Detectors for Particle Physics

Σχετικά έγγραφα
Tracking in High Energy Physics

Hadronic Tau Decays at BaBar

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1β Αλληλεπίδραση ακτινοβολίας με την ύλη.

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

LIGHT UNFLAVORED MESONS (S = C = B = 0)

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Κ.Κορδάς. Ανιχνευτές : Μάθημα 2 Αλληλεπίδραση ακτινοβολίας με την ύλη.

Σύντομο Βιογραφικό Σημείωμα

Solar Neutrinos: Fluxes

Questions on Particle Physics

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Σκέδαση αδρονίων. Λέκτορας Κώστας Κορδάς

3/6/2010. Γ. Τσιπολίτης

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3: (Ανιχνευτές,) Κινηματική και Μονάδες

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 2β: Πειράματα-Ανιχνευτές

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

CERN-ACC-SLIDES

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Μάθημα 18 Αλληλεπίδραση ακτινοβολίας με την ύλη.

Μαθηµα 20 Ανιχνευτές

Σε περίπου 200 µέρες θα ξεκινήσει το LHC

Instruction Execution Times

Lecture 21: Scattering and FGR

Derivation of Optical-Bloch Equations

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Μαθηµα 20 Ανιχνευτές

CRASH COURSE IN PRECALCULUS

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΛΗΚΩΝ

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Strain gauge and rosettes

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Ανιχνευτές Thursday 6 March 14

Matrices and Determinants

Three coupled amplitudes for the πη, K K and πη channels without data

Calculating the propagation delay of coaxial cable

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Homework 8 Model Solution Section

the total number of electrons passing through the lamp.

Masterclass Χανιά 2019 Ανάλυση γεγονότων CMS/LHC (ή βρες το µποζόνιο µόνος σου) Γιώργος Αναγνώστου ΙΠΦΣ - Δηµόκριτος

Test Beam Analysis of Czochralski Silicon Strip Detector. John Kennedy, Alison Bates, Chris Parkes, Paula Collins, Juan Palacios & Doris Eckstein

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Μαθηµα Tuesday, February 22, 2011

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Other Test Constructions: Likelihood Ratio & Bayes Tests

CMOS Technology for Computer Architects

Chapter 7 Transformations of Stress and Strain

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 24/4/2007

2.1

Graded Refractive-Index

Contents X-ray Fluorescence (XRF) and Particle-Induced X-ray Emission (PIXE)

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Nuclear Physics 5. Name: Date: 8 (1)

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

EE512: Error Control Coding

5.4 The Poisson Distribution.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

EPL 603 TOPICS IN SOFTWARE ENGINEERING. Lab 5: Component Adaptation Environment (COPE)

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

Statistical Inference I Locally most powerful tests

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

dx A β δ: παράμετρος πυκνότητας, πόλωση του μέσου, ενέργεια πλάσματος τι περιμένουμε 1/ 2 πτώση Ένα ελάχιστο: minimum ionizing particle: MIP

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

Φυσική Στοιχειωδών Σωµατιδίων ΙΙ. Μάθηµα 1ο 15/2/2011

Dark matter from Dark Energy-Baryonic Matter Couplings

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Αναζητώντας παράξενα σωµατίδια στο ALICE

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Φυσική Στοιχειωδών Σωµατιδίων. 8 ου Εξαµήνου ιδ. Αν.Καθ Πετρίδου Χαρά Φεβρουάριος 2006

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

C.S. 430 Assignment 6, Sample Solutions

Nuclear Data Section International Atomic Energy Agency P.O.Box 100, A-1400 Vienna, Austria. Memo CP-D/599

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016

DuPont Suva 95 Refrigerant

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

ST5224: Advanced Statistical Theory II

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

DuPont Suva 95 Refrigerant

Ó³ Ÿ , º 6(148).. 865Ä873. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê É É, μ Ö

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Homework 3 Solutions

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Congruence Classes of Invertible Matrices of Order 3 over F 2

Cable Systems - Postive/Negative Seq Impedance

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Το άτομο του Υδρογόνου

Monolithic Crystal Filters (M.C.F.)

