Tracking in High Energy Physics
|
|
- Θεόδωρος Παπαδόπουλος
- 7 χρόνια πριν
- Προβολές:
Transcript
1 Tracking in High Energy Physics XIX Heidelberg Physics Graduate Days 2007 Carsten Niebuhr (DESY, Hamburg) Guillaume Leibenguth (IPP, ETH Zürich)
2 Motivation Verehrte An- und Abwesende! Wenn Ihr den Rundfunk höret, so denkt auch daran, wie die Menschen in den Besitz dieses wunderbaren Werkzeuges der Mitteilung gekommen sind. Der Urquell aller technischen Errungenschaften ist die göttliche Neugier und der Spieltrieb des bastelnden und grübelnden Forschers und nicht minder die konstruktive Phantasie des technischen Erfinders Sollen sich auch alle schämen, die gedankenlos sich der Wunder der Wissenschaft und Technik bedienen und nicht mehr davon geistig erfasst haben als die Kuh von der Botanik der Pflanzen, die sie mit Wohlbehagen frisst A. Einstein zur Eröffnung der 7. Großen Deutschen Funkausstellung
3 Outline of Lecture Monday - introduction - interaction of charged particles with matter Wednesday - examples for gas detectors at the LHC energy loss by ionization multiple scattering Tuesday - momentum measurement in magnetic field Thursday & Friday - solid state detectors: Guillaume Leibenguth - principles of gas detectors gas amplification gas properties 3
4 Introduction Cosmic Ray Background Radiation: T = 2.72 K, nγ = 4x10 8 m -3 4
5 Literature Text books: K.Kleinknecht: Teubner, 1992 W.R. Leo: Springer 1994 G.F.Knoll: Wiley, 3rd edition Detektoren für Teilchenstrahlung Techniques for Nuclear and Particle Physics Experiments Radiation Detection and Measurement C.Grupen: Teilchendetektoren BI Wissenschaftsverlag 1993 W.Blum, L.Rolandi: Springer, 1994 Review articles: T.Ferbel: Addison-Wesley 1987 Particle Detection with Driftchambers Experimental Techniques in High Energy Physics Other sources: Particle Data Group: Review of Particle Physics Eur. Phys. J. C15, (2000) R.K.Bock, A.Vasilescu: The Particle Detector BriefBook Springer, 1998 and //physics.web.cern.ch/physics/particledetector/briefbook/ 5 Please note: Most of the figures in this lecture are taken from these sources or from publicly available talks on the web, without making explicit reference to them in each case.
6 What are the Objects? and many more... 6
7 Fundamental Interactions -.#/012!!!!!!!!!!!!" 0 $ # + #!!!!!!!!!!!# 0 $ %%!!!!!!!! K 0 $ # + # <,62%,/2!M3N!!!!!!!!!!!OP EQR!!!!!!!!!!!!!!!OP EOS!!!!!!!!!!!!!!!!!!OP EOP +!!!M//N!!!!!!!!!!!!!!!T.OP EOT!!!!!!!!!!!!!T.OP EU!!!!!!!!!!!!!!!TP 7
8 Detection of Particles and Radiation!"#$%&'($&)$#*+#,-.#/0'($+',0-1(#$+"23-134$.#'35,#.#/0$&) - +',0-1(#$+,&+#,0-#3 -,#'10-&/$+,&6'6-(-0-#3$7!$1,&33$3#10-&/38!"-3$,#95-,#3$:#0#,.-/'0-&/$&)4 - +',0-1(#$02+#$7.'33;$1"',%#;$3+-/$#018 -.&.#/05.$<$#/#,%2$&)$+',0-1(# - #.-33-&/$'/%(#3 =(#.#/03$1&/0,-650-/%$0&$351"$.#'35,#.#/03$4 +&3-0-&/$3#/3-0->#$:#0#10&,3$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$+&3-0-&/;$:-,#10-&/ :#)(#10-&/$-/$.'%/#0-1$)-#(:$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$ p 1'(&,-.#0,24$0&0'($#/#,%2$'63&,+0-&/$'/:$.#'35,#.#/0$$$$$$$$$$$$$$$$$$! = 0&0.'33$:#0#,.-/'0-&/$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$.$?"#,#/@&>$,':-'0-&/$&,$0-.#$&)$)(-%"0$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$! # 0,'/3-0-&/$,':-'0-&/$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$!$" 8
