typed Lambda Calculus

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Homework 3 Solutions

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Approximation of distance between locations on earth given by latitude and longitude

EE512: Error Control Coding

Math221: HW# 1 solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Concrete Mathematics Exercises from 30 September 2016

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

( ) 2 and compare to M.

Oscillatory Gap Damping

( y) Partial Differential Equations

Assalamu `alaikum wr. wb.

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

Section 9.2 Polar Equations and Graphs

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Finite Field Problems: Solutions

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Démographie spatiale/spatial Demography

Section 8.3 Trigonometric Equations

Right Rear Door. Let's now finish the door hinge saga with the right rear door

C.S. 430 Assignment 6, Sample Solutions

Non-Gaussianity from Lifshitz Scalar

Math 6 SL Probability Distributions Practice Test Mark Scheme

Module 5. February 14, h 0min

Lecture 21: Scattering and FGR

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ

Section 7.6 Double and Half Angle Formulas

Lecture 34 Bootstrap confidence intervals

ADVANCED STRUCTURAL MECHANICS

Additional Results for the Pareto/NBD Model

D Alembert s Solution to the Wave Equation

2 Composition. Invertible Mappings

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Second Order RLC Filters

Inverse trigonometric functions & General Solution of Trigonometric Equations

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Three coupled amplitudes for the πη, K K and πη channels without data

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Second Order Partial Differential Equations

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Solutions to Exercise Sheet 5

Variational Wavefunction for the Helium Atom

Lecture 21: Properties and robustness of LSE

5.4 The Poisson Distribution.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

6.3 Forecasting ARMA processes

1 String with massive end-points

5. Choice under Uncertainty

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Space-Time Symmetries

ST5224: Advanced Statistical Theory II

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

About these lecture notes. Simply Typed λ-calculus. Types

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Part III - Pricing A Down-And-Out Call Option

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Lecture 26: Circular domains

Transcript:

Temperature Correction Schemes Motiation Up to now: Radiation transfer in a gien atmospheric structure No coupling between radiation field and temperature included Including radiatie equilibrium into solution of radiatie transfer Complete Linearization for model atmospheres (next chapter) Separate solution ia temperature correction + Quite simple implementation + Application within an iteration scheme allows completely linear system next chapter No direct coupling Moderate conergence properties 2

Temperature correction basic scheme. start approximation for. formal solution 2. correction 3. conergence? T() T () =ΛS( T) T() T() + T() Seeral possibilities for step 2 based on radiatie equilibrium or flux conseration Generalization to non-lte not straightforward With additional equations towards full model atmospheres: ydrostatic equilibrium Statistical equilibrium 3 LTE Strict LTE Scattering S( ) = ( T( )) S ( ) = ( β ) ( T( )) + β ( ) e e = Simple correction from radiatie equilibrium: = ( ) (,) (,) ( T(),) d ( [ T( )]) (,) (,) T() + d= T = T d = T= T( ) T = ( ) d d = ( ) d d T = = T= T( ) = = 2

LTE Strict LTE Scattering S( ) = ( T( )) S ( ) = ( β ) ( T( )) + β ( ) e e Simple correction from radiatie equilibrium: = = ( ) (,) (,) ( T(),) d ( [ ( T( )]) (,) (,) T ) + d = T = T d = T= T( ) T = ( ) d d = = T= T( ) 5 LTE Problem: T ( ) d d = = T= T( ) = independent of the temperature T Gray opacity ( independent of frequency): = ( ) () d ( ) ( ) = ( ) = d.moment equation dt = deiation from constant flux proides temperature correction 6 3

Unsöld-Lucy correction Unsöld (955) for gray LTE atmospheres, generalized by Lucy (96) for non-gray LTE atmospheres d -th moment: dt ( ) = d Ld = = d = d d = dt,,, = = dk st moment: dt = dk Ld =, = d = now new quantities,, K fulfilling radiatie equilibrium (local) and flux conseration (non local) radiatie equilibrium: flux conseration: d = = dk σ = = T π 7 Unsöld-Lucy correction Now corrections to obtain new quantities: X = X X d K = integrate K = K() + = K = K d = f d = f, () = () d = h () d = h () f() () K = + = f h = d () () = d f = + + fh f = 3 σt d d () () = = + f T + + π fh f = π () () f T = + + 3 σt fh f = 8

Unsöld-Lucy correction π f() () T = d 3 + + σt fh f = Radiatie equilibrium part good at small optical depths but poor at large optical depths Flux conseration part good at large optical depths but poor at small optical depths d Unsöld-Lucy scheme typically requires damping Still problems with strong resonance lines, i.e. radiatie equilibrium term is dominated by few optically thick frequencies 9 Generalization for scattering Unsöld-Lucy correction d -th moment: = = dt ) d Ld = tot ( S ) ( ( βe βe ) = ( β ) d, = ( β ) d, = dt M e e = = All the rest is the same Difficulties for scattering dominated regions: weak coupling between radiation field and temperature β e d 5

Unsöld-Lucy correction Generalization to non-lte (Werner & Dreizler 998, Dreizler 23) d -th moment: = ( ) = % S γ dt d Ld = = % d, = ( γ ) d, = dt M = = All the rest is the same % should contain only terms which couple directly to the temperature, i.e. bf and ff transitions Depth dependent damping (need to play with parameters c): / π / / ( ) () 3( ) = 3 + f c e T ce c2( e ) + σt fh f = Stellar Atmospheres This was the contents of our lecture: Radiation field Radiation transfer Emission and absorption Radiatie equilibrium ydrostatic equilibrium Stellar atmosphere models 2 6