Transcript:

Introduction Detectors for Particle Physics DESY Summer Student Lectures 2007 Carsten Niebuhr Cosmic Ray Background Radiation: T = 2.72 K, n! = 4x10 8 m -3 2 "#$%!&! &'%$()*+%,(' -.#/0123! 42'2$#1!5('+20%3 &'%2$#+%,('!(6!57#$82)! "#$%,+123!9,%7!:#%%2$ - -'2$8;!<(33=!>2%72!>1(+7!?($/*1# - :*1%,012!@+#%%2$,'8 Topics of the Lecture "#$%!&&! A32!(6!B$#+C!D2%2+%($3! 6($!:(/2'%*/!:2#3*$2E /2'%! 4#3!D2%2+%($3 - "$(0($%,('#1!57#/F2$ - D$,6%!57#/F2$ - B"5 - :@45G!4-: @,1,+('!D2%2+%($3 - @%$,0!D2%2+%($3 - ",.21!D2%2+%($3 Common Common lecture Lecture on Fr, by 17.8. Robert Klanner Friday, Aug 11th, Sem 4 by Georg Steinbrück '(%!+(H2$2)! - B$,882$ - DJK "#$%!&&& @+,'%,11#%,('!5(*'%2$3 "7(%()2%2+%($3 572$2'C(H!5(*'%2$3 B$#'3,%,('!I#),#%,(' 5#1($,/2%2$3 - @7(92$!D2H21(0/2'% - 212+%$(/#8'2%,+ - 7#)$(',+ Text books: K.Kleinknecht: Teubner, 1992 W.R. Leo: Springer 1994 G.F.Knoll: Wiley, 3rd edition Detektoren für Teilchenstrahlung C.Grupen: Teilchendetektoren BI Wissenschaftsverlag 1993 W.Blum, L.Rolandi: Springer, 1994 Review articles: T.Ferbel: Addison-Wesley 1987 Literatur Techniques for Nuclear and Particle Physics Experiments Radiation Detection and Measurement Particle Detection with Driftchambers Experimental Techniques in High Energy Physics Other sources: Particle Data Group: Review of Particle Physics Eur. Phys. J. C15, 1-878 (2000) R.K.Bock, A.Vasilescu: The Particle Detector BriefBook Springer, 1998 and //physics.web.cern.ch/physics/particledetector/briefbook/ 3 4

What are the Objects? Fundamental Interactions and many more... -.#/012!!!!!!!!!!!!" 0 $ # + #!!!!!!!!!!!# 0 $ %%!!!!!!!! K 0 $ # + # <,62%,/2!M3N!!!!!!!!!!!OP EQR!!!!!!!!!!!!!!!OP EOS!!!!!!!!!!!!!!!!!!OP EOP +!!!M//N!!!!!!!!!!!!!!!T.OP EOT!!!!!!!!!!!!!T.OP EU!!!!!!!!!!!!!!!TP 5 6 Example for Resonance at HERA Pentaquark candidate: θ 0 c D p K π + π p minimal quark content: uuddc so far only seen by H1... is this a real signal?? or just a statistical fluctuation? or a detector effect? => very good understanding of detector response is required significance: signal/background resolution efficiency / acceptance Detection of Particles and Radiation!"#$%&'($&)$#*+#,-.#/0'($+',0-1(#$+"23-134$.#'35,#.#/0$&) - +',0-1(#$+,&+#,0-#3 -,#'10-&/$+,&6'6-(-0-#3$7!$1,&33$3#10-&/38!"-3$,#95-,#3$:#0#,.-/'0-&/$&)4 - +',0-1(#$02+#$7.'33;$1"',%#;$3+-/$#018 -.&.#/05.$<$#/#,%2$&)$+',0-1(# - #.-33-&/$'/%(#3 =(#.#/03$1&/0,-650-/%$0&$351"$.#'35,#.#/03$4 +&3-0-&/$3#/3-0->#$:#0#10&,3$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$+&3-0-&/;$:-,#10-&/ :#)(#10-&/$-/$.'%/#0-1$)-#(:$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$ p 1'(&,-.#0,24$0&0'($#/#,%2$'63&,+0-&/$'/:$.#'35,#.#/0$$$$$$$$$$$$$$$$$$! = 0&0.'33$:#0#,.-/'0-&/$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$.$?"#,#/@&>$,':-'0-&/$&,$0-.#$&)$)(-%"0$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$! # 0,'/3-0-&/$,':-'0-&/$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$" 7 8