9 Examples for Major Discoveries I!"#$%&%'&()*#+()#,-)&.'/%#,01*.'*!"2"#34-56/%*#+()#5-7()#8.*'(9%).%*##### 5-8%#6(**.:/%#:1#8%&%'&()#6)(;)%** 6).A%#2B!IE Discovery photo Transparency taken from R. Klanner Uni HH >8.-:-&.'#%46-<*.(<#! *-&F)-&%8#9-6(F) =0-);%8#6-)&.'/%*#!.(<.*-&.(<#! '(<8%<*-&.(<#(+#8)(6/%&* 9 J.(<.*-&.(<#! %/%5%<&-)1#'0-);% J 'F)9-&F)%#.<#5-;"+.%/8! *.;<#(+## '0-);%#K#5%-*F)%#5(5%<&F5 J %<%);1#/(**#.<#D55#,:?K#'0-);%#-<8# 5(5%<&F5E#! 5-**#L#!M#4#5 %! %4'/F8%#6)(&(<#?!MMM#4#5 % E
10 Examples for Major Discoveries II!"#$%&'()*%+*!" #,-*./0*12345! 67,(89%:'; :'9%<#-(,-':* B /%=';* C("D'*EFGH5*I :%9"<,-':*'JC'("9'<-,;* C,(-"$;'*C?)#"$#*7<-";*-?'*'"K?-"'#L!"#$%&'()*! B =)**,*#"<K;'*'&'<-*LLL Transparency taken from R. Klanner Uni HH 0"M7":*N7#-*=';%O*&,C%7(*C('##7('*I,+-'(*C,##,K'*%+*C,(-"$;'*1P'&'<-Q5*+,#-* 1E9#5*'JC,<#"%<*! 'J$'':*&,C%7(*C('##@ 10 7<,9="K%7#R 6SBET3SBUT 9SEGVG!EWX'Y
11 Examples for Major Discoveries III!"#$%&'()*%+*",-'(.'/"0-'*&'$-%(* 1%#%,#* *789*0,/*78:*0-*;<=>* ",*0,-"?@*@*",-'(0$-"%,# A9BCD*>%1'E*@("F' ;G=H11"04*IG&G/GJ''(K ;<=>*IQ;*0$$'E'? (0-%(! $%EE"/'( pp L*/'&'E%@.',-*%+*E0(M'*&%EH.'*M0#'%H#** /'-'$-%(*N"-O*P8!;*('0/?%H-! via missing p T Transparency taken from R. Klanner Uni HH e Z 0! e + e - e #-%$O0#-"$*1'0.*$%%E",M* e 11
12 Detector Requirements for Different Accelerators $%&'()%*%+,-.#/012-(3-4#! /05)5*%,%)-#67#%8%+,#-6')3%#9533%:%)5,6);4 Accelerator date physics HERA (DESY) structure proton, strong+electroweak i.a. beyond standard model LHC (CERN) ???? high energy reach Higgs, top, BSM, SUSY strong+electroweak i.a. Transparency taken from R. Klanner Uni HH ILC (Linear Collider) 2015 (?) -???? precision reach Higgs, top, BSM, SUSY unification of forces max. E[GeV] particles 27.5 e + /e -! 920 p 7000 p! 7000 p 500 e +! 500 e - "e!"#!!# length 2 x 6.3 km "$# 2 x 27 km "$# < (2 x 15 km) currents 110 ma! 55 ma 540 ma! 540 ma 10 ma! 10 ma bunch crossing 96 ns 25 ns ~ 300 ns luminosity 5x10 31 cm -2 s cm -2 s x10 34 cm -2 s -1 event rate ~ 10 khz 1 GHz ~ 1 khz radiation dose < 5x10 12 n(equ.)/cm n(equ.)/cm n/cm 2 (excl.forward) %p@100gev/c 20 % 1.6 % 0.5 % %p&$'@100gev/c 10 % 1.6 % 0.5 % %E(e)@100GeV 1 2 % 0.6 % 1 2 % %E(had)@100GeV 4 6 % 5 10 % 3 % %position@vertex 20 $m 20 $m 5 $m trigger reduction x10 6 < April Chapter 12 1: R.Klanner 8
13 Criteria for an ideal Detector C&30$-.+&,0'/04 "-%"$#))-1-#/12 "-%"$,#3&(50-&/ "-%"$'11#+0'/1#$!$0,2$0&$1&>#,$)5(($3&(-:$'/%(#$7D!8 '(3&$>#,2$-.+&,0'/0$7+',0(2$1&/)(-10-/%$:#.'/:384 +',0-1(#$-:#/0-)-1'0-&/$1'+'6-(-02 )'30$,#3+&/3# "-%"$,'0#$1'+'6-(-02 3.'(($:#':$0-.# "#,.# (&/%#>-02$&)$:#0#10&,$1&.+&/#/03 "-%"$,#(-'6-(-02 %&&:$'11#33-6-(-02$7)&,$,#+'-,38 (&E$1&30 13
14 Important Parameters characterizing Detectors!"#$%&'%() *%)%()+&,"-./(."(011+)"2%"(03/2&0)%*"/4",$%'%()35 64%3%447" 8*%)%()+&9"! 8&%0*+6)9"! 8(03/2&0)/+19! /49! 033.0:%")+"2%"61*%&4)++*";" <%1%&/("*%)%()+&= &0*/0)/+1>"""""/1)%&0()/+1 *0)0" $0&)/(3% %1%&?5"*%$+4/) 3/?.)>(.0&?%"""""(.0&?%"'+&A0)/+1""""""$&+(%44/1?""""&%(+&*/1? (03/2&0)/+1""""""010354/4 Transparency taken from R. Klanner Uni HH B''/(/%1(5= 5 0((%$)01(%= 8&%(+&*%*"%:%1)49>8%A/))%*"25"4+6&(%9="C?%+A%)&5"D"%''/(/%1(5E 5 %''/(/%1(5>4%14/)/:/)5="8&%(+&*%*"%:%1)4>$0&)/(3%4"$044/1?"*%)%()+&9 5 $%0F"%''/(/%1(5="8&%(+&*%*"%:%1)4"/1"0((@-/1*+->$0&)/(3%4"$044/1?"*%)%()+&E G%4$+14%"8&%4+36)/+19= 84$%()&6A"'&+A"A+1+H9"" %1%&?%)/("&0*/0)/+19 &%4$+14%")+"IIJ"F%K!4 H <%H*%)%()+& H +&?01/("4(/1)/330)+& 11.April 2005 Chapter 3: R.Klanner 1 14