Stellar Atmospheres This was the contents of our lecture: Radiation field Radiation transfer Emission and absorption Radiatie equilibrium ydrostatic equilibrium Stellar atmosphere models The End 3 Stellar Atmospheres This was the contents of our lecture: Radiation field Radiation transfer Emission and absorption Radiatie equilibrium ydrostatic equilibrium Stellar atmosphere models The End Thank you for listening! 7

Arett-Krook method In case that flux conseration and radiatie equilibrium is not fulfilled, Unsöld-Lucy can only change the temperature Change of other quantities, e.g. opacity, is not accounted for Arett & Krook (963) strict LTE assumed, generalization straightforward Current quantities: di µ = ( ( )) with some kind of mean opacity ( I ) T { = χ Does not fulfill flux conseration and radiatie equilibrium New quantities: di µ = I ( T( )) with mean opacity { ( ) = χ 5 Arett-Krook method Linear Taylor expansion of the new quantities from old ones: = + = + = + = + = + = T T T I I I ( ) d σ πt dχ d χ = χ + χ = χ + = + = + T dt Radiatie transfer equation: di µ = χ( I ( T( )) ) di di µ + µ = ( χ + χ)( I + I ) di χ I + µ = + χ + χ I + I di χ I + µ = χ + χ + χ I + I di µ χ ( I ) χ + χ I ( ) ( )( ) ( ) ( ) = + ( ) 6 8

Arett-Krook method st moment: di µ = χ ( I ) + χ + χ ( I ) µ dµ L dk dχ = χ : + χ + χ = χ + + χ = dχ + = d χ L d dχ σ + d = T χ π d, linear DEQ of first order x σt dχ = M ( x) dx, M ( x) exp dy d M( ) = π ( x) χ 7 Arett-Krook method Outer boundary: () = h () Ld σ σt σt () = T () = () () = d π π () π () σt () () d= h d π () σt () () = π () h dk = : f ( σt () ( ) = π () fh σt ) = const = f () = π () h () 8 9

-th moment: Arett-Krook method di µ = χ ( I ) + χ + χ ( I ) dµ L d = + + χ χ χ ( ) ( ) d d dχ = χ T χ ( ) d dt + + L d d d dχ d χ d T χ d + ( ) d dt + = = T = χ d dt d () d d d d d f h dχ d σt ( ) + + + χ π () 9 Radiatie equilibrium and Complete Linearization (LTE) Simultaneous solution of RT and RE radiation transfer: 2 d (, ) (, ) 2 (, T()) = () r r r r fik ( k, T) = k = (, k, L, i, k, L, ND, k ) T = ( T, L, Ti, L, TND ) r r r r r r r r r r k, T fik( k, T ) correction δk, δt fik( k + δk, T + δt) = r r Taylor expansion: fik ( k + δk, Ti + δt) r r fik fik fik fik = = fik ( k, T ) + δi k + δik + δi+ k + δti i k ik i+ k i r r r Tkδk + UkδT = Kk Tk : tri-diagonal with usual Aik, ik, Cik ( k, Ti) Uk : diagonal ( Uk) = ii i r r r K = f (, T ) ( ) k ik k i 2

Radiatie equilibrium and Complete Linearization (LTE) Simultaneous solution of RT and RE radiatie equilibrium: = ( ) (, ) (, ) (, T) d = i i i ( L L ) ( ) f,,,,, T = w (, T) = ( ) inf, + i, ik, inf, i k ik k i k = r r Taylor expansion: f, T T ( ) ( ) NF ( + δ + δ ) inf, + k k i k=, NF r r NF f NF inf, + f r r r inf, + inf, + k δ ik δ i kδ k δ k = ik i k= = = f (, T ) + + T W + D T = L W : diagonal W = w k k ii k NF D: diagonal D = w r NF L = w i k = ii k = k k ( ik ( k, Ti )) ( k, Ti) i 2 Radiatie equilibrium and Complete Linearization (LTE) Together: Rybicki scheme: r r T U δ K r r Tk Uk δ k K k = r r TNF U NF δ NF K NF W W W D r r δt L k NF RE takes the part of the scattering integral Instead of sole for temperature corrections Non-linear iteration During the iteration: new opacities, Eddington factors 22

Radiatie equilibrium and Complete Linearization (NLTE) Direct generalization at least problematic due to weak coupling of NLTE source function to the temperature Take into account the change of the population numbers Add RE to the Complete Linearization scheme (Auer & Mihalas 969) Radiatie equilibrium in NLTE: (, )( (, ) S (, )) d= = Linearization: i i i ( L L ) ( η ) f,,, n,, n, T = w (, ) (, ) = inf, + NL+ i, inf, i, inl, i k k i ik k i k = k η k wk r r ik finf, + NL+ ( ψ + δψ) = nil nil NF NL r f i, NF + NL+ fi, NF+ NL+ fi, NF + NL+ = finf, + NL+ ( ψ ) + δik+ δnil+ δti k= ik l= nil i NF 23 Radiatie equilibrium and Complete Linearization (NLTE) Together with RT and SE: f ( ψ + δψ) = α = L NF + NL i, α ND NF NL fi, α fi, α f i, α = fi, α ( ψ ) + δi, k + δni, l + δti i= k= ik, l= nil, i r r r r Aδψ + δψ Cδψ = L i i i i i i+ i O O O Aik, r δ i r ik, δ i C, r ik δ i+ O O O + r δn r = fi, α ( ψ ) i δn i r δ n i+ δt i δt i δt i 2 2

Radiatie equilibrium and Complete Linearization (NLTE) Matrix i:... NF... NL T O M Sik, S ik, ik, L L nil, i O M = M M i NL ( Pi) ( P) lm, i lm, nim, ( Pi ) L L L L T ll, i m= ik, i M M finf + NL+ finf+ NL+ finf+ NL+ ik, nil, i... NF... NL T 25 3