Criteria for an ideal Detector Modern Collider Detectors A#1'53#$-/$%#/#,'($0"#,#$1'/$6#$>#,2$1&.+(#*$#>#/0$0&+&(&%-#3$&/#$&)0#/$'-.3$'0,#1&/30,510-&/$&)$)5(($#>#/0$@-/#.'0-13$76'1@%,&5/:$,#B#10-&/8 C&30$-.+&,0'/04 "-%"$#))-1-#/12 "-%"$,#3&(50-&/ "-%"$'11#+0'/1#$!$0,2$0&$1&>#,$)5(($3&(-:$'/%(#$7D!8 under construction: LHC '(3&$>#,2$-.+&,0'/0$7+',0(2$1&/)(-10-/%$:#.'/:384 +',0-1(#$-:#/0-)-1'0-&/$1'+'6-(-02 )'30$,#3+&/3# "-%"$,'0#$1'+'6-(-02 3.'(($:#':$0-.# "#,.#0-1-02 (&/%#>-02$&)$:#0#10&,$1&.+&/#/03 "-%"$,#(-'6-(-02 %&&:$'11#33-6-(-02$7)&,$,#+'-,38 (&E$1&30 in operation: HERA/Tevatron!"# design phase: ILC 9 10 Example of Particle Physics Experiments A#3-:#3$0"#$(',%#$1&((-:#,$:#0#10&,3$0"#,#$',#$.'/2$&0"#,$#*+034$ www.hep.net/experiments/all_sites.html Bates Linear Accelerator (MIT) BLAST, OOPS, SAMPLE Beijing IHEP ARGO-YBJ, BES, Tibet ASgamma Brookhaven BRAHMS, Crystal Ball (E913/914), E787, E821/muon g-2, E850, E852, E863/ EMU01, E864, E865, E869, E877, E881, E885, E890, E891, E895, E905, E906, E907, E909, E910, E913/914 (Crystal Ball), E917, E923, E926, E927, E949, E953, EIC, EMU01/E863, High Gain Harmonic Generation FEL, ICAE, IFEL, IMB, LEGS, MECO, Microundulator FEL, NuMass/E952, PHENIX, PHOBOS, pp2pp, Smith-Purcell, STAR, Zero Degree Calorimeter CERN ALEPH, ALICE, AMS, ANTARES, ASACUSA, ATHENA, Atlas (European), ATRAP, CDHS neutrino experiment/wa1, CERES/NA45, CHORUS, CMS, CosmoLEP, CPLEAR/PS195, Crystal Barrel/PS 197, Crystal Clear/RD18, DELPHI, EMU01, FELIX, HARP, ICANOE, ISOLDE, L3, LHC-B, MISTRAL, NTOF1, NTOF2, NTOF3, NA45.2/IONS/EL.PAR, NA47/SMC, NA48, NA48.1, NA48.2, NA49, NA50, NA51, NA52/ Newmass, NA56/SPY, NA57, NA58/COMPASS, NA59, NA60, NOMAD, OBELIX/PS201, OPAL, OPERA, PAMELA, PS185, PS205/HELIUMTRAP, PS210, PS212/DIRAC, PS214/HARP, RD8, RD11, RD12/TTC, RD13, RD27, RD39/SMSD, RD41/ MOOSE, RD42, RD44/Geant 4, RD45, RD46, RD48/ ROSE, RD49/RADTOL, TOSCA, TOTEM, WA85, WA92 (Beatrice), WA94, WA97, WA98, WA102 DESY H1, HERA-B, Hermes, TESLA, ZEUS Fermilab Antihydrogen/E862, APEX/E868, Auger Project, BooNE/E898, BTEV/C0, CDF/E830, CDMS/E981, CEX/E853, Charmonium/E835, CMS (US Server), COSMOS/E803, D0 (DZero)/E823, Donut/E872, E665, E771, E789, Fermi III Project, FOCUS/E831, HyperCP/E871, KTEV/E799/E832, MINOS/E875, NuMI, NUSEA/E866, NuTeV/E815, SDSS, SELEX/ E781, Zero Degrees/C0 Gran Sasso BOREXino, CRESST, CUORICINO, DAMA, EASTOP, GALLEX(finished), GENIUS, GNO, Heidelberg Dark Matter Search (HDMS), Heidelberg-Moscow Experiment, ICARUS, LUNA, LVD, MACRO, MONOLITH, NOE, OPERA, USA Search for Rare/Forbidden Decays!"#$%&'$()*&(*#%$#+%+)&,(*+)*-+./*012$%%$%*3(4)&).)*5-036*07&)8$%/+(9:;* 4$+%12*<,%*/$#),(=(.'>$%*?&,/+)&(@*#%,1$44;*!*$*" 4$(4&)&?&)A*@,+/;*BC =BD *E* ($$94*$"1$//$()*$($%@A*%$4,/.)&,(6*2&@2*$?$()*%+)$6*>.)*4'+//*)%+1F*'./)&#/&1&)A*#$%*$?$() 4)+%)*<.//*9+)+*)+F&(@*&(*GCCH Thin Superconducting Coil Muon Beam Drift Chamber? γ e + Stopping Target Liq. Xe Scintillation Detector Timing Counter 1m γ? Liq. Xe Scintillation Detector e + Drift Chamber 11 12