15 Response Function of Detector 2 34/ ("&#$%&".3*%/+,$%.,&./$6#),/4+"0.,&.3("7*"%+)8.,9%$("0.! :($%9.("&*)+&.;; <9$$0.0"+"/+$(=.4,6&.3$(.>4*&&,4%.("&#$%&".':,+5.),++)".%$%2>4*&&,4%.+4,)&-.?4),@(4+,$%.@8.A."B"%+&.:,+5."%"(98.C! 6"4%1! (6& ("&$)*+,$%.'!"1! 1 & " $ % ' "#,!! # & " $%! # % 1! 2 '("# ( & " $ ) 2, # (! ) %! ( 1 #! 2! 3$(.>4*&&.3D1.'&"#4(4+".+:$.#"4E&-1 3$(.@$F.:,+5.:,0+5.41! % % 12 3("7*"%+)8.GHI.,&.%$+.+5".@"&+./5$,/"1."D9D.J4%04*.0,&+(,@*+,$%1 '6"0,4%K.+(*%/4+"0.6"4%K.4(".&$6"+,6"&.@"++"(./5$,/"&.;.-.! " % 2 2ln 2! % 2$ 355!! * ). / ?4),@(4+,$%1 & "! % $ % / ( 1), -( 1),! " /K.#"0 L./4),@(4+,$%./$%&+4%+&.0"#"%0.$%.#$&,+,$%K.+,6".'MK#KNKL- ",3./'C-.L.%$%2),%"4(.("&#$%&" 4%4)$9$*&.3$(.#$&,+,$%2K.+,6"2K."+/2 6"4&*("6"%+&, (4 2 )&%& 2%5# ,0#)( 1 ((.-. /0+ (,(+-. '(%)*+('(,&) Transparency taken from R. Klanner Uni HH
16 Example Time Response, -$./0%1"#$+ 1"#$%2$13$$*%(/&1"4.$%(/''/5$%6$7$*18%/*-%'"5*/.%9)&#/1")*, -$/-%1"#$+ #"*"#:#%1"#$%-"'1/*4$%1;/1%$7$*1'%4/*%2$%&$4)&-$-%'$(/&/1$.0% 6-$($*-'%)*%(&)($&1"$'%)9%-$1$41)&%/*-%$.$41&)*"4'%6<"*1$5&/1"*5=%)&%<-$/-=8%/*-% )*%&$').:1")*%4&"1$&"/8, (".$%:(%$99$41'+ )7$&./(("*5%$7$*1'%4/:'$%/%-$5&/-/1")*%)9%($&9)&#/*4$%, 1"#$%&$').:1")*+ /44:&/40%3"1;%3;"4;%<$7$*1,1"#$=%4/*%2$%#$/':&$- Transparency taken from R. Klanner Uni HH >?/#(.$%9)&%4):*1"*5%.)''$'%-:$%1)%-$/-%1"#$+ " % 1 $!#! #!! "'%9&/41")*%1"#$%-$1$41)&%<-$/-=%! &/1$%/1%3;"4;%1&:$%$7$*1'%.)'1+%*!#!! A%*,# 69)&%(:.'$-%'):&4$%B *)%$99$41%"9%! C%DE9&$F:$*408 16
17 Modern Collider Detectors under construction: LHC!"# design phase: ILC in operation: HERA/Tevatron 17
18 Search for Rare/Forbidden Decays!"#$%&'$()*&(*#%$#+%+)&,(*+)*-+./*012$%%$%*3(4)&).)*5-036*07&)8$%/+(9:;* =BD *E* Liq. Xe Scintillation Detector Liq. Xe Scintillation Detector Thin Superconducting Coil Muon Beam? γ Stopping Target γ? e + Timing Counter e + Drift Chamber Drift Chamber 1m 18
19 LHC I$+?A*3,(*-2A4&14;*)2&4*4&'./+)&,(*42,74*BJBC*,<*+//*BCCCC=GCCCC*$"#$1)$9*)%+1F4*&(*+* )A#&1+/*$?$()K*L2$*4$#+%+)&,(*,<*+//*)2$4$*)%+1F4*#.)4*?$%A*2&@2*9$'+(94*,(*)2$*#,4&)&,(* %$4,/.)&,(*+(9*9,.>/$*2&)*4$#$%+)&,(*,<*)2$*9$?&1$K 19
20 Real Event in STAR at RHIC 2000 tracks per event 20
21 Satellite based Detectors ("=/6&()"?).1##1)/13)2=/('( %1'=/&)"?)+1/7)#1''&/!"#$"%&%'()*%&&+),-.,&(')/& '3)45 $/&6-(-"%)'/167&/)*8-9('/-$(5 610"/-#&'&/)*!(:*;055 +1'1)16<=-(-'-"%)(3('&# 1%'-6"-%6-+&%6&)+&'&6'"/ 21
22 Applications in Medicine :#1.-%.)#-6/".1$)+&'&6'"/M N,"'"%)/1'&()!)OB P )## 9A )( 9O K:QR8 K"%9-%F1(-F&)Q"/"%1/3)@%.-"./1$,3) =(-%.))(3%6,/"'/"%)/1+-1'-"% 22
23 Interplay between Physics and +&'&6'"/()1/&)21(&+)"%)',&)&0&6'/"#1.9 %&'-6)-%'&/16'-"%)"%03S)G"(')#"+&/%) +&'&6'"/()6"%F&/')',&)12("/2&+)&%&/.3) -%'")1%)&0&6'/-610)(-.%10S ;,&)+&'&6'-"%)(&%(-'-F-'3)1%+)+&'&6'"/) $&/?"/#1%6&)+&$&%+()"% ('1'-('-610)$/"6&((&()-%)',&)+&'&6'"/?0=6'=1'-"%()-%)',&)&0&6'/"%-6( ;")#1T-#-U&)+&'&6'-"%)(&%(-'-F-'3)1%+)) /&("0='-"%)"%&)#=(')6"%(-+&/)1%+)"$'-#-U& (-.%10)?"/#1'-"%)-%)',&)+&'&6'"/ 6"=$0-%.)"?)',&)+&'&6'"/)'")',&)/&1+"=') &0&6'/"%-6( %"-(&).&%&/1'&+)-%)',&)&0&6'/"%-6( V%+&/('1%+-%.)"?)&S.S)1)#"+&/%)'/167-%.) +&'&6'"/)-%),-.,9&%&/.3)$,3(-6()"/)1) #&+-610)-#1.-%.)(3('&#)',=()/&<=-/&() 7%"W0&+.&)"? ("0-+)('1'&)$,3(-6( (&#-6"%+=6'"/)+&F-6&)$,3(-6( (&#-6"%+=6'"/)?12/-61'-"%)'&6,%"0".3 0"W9%"-(&)&0&6'/"%-6()'&6,%-<=&( 1%10".)1%+)+-.-'10)#-6/"&0&6'/"%-6(,-.,9($&&+)+1'1)'/1%(#-((-"% 6"#$='&/921(&+)+1'1)16<=-(-'-"%) (3('&#( 23
24 Interaction of Radiation with Matter!,1/.&+)N1/'-60&( K&='/10)N1/'-60&(,&1F3)6,1/.&+)$1/'-60&( %&='/"%( &0&6'/"%(.1##1)/1+-1'-"% %&='/-%"(!"=0"#29:%'&/16'-"%)W-', &0&6'/"%()"?)#&+-=#!)&0&6'/-610)(-.%10)-%)+&'&6'"/) G1-%03)X(-%.=01/Y)-%'&/16'-"%(Z /&(=0'-%.)-%)&%&/.3)'/1%(?&/)'" 6,1/.&+)$1/'-60&( 24
25 Cross Section of a typical Collider Detector Particle type: neutrinos (missing energy) muons µ absorber (mostly Fe) flux return yoke μ heavy medium (Fe, Cu, U) + active material hadrons: p, π, K... [quarks, gluons jets] electrons, photons charged particles beam pipe vacuum Track detectors for charged particles gas detectors solid state detectors Calorimeter for energy meas. (neutral & charged) electromagnetic high Z (Pb) + magnet coil hadronic active medium (solenoid, field beam axis) 25
26 Example 1: HERA ep Event with 3 Jets e e transverse view: p Jet 1 Jet 2 Jet 3 hadronic calorimeter electromagn. calorimeter track detector 27.5 GeV e? 920 GeV p almost hermetic detector side view detection of nearly all produced particles exploit energy- and momentum conservation 26
27 Example 2: Muon Detection Because muons do not interact strongly and because of their large mass (compared to electrons) they don t shower so easily and thus can penetrate calorimeter and iron yoke µ µ e e µ µ 27
28 Example 3: Neutrinos ν Missing transverse energy and transverse momentum: i p trans = 43GeV carried away by neutrino? 28
29 Example 4: Secondary Vertices Some mesons containing heavy quarks (charm or beauty) only decay via the weak interaction. example: D K + π π Resulting lifetimes are relatively long: τ O(10-12 s) or cτ µm With the help of high precision track detectors one can distinguish if particles originate from secondary or primary vertex: vertex detectors [in most cases based on silicon] 29
30 Interaction of Charged Particles K7+(+&)(+&'3/&?("$2"?)<&+AA+2'#&37"27&27)()2'+("L+&'7+&?)##)%+&/A&27)(%+-&?)('"2<+#& '7(/0%7&.)''+(1 - +$+(%,&</## - 27)$%+&/A&-"(+2'"/$ 4/'7&+AA+2'#&(+#0<'&A(/.&'7+&A/<</3"$%&+<+2'(/.)%$+'"2&?(/2+##+#1 - &"$+<)#'"2&2/<<"#"/$#&3"'7+<<&+<+2'(/$#&/A&.+-"0. - &+<)#'"2)''+("$%&/AA&$02<+" (+<+*)$'&"#&'7+&#')'"#'"2)<�.&/A&.)$,&"$'+()2'"/$#= M$&)--"'"/$&'7+(+&)(+&'7+&A/<</3"$%&?(/2+##+#1 - &4(+.##'()7<0$% - &+."##"/$&/A&N7+(+$9/*&()-")'"/$ - &$02<+)(&(+)2'"/$# - &+."##"/$&/A&'()$#"'"/$&()-")'"/$ 37"27&7/3+*+(&"$&%+$+()<&/220(&.027&<+##&A(+80+$'&'7)$&)'/."2&2/<<"#"/$#=& O/(&27)(%+-&?)('"2<+#&/$+&.0#'&-"#'"$%0"#7&<"%7'&?)('"2<+#&:"=+=&+ P Q&+ R ; )$-&7+)*,&?)('"2<+#&:"=+=&)<<&'7+&(+#'1&µ, $,?&, ' Q&<"%7'&$02<+"Q&===; 30
31 Energy Loss of Charged Particles in Matter Several important physicists have contributed to the theoretical understanding of energy loss of charged particles in matter - N. Bohr classical derivation of de dx - Bethe & Bloch quantum mechanical treatment of de dx - L. Landau distribution function - E. Fermi density correction - and several other physicists 31
32 Energy Loss of Heavy Charged Particles The exact derivation is quite involved. * Here only the classical derivation, which was first performed by Bohr is given: Energy loss mainly occurs through inelastic collisions with the shell electrons of the medium. Assuming (1) M >> m e and (2) that the electrons before the collision are at rest => classically the change of momentum is given by: p = + F Coulomb dt <H= 8 % & C Since for symmetry reasons the longitudinal component averages to 0, only the transverse component is relevant: F = F Coulomb b r = F Coulomb b x2 + b 2 with impact parameter b. Integration yields: p(b) = + F dx v = + ze 2 b dx (x 2 + b 2 ) 3/2 v = 2ze2 vb and therefore E(b) = p2 2m e = 2z2 e 4 m e v 2 b 2 with velocity v and charge z of the moving particle 32 * J. D. Jackson, Klassische Elektrodynamik, (Walter de Gruyter, Berlin, 1993) Kapitel 13.