ALICE at LHC I$+?A*3,(*-2A4&14;*)2&4*4&'./+)&,(*42,74*BJBC*,<*+//*BCCCC=GCCCC*$"#$1)$9*)%+1F4*&(*+* )A#&1+/*$?$()K*L2$*4$#+%+)&,(*,<*+//*)2$4$*)%+1F4*#.)4*?$%A*2&@2*9$'+(94*,(*)2$*#,4&)&,(* %$4,/.)&,(*+(9*9,.>/$*2&)*4$#$%+)&,(*,<*)2$*9$?&1$K ALICE at LHC ALICE @ LHC Real Event in STAR at RHIC I$+?A*3,(*-2A4&14;*)2&4*4&'./+)&,(*42,74*BJBC*,<*+//*BCCCC=GCCCC*$"#$1)$9*)%+1F4*&(*+* )A#&1+/*$?$()K*L2$*4$#+%+)&,(*,<*+//*)2$4$*)%+1F4*#.)4*?$%A*2&@2*9$'+(94*,(*)2$*#,4&)&,(* %$4,/.)&,(*+(9*9,.>/$*2&)*4$#$%+)&,(*,<*)2$*9$?&1$K c ars t en. ni e buh r@ desy.de 14 c ars t en. ni e buh r@ desy.de 14! 2000 tracks per event Pa r t i cl e D e t ec t o r s 1 Pa r t i cl e D e t ec t o r s 1 13 Super Kamiokande (Japan) (Japan) Super-Kamiokande 14 Satellite Satellite based based Detectors Detectors 0$+%12*<,%**#%,),(=9$1+A*+(9*<,%*($.)%&(,*,41&//+)&,(4 MCCCC*),(4*,<*7+)$% Super-Kamiokande (Japan) BGCCC*#2,),*).>$4* 0$+%12*<,%**#%,),(=9$1+A*+(9*<,%*($.)%&(,*,41&//+)&,(4 D>@8;)D1##19E13)"2(&/F1'"/3)?"/),-.,)&%&/.3)$,"'"%()-%)',&)/1%.&)ABG&H) '")IJBB)D&H >-?'"??)(6,&+=0&+)?"/)@=.=(')ABBC MCCCC*),(4*,<*7+)$% BGCCC*#2,),*).>$4* @('/")$1/'-60&)$,3(-6(,-('"/3)"?)('1/)?"/#1'-"% 166&0&/1'-"%)#&6,1%-(#)"?)@DKL( ("=/6&()"?).1##1)/13)2=/('( N$+1)&,(4*; %1'=/&)"?)+1/7)#1''&/ # N! N!"#$"%&%'()*%&&+),-.,&(')/&0-12-0-'3)45 $/&6-(-"%)'/167&/)*8-9('/-$(5 610"/-#&'&/)*!(:*;055 *******O2$%$(F,? N$+1)&,(4*; # e N! en # N! N +1'1)16<=-(-'-"%)(3('&# *****42,7$% *******O2$%$(F,? c ars t en. ni e buh r@ desy. de c ars t en. ni e buh r@ desy. de 16 15 16 # e N! en *****42,7$% 1%'-6"-%6-+&%6&)+&'&6'"/ Pa r t i c le D e t e ct or s 1 Pa r t i c le D e t e ct or s 1 c ar s te n. n iebu hr@d e sy.de 17 16 Par ticle Det ect or s 1