33 Bohr s Classical Formula The energy transfer to shell electrons in the ring b to b+db in a layer of thickness dx is given by (with N e = density of electrons) :,C,@ de(b) = E(b) N e dv = 4πz2 e 4 m e v 2 N e db b dx Integration over valid range of impact parameters b min to b max yields: de dx = 4πz2 e 4 m e v 2 N e ln b max b min The valid limits of integration follow from the maximum momentum transfer p = 2m e v (-> b min ) and the minimum energy transfer E min = I, which must at least correspond to the excitation energy I (-> b max ): b min = ze2 m e v 2 ; b max = ze2 v 2 m e I This yields for the classical case of inelastic collisions: de dx = 4πz2 e 4 m e v 2 Z A N A 1 2 ln 2m ev 2 I 33
34 Bethe-Bloch Formula The correct quantum mechanical result is: de dx = 4πN Arem 2 e c 2 z 2 Z A 1 [ 1 β 2 2 ln 2m ec 2 β 2 γ 2 T max I 2 β 2 δ 2 C Z ] [ MeV ] (g/cm 2 ) where T max = 2m e c 2 β 2 γ γm e /M + (m e /M) 2 Meaning of additional terms: is the maximum kinetic energy, which can be transfered to the electron in a single collision, N A is the Avagadro number, r e the classical electron radius and I the excitation energy in [ev]. δ density term due to polarization: important at high energies (leading to saturation of the relativistic raise) C/Z shell correction only relevant at low energies (when v velocity of electrons in the orbit > capture processes are important) Range of validity of the Bethe-Bloch formula: For higher energies radiative processes dominant. 10 MeV/c p 50 GeV/c 34 $ I ( 16 Z 0.9 ev für Z>1
35 Relativistic Raise: Calculations and Measurements de dx = 4πN Arem 2 e c 2 z 2 Z A 1 [ 1 β 2 2 ln 2m ec 2 β 2 γ 2 T max I 2 β 2 δ 2 C Z ] [ MeV ] (g/cm 2 ) CQR#', - Methan [5%] "+$O/3# $$\$W [&51"#5/+-(N/+B) 8M3&)&QI6(&5N)"&+(Q9&,#''? 35 ]'0(("(237 Classical explanation: I+@023(#+$,#5$)50+(%#5(0'#+$ transverse component of electric ]&1N&+#+)#$,#($#'#B)5"(23#+$ field of moving particle growths R#',#($,#($6#@#-)#+$^#"'23#+($1")$ with factor γ,#1$r0b)&5$$$$ saturation of de/dx, once the F*))"-/+-$%&+$,C;,AD$@#++$,"#(#$ extension of field comparable to I/(,#3+/+-$%#5-'#"23605$1")$,#+$ distance between atoms I6()*+,#+$E@"(23#+$I)&1#+J
36 Fermi s Density Correction This parameter takes into account, that the shell electrons of the atoms of the medium shield the transversely extended field of the relativistic particle. This leads to a reduction of the effective reach-through and therefore of the energy loss. Physically the effect is related to the fact that the electromagnetic wave gets damped in the transverse direction by the dispersion in the medium (also related to Cherenkov effect). density effect Fermi plateau especially relevant in dense absorbers, e.g. iron or lead ( v c - cos ) C = 1 can be practically neglected for gases at 1 atm approximation for energetic particles δ 2 = ln (βγ) + ln hω p I with plasma frequency and electron density 1 2 hω p = 4πN e r 3 e m e c 2 /α N e & Dielektrizitätskonstante 36
37 Material Dependence 10 8.',-(/)0$11)&1)2)34'5#&$')$3)6789):9)2';)#<,) ;,'1&#/)!)=))>,'5,)41,)&'1#,2;)? de/dx (MeV g 1 cm 2 ) βγ = p/mc H 2 liquid He gas Fe Sn Pb Muon momentum (GeV/ c) Pion momentum (GeV/ c) Al C de 1 de ))) X = x #!) "))) = -- # ))))@A,B)( C)D 5E F G=) dx! dx ");.7;H),11,'#&200/)2)34'5#&$')$3)678) de/dx min (MeV g 1 cm 2 ) !"#$%%&'()*$+,-! H 2 gas: 4.10 H 2 liquid: 3.97 Solids Gases log 10 (Z) Proton momentum (GeV/ c) 0$(2-&#<E&5)-&1,)E$-,)%-$'$4'5,;) 3$-)(21,1)I>,J 0.5 H He Li Be B CNO Ne Fe Sn Z 33 Particle Detectors 1 37
38 Energy Loss of Electrons :')2;;&#&$')#$),',-(/)0$11)K/)&$'&12#&$')<&(<),',-(/)%2-#&50,1)201$)0$$1,),',-(/);4,)#$) &'#,-25#&$')+&#<)#<,)L$40$EK)3&,0;)$3)#<,)'450,&?))M-,E11#-2<04'( N4,)#$)#<,&-)1E200)E211)#<&1),33,5#)&1),1%,5&200/)%-$E&','#)3$-),0,5#-$'1)I%$1&#-$'1J? $ Z 2 # E m 2 de dx &#)&1)41,340)#$)&'#-$;45,)-2;&2#&$')0,'(#<) X 0 x,',-(/)2##,'42#&$'?) E = E 0 exp % ' & ( X 0.O2E%0,?)L4 Example: Cu 716g cm 2%%-$O=?)) X 2 A 0 = Z( Z + 1) ln( 287 Z) 5-&#&520),',-(/)?) ))))))))))))) E c de Brems dx de collision dx 610MeV 2%%-$O&E2#,0/?) E c = ) Z =. 5 E c )0'. αlne 34 Particle Detectors 1 38
39 Energy Loss of Muons. β 5/ 3 relativistic rise MIP = minimum-ionising particles 39
40 de/dx Applications for different Detector Types R21 &$'&12#&$')))))))))))))))))))))))))))))))))))))))")))%-$%$-#&$'20)$-);-&3#)5<2EK,- S&T4&; 0$520)<,2#&'())))))))))))))))))))))))))))))))))"!))K4KK0,)5<2EK,- &$'&12#&$')))))))))))))))))))))))))))))))))))))))")))520$-&E,#,-)IS&T4&;)8-($')$-)U-/%#$'J "$0&;,O5#&$')$3),0,5#-$'1 +)5$'Q,-1&$')&'#$)0&(<#)))))))))))))))))")))15&'#&002#$-1 5-,2#&$')$3),0,5#-$'C<$0,)%2&-1)))))")))1$0&;)1#2#,);,#,5#$-1 36 Particle Detectors 1 40