Applications in Medicine Interplay between Physics and Technology :#1.-%.)#-6/".1$)+&'&6'"/M N,"'"%)/1'&()!)OB P )## 9A )( 9O @0#"(')100)&??&6'()=(&+)-%)$1/'-60&) +&'&6'"/()1/&)21(&+)"%)',&)&0&6'/"#1.9 %&'-6)-%'&/16'-"%)"%03S)G"(')#"+&/%) +&'&6'"/()6"%F&/')',&)12("/2&+)&%&/.3) -%'")1%)&0&6'/-610)(-.%10S ;,&)+&'&6'-"%)(&%(-'-F-'3)1%+)+&'&6'"/) $&/?"/#1%6&)+&$&%+()"% ('1'-('-610)$/"6&((&()-%)',&)+&'&6'"/?0=6'=1'-"%()-%)',&)&0&6'/"%-6( V%+&/('1%+-%.)"?)&S.S)1)#"+&/%)'/167-%.) +&'&6'"/)-%),-.,9&%&/.3)$,3(-6()"/)1) #&+-610)-#1.-%.)(3('&#)',=()/&<=-/&() 7%"W0&+.&)"? ("0-+)('1'&)$,3(-6( (&#-6"%+=6'"/)+&F-6&)$,3(-6( (&#-6"%+=6'"/)?12/-61'-"%)'&6,%"0".3 K:QR8 K"%9-%F1(-F&)Q"/"%1/3)@%.-"./1$,3) =(-%.))(3%6,/"'/"%)/1+-1'-"% ;")#1T-#-U&)+&'&6'-"%)(&%(-'-F-'3)1%+)) /&("0='-"%)"%&)#=(')6"%(-+&/)1%+)"$'-#-U& (-.%10)?"/#1'-"%)-%)',&)+&'&6'"/ 6"=$0-%.)"?)',&)+&'&6'"/)'")',&)/&1+"=') &0&6'/"%-6( %"-(&).&%&/1'&+)-%)',&)&0&6'/"%-6( 0"W9%"-(&)&0&6'/"%-6()'&6,%-<=&( 1%10".)1%+)+-.-'10)#-6/"&0&6'/"%-6(,-.,9($&&+)+1'1)'/1%(#-((-"% 6"#$='&/921(&+)+1'1)16<=-(-'-"%) (3('&#( 17 18 Interaction of Radiation with Matter!,1/.&+)N1/'-60&( K&='/10)N1/'-60&(,&1F3)6,1/.&+)$1/'-60&( %&='/"%( Particle type: Cross Section of a typical Collider Detector neutrinos (missing energy) muons absorber (mostly Fe) flux return yoke heavy medium (Fe, Cu, U) + active material hadrons: p,!, K... [quarks, gluons " jets] &0&6'/"%(.1##1)/1+-1'-"% electrons, photons %&='/-%"( charged particles Track detectors for charged particles beam pipe vacuum!"=0"#29:%'&/16'-"%)w-', &0&6'/"%()"?)#&+-=#!)&0&6'/-610)(-.%10)-%)+&'&6'"/) 19 G1-%03)X(-%.=01/Y)-%'&/16'-"%(Z /&(=0'-%.)-%)&%&/.3)'/1%(?&/)'" 6,1/.&+)$1/'-60&( gas detectors solid state detectors Calorimeter for energy meas. (neutral & charged) electromagnetic hadronic magnet coil (solenoid, field beam axis) 20 high Z material (Pb)

Example 1: HERA ep Event with 3 Jets Example 2: Muon Detection e p e Jet 1 Jet 2 Jet 3 hadronic calorimeter electromagn. calorimeter track detector transverse view: Because muons do not interact strongly and because of their large mass (compared to electrons) they don t shower so easily and thus can penetrate calorimeter and iron yoke e e 27.5 GeV e? 920 GeV p almost hermetic detector! detection of nearly all produced particles side view exploit energy- and momentum conservation 21 22 Example 3: Neutrinos Missing transverse energy and transverse momentum: carried away by neutrino?!! p trans = 43GeV i Example 4: Secondary Vertices Some mesons containing heavy quarks (charm or beauty) only decay via the weak interaction. example: D! K + " " Resulting lifetimes are relatively long: #! O(10-12 s) or c#! 100-500 m With the help of high precision track detectors one can distinguish if particles originate from secondary or primary vertex: $ vertex detectors [in most cases based on silicon] 23 24