41 de/dx in a TPC Measurements in PEP4/9-TPC (Ar-CH 4 = 8.5atm) If de/dx is plotted versus momentum of particle the curves are shifted horizontally for different masses Application: if also the momentum of the particle is known the measurement of the specific ionisation can be used for particle identification In this example each dot represents 185 single measurements in a drift chamber 41
42 Ionization along the Track!"#$%&'(&)&'&*%+,(-$%./0/1$-,#,. 2/34',(5,-(-$%./1#.$" 5&1(%+&-4,.(6$#+(772 %&-,.&(.,&0/3# "!-Elektron! Teilchen in CF 4 "!-Elektron "! 8*(&'',*(9$'0,.*($1#(0$,(:3*&+-,(0,.(8/*$1&#$/*(5,5,*(;*0,(0,.(<,$%+6,$#,(&3=5.3*0(0,.( The increase of ionization at the end of the range due to the 1/β 2 -dependence of the energy loss is visible in all examples. 42
43 z-dependence of Ionization B(E(FG(HI,J B(!(KL(HM+J <,'&#$)$1#$1%+,(8/*,*($*(D,.*,-3'1$/* Relativistic ions in nuclear emulsion 43
44 Bragg-Peak and Medical Application 8/*$1&#$/*1"./=$'()/*( NF 7(8/*,*($*(O&11,. Applications in therapy: R9.&55(V,&AR better targeted treatment of tumors with reduced radiation damage of tissue in front due to concentration of energy loss at the end of the range (in contrast to X-ray treatment) 44
45 Example: Proton Therapy at PSI S".,&0(/3#(9.&55(V,&A1(HS!9VJ(-$#( 3*#,.1%+$,0'$%+,*(?41/.4,.*(%( 9,.,$%+(0,1(M3-/.1 45
46 Landau Distribution The Bethe-Bloch formula only gives the average energy loss. The total energy loss is the sum of many individual processes:!"#$%#&'#(%)*+'$,#-&#")./0$0"1&$/.-$2#/$3"&&)#-#/$ thick 4/#-0"#5#-).6&$7/8$!#-$0#673&#$4/#-0"#5#-).6&$#-0"1&$ layers ((de/dx) δx T max ): many 6"+'$7.6$2#-$9.33#$5*/$5"#)#/$4"/:#);-*:#66#/< collisions with small E i in good 2"+=#$9+'"+'&#/$> " de! dx##x» T max?@$5"#)#$9&ab#$3"&$ approximation Gaussian distributed =)#"/#3$!4 " $"$$C7.665#-&#")./0 for thin layers (e.g. gases) two effects DE-$2E//#$9+'"+'&#/$>:8%8$C76#?$$6;"#)#/$F#2*+'$ are important: :G#"$4DD#=&#$#"/#$G"+'&"0#$H*))#< - - rare 6#)&#/#/#$9&AB#$3"&$0-*B#3$ collisons with large E ( > ionization!!!!!!4$$$>i$$j*/"6"#-./06;*&#/&"7)? potential) δ-electrons or knock-on!!!!!"!#$4)#=&-*/#/$*2#-$k/*+=(*/ $$$$4)#=&-*/#/$G#-2#/$D-#"0#6#&:&@$2"#$ electrons are liberated, which have $$$$E1#-$0#/E0#/2$4/#-0"#$5#-DE0#/@$.3$ sufficient energy to ionize themselves $$$$"'-#-6#"&6$:.$"*/"6"#-#/$ - energy loss due to Bremsstrahlung - 4/#-0"#5#-).6&$2.-+'$%-#366&-7')./0 asymmetric Landau distribution "!76L33#&-"6+'#$M7/27.(,#-&#")./0< "% + e $$$$$$$ P "!E# e 2 % # P ( E) = 1 e 1!E!E 2 = (λ+e λ ) with λ mit = E E mp % = mp 2π ξ 2$ & ξ material constant $$$$$$ $"6&$#"/#$N7&#-"7)=*/6&7/&# & 46 -#)8$R7'-6+'#"/)"+'=#"& N*2"D":"#-&#$O/6P&:#$#/&G"+=#)& 5*/< Alternative approaches by:,75")*5$ Vavilov %)./+=(M#"6#07/0 Blunck-Leisegang 9L3*/ Symon 3"&&)#-#- 4/#-0"#5#-).6&$S24T2UI G7'-6+'#"/)"+'6&#- 4/#-0"#5#-).6& O))"6*/@$Q*11$ Allison, Cobb :8%$3";V6$"/$O-0*/<$!4 38;8 W$X8Y$=#,T+3 S!4I$$W$Y8Z[$=#,T+3 4/#-0"#$,#-).6&$!4
47 Example for measured Energy Loss 3 GeV electrons in a thin-gap multi wire proportional chamber(alpeph) 3 GeV pions in c1.5 cm gas mixture of Argon and 7% CH 4 O))"6*/dQ*11 47
48 Restricted Energy Loss A given detector usually only measures the deposited energy and not the energy the particle has lost in total. Significant differences for example occur in gas detectors, when part of the energy, which is transfered to the knock-on electron is lost for the measurement, since the knock-on electrons leaves the detector. it is useful to introduce the so called restricted energy loss: only take into account the part of the energy loss processes with energy transfer T < T cut de dx = Kz 2 Z T<Tcut A 1 β 2 [ 1 2 ln 2m ec 2 β 2 γ 2 T cut I 2 β2 2 ( 1 + T ) cut T max δ 2] Note, that for T cut > T max the standard Bethe-Bloch formula is recovered 48
49 Energy Spectrum of δ-electrons The distribution of secondary electrons with kinetic energy d 2 N dt dx = 1 2 Kz2 Z A 1 F (T ) β 2 T 2 T, I T T max is given by: F(T) is spin dependent [ F (T ) = (1 β 2 T/T max ) for spin 0]. Integration from T cut to T max yields just the difference between normal and restricted Bethe-Bloch formula kev Elektronen in H 2 O 100 GeV Muonen in Eisen Anregung durch entfernte Stöße E max 49
50 Coulomb Scattering F"'?#*,()#11'4$0;$=#)'N d! d" z 2 Z 2 r2 m c e e $ & #p % ' 2 = sin 4 (! 2 G1(%#)A&)/$.&);#* FCD#)";#'(#**$8"-%("4#$=&',#W1#'?N$$/"#$7"#*A0-%,()#11'4$,(#**($&A($#"'#$#)',(#$ Important experimental consequence: multiple scattering often represents a serious limitation for the achievable resolution of direction or momentum measurement 50
51 Multiple Scattering z,β Scattering of charged particles off the atoms in the medium causes a change of direction: the statistical sum of many such small angle scatterings results in a gaussian angular distribution with a width given by: 13.6MeV $ ( 0 = z #pc x X 0 x ln $ & % ' X 0 log scale! D)&_"?"#)(#$<()#18"'+#*5#)(#"*1'4$",($# example: p = 1 GeV/c, d = 300µm Si, X 0 =9.4cm θ mrad. For 10cm distance this corresponds to 80µm, which is significantly larger than typical resolution of Si-strip detector θ the less likely scattering off the atomic nuclei causes large scattering angles resulting in a deviation from a gaussian distribution at large angles 51