Interaction of Charged Particles K7+(+&)(+&'3/&?("$2"?)<&+AA+2'#&37"27&27)()2'+("L+&'7+&?)##)%+&/A&27)(%+-&?)('"2<+#& '7(/0%7&.)''+(1 - +$+(%,&</## - 27)$%+&/A&-"(+2'"/$ 4/'7&+AA+2'#&(+#0<'&A(/.&'7+&A/<</3"$%&+<+2'(/.)%$+'"2&?(/2+##+#1 - &"$+<)#'"2&2/<<"#"/$#&3"'7&#7+<<&+<+2'(/$#&/A&.+-"0. - &+<)#'"2&#2)''+("$%&/AA&$02<+" (+<+*)$'&"#&'7+&#')'"#'"2)<&#0.&/A&.)$,&#027&"$'+()2'"/$#= M$&)--"'"/$&'7+(+&)(+&'7+&A/<</3"$%&?(/2+##+#1 - &4(+.##'()7<0$% - &+."##"/$&/A&N7+(+$9/*&()-")'"/$ - &$02<+)(&(+)2'"/$# - &+."##"/$&/A&'()$#"'"/$&()-")'"/$ 37"27&7/3+*+(&"$&%+$+()<&/220(&.027&<+##&A(+80+$'&'7)$&)'/."2&2/<<"#"/$#=& O/(&27)(%+-&?)('"2<+#&/$+&.0#'&-"#'"$%0"#7&<"%7'&?)('"2<+#&:"=+=&+ P Q&+ R ; )$-&7+)*,&?)('"2<+#&:"=+=&)<<&'7+&(+#'1&, $,?&, ' Q&<"%7'&$02<+"Q&===; S$+(%,&</##&4,&"/$"#)'"/$1 de &&&&&&&&&&&&&&&&&& ------ 4$N dx A r 2 e m e c 2 z 2Z Ā -- 1 = ) ----- ( 2 ) "$2"-+$'&?)('"2<+ - ( = v c&*+</2"',&/a&?)('"2<+ - z &27)(%+&/A&?)('"2<+.+-"0. - Z, A&&/A&.+-"0. Bethe-Bloch Formula - & I, 16 ) Z 0.9 &)*+()%+&"/$"#)'"/$&?/'+$'")<&"$&I+TJ - + &-+#2("4+#&-+$#"',&+AA+2'&-0+&'/&?/<)("#)'"/$& &&&&/A&.+-"0.&:&&#)'0()'"/$&/A&(+<)'"*"#'"2&("#+; /'7+(&2/$#')$'# - & N A &V*/%)-(/W#&$0.4+( - & r e = 2.8 fm &2<)##"2)<&+<+2'(/$&()-"0# - & m e &+<+2'(/$&.)##& 2m e c 2 ( 2 * 2 ln --------------------------- ( I 2 + -- 2 X(/?+('"+#1 &&&&I!+TU2.J& -+?+$-+$2+&/$<,&/$&?)('"2<+&*+</2"',& $/'&/$&?)('"2<+&.)## )'&#.)<<&+$+(%"+# - -(/?#&<"9+& - 1 ( 2 )'&(+<)'"*"#'"2&+$+(%"+#&"=+=&(*» 1 - </%)("'7."2&("#+&& - ln ( ln(βγ) * = ln= E ln p m )'&(+#' S&A"+<- )??(/>".)'+&()$%+&/A&*)<"-"',1& 10MeV/c. p. 50GeV/c *&Y&C 32 Particle Detectors 1 25 26 Material Dependence Energy Loss of Electrons de/dx (MeV g 1 cm 2 ) 10 8 6 5 4 3 2 1 0.1 0.1 1.0 10 100 1000 10 000 βγ = p/mc 0.1 1.0 10 100 1000 Muon momentum (GeV/ c) 0.1 H 2 liquid He gas Al Fe Sn Pb 1.0 10 100 1000 Pion momentum (GeV/ c) 1.0 10 100 1000 10 000 Proton momentum (GeV/ c) 0$(2-&#<E&5)-&1,)E$-,)%-$'$4'5,;) 3$-)(21,1)I>,J C.',-(/)0$11)&1)2)34'5#&$')$3)6789):9)2';)#<,) ;,'1&#/)!)=))>,'5,)41,)&'1#,2;)? de 1 de ))) X = x #!) ")))------ = -- # ------ ))))@A,B)( C)D 5E F G=) dx! dx ");.7;H),11,'#&200/)2)34'5#&$')$3)678) de/dx min (MeV g 1 cm 2 )!"#$%%&'()*$+,-! 33 Particle Detectors 1 2.5 2.0 1.5 1.0 0.5 H 2 gas: 4.10 H 2 liquid: 3.97 Solids Gases 2.35 0.64 log 10 (Z) H He Li Be B CNO Ne Fe Sn 1 2 5 10 20 50 100 Z :')2;;&#&$')#$),',-(/)0$11)K/)&$'&12#&$')<&(<),',-(/)%2-#&50,1)201$)0$$1,),',-(/);4,)#$) &'#,-25#&$')+&#<)#<,)L$40$EK)3&,0;)$3)#<,)'450,&?))M-,E11#-2<04'( N4,)#$)#<,&-)1E200)E211)#<&1),33,5#)&1),1%,5&200/)%-$E&','#)3$-),0,5#-$'1)I%$1&#-$'1J? de dx $ Z 2 # E m 2 &#)&1)41,340)#$)&'#-$;45,)-2;&2#&$')0,'(#<) X 0 x,',-(/)2##,'42#&$'?) E = E 0 exp ----- % ' X 0 & ( 716g cm 2%%-$O=?)) X 2 A 0 = ------------------------------------------------------ Z( Z + 1) ln( 287 Z) 5-&#&520),',-(/) E c?) ))))))))))))) de ------------------- Brems dx de = ------------------------- collision dx 610MeV 2%%-$O&E2#,0/?) E c = -------------------- ) Z + 1.24.O2E%0,?)L4 Example: Cu. 5 E c )0'.!lnE 34 Particle Detectors 1 27 28

Energy Loss of Muons de/dx Applications for different Detector Types R21. "! 5/ 3 &$'&12#&$')))))))))))))))))))))))))))))))))))))))")))%-$%$-#&$'20)$-);-&3#)5<2EK,- relativistic rise S&T4&; 0$520)<,2#&'())))))))))))))))))))))))))))))))))"!))K4KK0,)5<2EK,- &$'&12#&$')))))))))))))))))))))))))))))))))))))))")))520$-&E,#,-)IS&T4&;)8-($')$-)U-/%#$'J "$0&;,O5&#2#&$')$3),0,5#-$'1 +)5$'Q,-1&$')&'#$)0&(<#)))))))))))))))))")))15&'#&002#$-1 5-,2#&$')$3),0,5#-$'C<$0,)%2&-1)))))")))1$0&;)1#2#,);,#,5#$-1 MIP = minimum-ionising particles 36 Particle Detectors 1 29 30 de/dx in a TPC Properties of some Materials (PDG) Measurements in PEP4/9-TPC (Ar-CH 4 = 80:20 @ 8.5atm) If de/dx is plotted versus momentum of particle the curves are shifted horizontally for different masses Application: if also the momentum of the particle is known the measurement of the specific ionisation can be used for particle identification In this example each dot represents!185 single measurements in a drift chamber Material Z A Z/A Nuclear a Nuclear a de/dx b min { } collision interaction MeV Radiation length c X0 length λ T length λ I g/cm 2 {g/cm 2 } {cm} {g/cm 2 } {g/cm 2 } Density {g/cm 3 } ({g/l} for gas) Liquid Refractive boiling index n point at ((n 1) 10 6 1 atm(k) for gas) H2 gas 1 1.00794 0.99212 43.3 50.8 (4.103) 61.28 d (731000) (0.0838)[0.0899] [139.2] H2 liquid 1 1.00794 0.99212 43.3 50.8 4.034 61.28 d 866 0.0708 20.39 1.112 D2 1 2.0140 0.49652 45.7 54.7 (2.052) 122.4 724 0.169[0.179] 23.65 1.128 [138] He 2 4.002602 0.49968 49.9 65.1 (1.937) 94.32 756 0.1249[0.1786] 4.224 1.024 [34.9] Li 3 6.941 0.43221 54.6 73.4 1.639 82.76 155 0.534 Be 4 9.012182 0.44384 55.8 75.2 1.594 65.19 35.28 1.848 C 6 12.011 0.49954 60.2 86.3 1.745 42.70 18.8 2.265 e N2 7 14.00674 0.49976 61.4 87.8 (1.825) 37.99 47.1 0.8073[1.250] 77.36 1.205 [298] O2 8 15.9994 0.50002 63.2 91.0 (1.801) 34.24 30.0 1.141[1.428] 90.18 1.22 [296] F2 9 18.9984032 0.47372 65.5 95.3 (1.675) 32.93 21.85 1.507[1.696] 85.24 [195] Ne 10 20.1797 0.49555 66.1 96.6 (1.724) 28.94 24.0 1.204[0.9005] 27.09 1.092 [67.1] Al 13 26.981539 0.48181 70.6 106.4 1.615 24.01 8.9 2.70 Si 14 28.0855 0.49848 70.6 106.0 1.664 21.82 9.36 2.33 3.95 Ar 18 39.948 0.45059 76.4 117.2 (1.519) 19.55 14.0 1.396[1.782] 87.28 1.233 [283] Ti 22 47.867 0.45948 79.9 124.9 1.476 16.17 3.56 4.54 Fe 26 55.845 0.46556 82.8 131.9 1.451 13.84 1.76 7.87 Cu 29 63.546 0.45636 85.6 134.9 1.403 12.86 1.43 8.96 Ge 32 72.61 0.44071 88.3 140.5 1.371 12.25 2.30 5.323 Sn 50 118.710 0.42120 100.2 163 1.264 8.82 1.21 7.31 Xe 54 131.29 0.41130 102.8 169 (1.255) 8.48 2.87 2.953[5.858] 165.1 [701] W 74 183.84 0.40250 110.3 185 1.145 6.76 0.35 19.3 Pt 78 195.08 0.39984 113.3 189.7 1.129 6.54 0.305 21.45 Pb 82 207.2 0.39575 116.2 194 1.123 6.37 0.56 11.35 U 92 238.0289 0.38651 117.0 199 1.082 6.00 0.32 18.95 Air, (20 C, 1 atm.), [STP] 0.49919 62.0 90.0 (1.815) 36.66 [30420] (1.205)[1.2931] 78.8 (273) [293] H2O 0.55509 60.1 83.6 1.991 36.08 36.1 1.00 373.15 1.33 CO2 gas 0.49989 62.4 89.7 (1.819) 36.2 [18310] [1.977] [410] 31 32