52 Properties of some Materials (PDG) Material Z A Z/A Nuclear a collision length λ T {g/cm 2 } Nuclear a de/dx b min { } interaction MeV length λ I {g/cm 2 g/cm 2 } Radiation length c X 0 {g/cm 2 } {cm} Density {g/cm 3 } ({g/l} for gas) Liquid Refractive boiling index n point at ((n 1) atm(k) for gas) H 2 gas (4.103) d (731000) (0.0838)[0.0899] [139.2] H 2 liquid d D (2.052) [0.179] [138] He (1.937) [0.1786] [34.9] Li Be C e N (1.825) [1.250] [298] O (1.801) [1.428] [296] F (1.675) [1.696] [195] Ne (1.724) [0.9005] [67.1] Al Si Ar (1.519) [1.782] [283] Ti Fe Cu Ge Sn Xe (1.255) [5.858] [701] W Pt Pb U Air, (20 C, 1 atm.), [STP] (1.815) [30420] (1.205)[1.2931] 78.8 (273) [293] H 2 O CO 2 gas (1.819) 36.2 [18310] [1.977] [410] 52
53 Summary Part I *0,*.0-(.)#,"#$("".0.3-#*40-(5+.)#0.Y1(0.)#2439#$("".0.3-#-9*.)#,"#$.-.5-,0) 0,1B6#5+4))("(54-(, <&*,)(-(,3#$.-.5-,0)#I3,3#$.)-015-(/.P#(#D40-#!! +III gas detectors - 54+,0(2.-.0)#I$.)-015-(/.P#(#D40-#!!! [not covered in this lecture] >4)(54++9#4++#$.-.5-,0)#>4).$#,3#.+.5-0,24B3.-(5#( (,3 $.-.5-,0)#4+),#2,0.#43$#2,0.#1).$#",0#,-6.0#4**+(54-(,3)#I.OBO#2.$(54+#4**+OP.3.0B9#+,))#,"#5640B.$#*40-(5+.);#Z.-6.8Z+,56#$.)50(>.)#+,))#$1.#-,#(,3()4-(,3 z 2 # 2 ( lne - #(#W.02(* (3(212#4-# ;#?8M#F.S#*.0#B52 8M # - 6,=./.0#+(B6-#*40-(5+.)#I.+.5-0,3)T#21,3)P#4-#6(B6#.3.0B(.)#+,).#.3.0B9#*0.$,2(343-+9#>9# >0.2)) B;# #) * (*+.#)54--.0(3B de dx, Z 2 + E m 2 - B41))(43#5,0.#,"#$()-0(>1-(,3#=(-6#43B1+40#)*0.4$;### 1 " p - $./(4-(,3#"0,2#B41))(,3#$()-0(>1-(13#4-#+40B.#43B+.)#$1.#-,#[1-6.0",0$#)54--.0(3B#I315+.(P x X 0 53
Detectors for Particle Physics
Introduction Detectors for Particle Physics DESY Summer Student Lectures 2007 Carsten Niebuhr Cosmic Ray Background Radiation: T = 2.72 K, n! = 4x10 8 m -3 2 "#$%!&! &'%$()*+%,(' -.#/0123! 42'2$#1!5('+20%3
Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1β Αλληλεπίδραση ακτινοβολίας με την ύλη.
Επταχθντές - Ανιχνευτές Δ. Σαμψωνίδης & Κ.Κορδάς Ανιχνευτές : Μάθημα 1β Αλληλεπίδραση ακτινοβολίας με την ύλη. Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Επιταχυντές & Ανιχνευτές 8ου εξαμήνου,
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Calculating the propagation delay of coaxial cable
Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric
Hadronic Tau Decays at BaBar
Hadronic Tau Decays at BaBar Swagato Banerjee Joint Meeting of Pacific Region Particle Physics Communities (DPF006+JPS006 Honolulu, Hawaii 9 October - 3 November 006 (Page: 1 Hadronic τ decays Only lepton
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China ISSP, Erice, 7 Outline Introduction of BESIII experiment Motivation of the study Data sample
Derivation of Optical-Bloch Equations
Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be
LIGHT UNFLAVORED MESONS (S = C = B = 0)
LIGHT UNFLAVORED MESONS (S = C = B = 0) For I = 1 (π, b, ρ, a): ud, (uu dd)/ 2, du; for I = 0 (η, η, h, h, ω, φ, f, f ): c 1 (uu + d d) + c 2 (s s) π ± I G (J P ) = 1 (0 ) Mass m = 139.57018 ± 0.00035
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
Κ.Κορδάς. Ανιχνευτές : Μάθημα 2 Αλληλεπίδραση ακτινοβολίας με την ύλη.
Επταχυντές - Ανιχνευτές Κ.Κορδάς Ανιχνευτές : Μάθημα 2 Αλληλεπίδραση ακτινοβολίας με την ύλη. Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Επιταχυντές & Ανιχνευτές 8ου εξαμήνου, Α.Π.Θ Τι θα συζητήσουμε
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Nuclear Physics 5. Name: Date: 8 (1)
Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Σκέδαση αδρονίων. Λέκτορας Κώστας Κορδάς
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 4: Σκέδαση αδρονίων Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμ ιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 22 Μαρτίου 2010 Τι θα
Lecture 21: Scattering and FGR
ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3: (Ανιχνευτές,) Κινηματική και Μονάδες
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3: (Ανιχνευτές,) Κινηματική και Μονάδες Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης, 1
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
What happens when two or more waves overlap in a certain region of space at the same time?
Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields
Questions on Particle Physics
Questions on Particle Physics 1. The following strong interaction has been observed. K + p n + X The K is a strange meson of quark composition u s. The u quark has a charge of +2/3. The d quark has a charge
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact
Μάθημα 18 Αλληλεπίδραση ακτινοβολίας με την ύλη.
Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2015-16) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας Μάθημα 18 Αλληλεπίδραση ακτινοβολίας με την ύλη. Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]
d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG
Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Graded Refractive-Index
Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς. Μάθημα 2β: Πειράματα-Ανιχνευτές
Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Χ. Πετρίδου, Κ. Κορδάς Μάθημα 2β: Πειράματα-Ανιχνευτές Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Στοιχειώδη ΙΙ, Αριστοτέλειο Παν. Θ/νίκης,
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
DuPont Suva 95 Refrigerant
Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N
Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 An experimental and theoretical study of the gas phase kinetics of atomic chlorine
Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry
Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry 5th Titan Workshop at Kauai, Hawaii April 11-14, 2011 Seol Kim Outer Solar System Model Ices with
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Σύντομο Βιογραφικό Σημείωμα
Σύντομο Βιογραφικό Σημείωμα Πίνακας επιλεγμένων βιογραφικών στοιχείων Όνομα Θέση στο Έργο Θέση στο Ίδρυμα Προπτυχιακοί τίτλοι σπουδών Μεταπτυχιακοί τίτλοι σπουδών Ειδικές γνώσεις στο γνωστικό αντικείμενο
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e
LEPTONS e J = 1 2 Mass m = (548.5799110 ± 0.0000012) 10 6 u Mass m = 0.510998902 ± 0.000000021 MeV me + m e /m < 8 10 9, CL = 90% qe + + q / e e < 4 10 8 Magnetic moment µ =1.001159652187 ± 0.000000000004
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is
Fundamental Physical Constants Complete Listing Relative std. Quantity Symbol Value Unit uncert. u r
UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 (exact) magnetic constant µ 0 4π 10 7 NA 2 = 12.566 370614... 10 7 NA 2 (exact) electric constant 1/µ 0 c 2 ε 0 8.854 187 817... 10 12 Fm 1 (exact)
6.4 Superposition of Linear Plane Progressive Waves
.0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
CERN-ACC-SLIDES
CERN-ACC-SLIDES-2014-0002 13/05/2014 Francesco.Broggi@mi.infn.it Francesco.Broggi@cern.ch RESMM 14 Wroclaw May13 th 2014 Ti5 Nb 3 Sn cable SimpleGeo Plot 1.0x10 12 Activity Decay After Irradiation LHe
Three coupled amplitudes for the πη, K K and πη channels without data
Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ
Ó³ Ÿ. 2014.. 11, º 4(188).. 817Ä827 Š Œ œ ƒˆˆ ˆ ˆŠ ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ Ÿ.. ² ± Ì,. Œ. ŠÊ Íμ,.. μ ± Ö 1, Œ. ƒ. μ ±μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê Ò Ê²ÓÉ ÉÒ ³ ÒÌμ μ ÉÖ ²ÒÌ μ μ É μ μ ²Ê μ±μ - Ê Ê μ³ Ö
Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ Νικόλας Χριστοδούλου Λευκωσία, 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ
4.4 Superposition of Linear Plane Progressive Waves
.0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive
Monolithic Crystal Filters (M.C.F.)
Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over
Forced Pendulum Numerical approach
Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.
Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz
Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)
Variational Wavefunction for the Helium Atom
Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer
Σε περίπου 200 µέρες θα ξεκινήσει το LHC
Μαθηµα 3 0 8-5-2007 Σε περίπου 200 µέρες θα ξεκινήσει το LHC Οι ανιχνευτές στη φυσική Στοιχειωδών Σωµατιδίων Για να κατανοήσουµε τα δεδοµένα που καταγράφονται από διαφορετικά ανιχνευτικά συστήµατα και
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Aluminum Electrolytic Capacitors (Large Can Type)
Aluminum Electrolytic Capacitors (Large Can Type) Snap-In, 85 C TS-U ECE-S (U) Series: TS-U Features General purpose Wide CV value range (33 ~ 47,000 µf/16 4V) Various case sizes Top vent construction
dx A β δ: παράμετρος πυκνότητας, πόλωση του μέσου, ενέργεια πλάσματος τι περιμένουμε 1/ 2 πτώση Ένα ελάχιστο: minimum ionizing particle: MIP
de/ Bethe Bloch de πzn rmc e e γ β mc e δ z ln β A β I δ: παράμετρος πυκνότητας, πόλωση του μέσου, ενέργεια πλάσματος 1/ πτώση τι περιμένουμε Ένα ελάχιστο: minimum ionizing particle: MIP 0.1 1 10 100 p/m
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
10.0 C N = = = electrons C/electron C/electron. ( N m 2 /C 2 )( C) 2 (0.050 m) 2.
Electric Forces and Fields Section Review, p. 633 Givens Chapter 17 3. q 10.0 C q 10.0 C N 6.5 10 19 electrons 1.60 10 19 C/electron 1.60 10 19 C/electron Practice 17A, p. 636 1. q 1 8.0 C q 8.0 C r 5.0
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
CMOS Technology for Computer Architects
CMOS Technology for Computer Architects Iakovos Mavroidis Giorgos Passas Manolis Katevenis Lecture 13: On chip SRAM Technology FORTH ICS / EURECCA & UoC GREECE ABC A A E F A BCDAECF A AB C DE ABCDAECF
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006
ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση
3/6/2010. Γ. Τσιπολίτης
1 Bubble Chamber Ένας μεγάλος κύλινδρος γεμάτος με υγρό υδρογόνο σε θερμοκρασία πάνω από το κανονικό σημείο βρασμού βρίσκεται υπό πίεση περίπου 10 Atm με τη βοήθεια ένα μεγάλου πιστονιού. Όταν ένα φορτισμένο
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
Μαθηµα 20 Ανιχνευτές
Μαθηµα 2 0 Ανιχνευτές 5-3-2015 Οι ανιχνευτές στη φυσική Στοιχειωδών Σωµατιδίων Για να κατανοήσουµε τα δεδοµένα που καταγράφονται από διαφορετικά ανιχνευτικά συστήµατα και πως αναλύονται χρειάζεται να γνωρίζουµε
ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΥΣΤΗΜΑΤΩΝ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΥ / ΥΝΑΜΙΚΗΣ & ΘΕΩΡΙΑΣ ΜΗΧΑΝΩΝ ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