Multiple Scattering Summary Part I z,! Scattering of charged particles off the atoms in the medium causes a change of direction: the statistical sum of many such small angle scatterings results in a gaussian angular distribution with a width given by: *0,*.0-(.)#,"#$("".0.3-#*40-(5+.)#0.Y1(0.)#2439#$("".0.3-#-9*.)#,"#$.-.5-,0) 0,1B6#5+4))("(54-(,3 - -045<&*,)(-(,3#$.-.5-,0)#I3,3#$.)-015-(/.P#(#D40-#!! - 54+,0(2.-.0)#I$.)-015-(/.P#(#D40-#!!! >4)(54++9#4++#$.-.5-,0)#>4).$#,3#.+.5-0,24B3.-(5#(3-.045-(,3 $.-.5-,0)#4+),#2,0.#43$#2,0.#1).$#",0#,-6.0#4**+(54-(,3)#I.OBO#2.$(54+#4**+OP log scale! 13.6MeV $ ( 0 = ----------------------z #pc x ----- 1 + 0.038 X 0 x ln ----- $ & X 0 % ' D)&_"?"#)(#$<()#18"'+#*5#)(#"*1'4$",($# example: p = 1 GeV/c, d = 300m Si, X 0 =9.4cm! " 0! 0.8 mrad. For 10cm distance this corresponds to 80m, which is significantly larger than typical resolution of Si-strip detector.3.0b9#+,))#,"#5640b.$#*40-(5+.);#z.-6.8z+,56#$.)50(>.)#+,))#$1.#-,#(,3()4-(,3 - z 2 # 2 ( lne #(#W.02(*+4-.41-2(3(212#4-# #) * 3 ;#?8M#F.S#*.0#B52 8M # - 6,=./.0#+(B6-#*40-(5+.)#I.+.5-0,3)T#21,3)P#4-#6(B6#.3.0B(.)#+,).#.3.0B9#*0.$,2(343-+9#>9# >0.2))-046+13B;# de dx, Z 2 + E m 2 21+-(*+.#)54--.0(3B " the less likely scattering off the atomic nuclei causes large scattering angles resulting in a deviation from a gaussian distribution at large angles 1 - B41))(43#5,0.#,"#$()-0(>1-(,3#=(-6#43B1+40#)*0.4$;### " 0 - -- p - $./(4-(,3#"0,2#B41))(,3#$()-0(>1-(13#4-#+40B.#43B+.)#$1.#-,#[1-6.0",0$#)54--.0(3B#I315+.(P x ----- X 0 33 34 Part II!"#$%&$'()*+$,#-#*-%("$&%($.%/#0-1/$.#)"1(#/#0-$ 2)"$,#-#*-%(" - 3(%4%(-5%0)6$78)/9#( -,(5&-$78)/9#( - '37 -.:27;$<37;$2=. :%65>$:-)-#$,#-#*-%(" - :-(54$,#-#*-%(" - 35?#6$,#-#*-%(" Common <@$A6)00#( lecture on Fr, 10.8. by B(5>)C;$:#/$D Georg Steinbrück 35