Information*Loss*and* Entanglement*in* Quantum*Theory* Jürg%Fröhlich% ETH%Zurich%&%IHES%

Σχετικά έγγραφα
6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Statistical Inference I Locally most powerful tests

Bayesian modeling of inseparable space-time variation in disease risk

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Abstract Storage Devices

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Solution Series 9. i=1 x i and i=1 x i.

Hadronic Tau Decays at BaBar

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Partial Differential Equations in Biology The boundary element method. March 26, 2013

5.4 The Poisson Distribution.

The challenges of non-stable predicates

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Dr. D. Dinev, Department of Structural Mechanics, UACEG

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

2 Composition. Invertible Mappings

Finite Field Problems: Solutions

Quantum Systems: Dynamics and Control 1

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Homomorphism of Intuitionistic Fuzzy Groups

Notes on the Open Economy

Commutative Monoids in Intuitionistic Fuzzy Sets

Πτυχιακή Εργασία Η ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΤΩΝ ΑΣΘΕΝΩΝ ΜΕ ΣΤΗΘΑΓΧΗ

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Strain gauge and rosettes

Démographie spatiale/spatial Demography

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Homomorphism in Intuitionistic Fuzzy Automata

Models for Probabilistic Programs with an Adversary

Exercises to Statistics of Material Fatigue No. 5

Math 6 SL Probability Distributions Practice Test Mark Scheme

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Fractional Colorings and Zykov Products of graphs

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ

Η θέση ύπνου του βρέφους και η σχέση της με το Σύνδρομο του αιφνίδιου βρεφικού θανάτου. ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Solutions to Exercise Sheet 5

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:

ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Distances in Sierpiński Triangle Graphs

Lecture 2. Soundness and completeness of propositional logic

w o = R 1 p. (1) R = p =. = 1

On the Galois Group of Linear Difference-Differential Equations

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Higher Derivative Gravity Theories

Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

FSM Toolkit Exercises

PRESENTATION TITLE PRESENTATION SUBTITLE

Elements of Information Theory

ST5224: Advanced Statistical Theory II

Lecture 21: Scattering and FGR

I haven t fully accepted the idea of growing older

Lifting Entry (continued)

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Can I open a bank account online? Ερώτηση αν μπορείτε να ανοίξετε τραπεζικό λογαριασμό μέσω του ίντερνετ

Test Data Management in Practice

The Simply Typed Lambda Calculus

Approximation of distance between locations on earth given by latitude and longitude

ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

6. MAXIMUM LIKELIHOOD ESTIMATION

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

ΚΒΑΝΤΙΚΟΙ ΥΠΟΛΟΓΙΣΤΕΣ

Matrices and Determinants

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

PRESENTATION TITLE PRESENTATION SUBTITLE

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE

European Constitutional Law

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

The ε-pseudospectrum of a Matrix

Προσωπική Aνάπτυξη. Ενότητα 4: Συνεργασία. Juan Carlos Martínez Director of Projects Development Department

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Section 8.3 Trigonometric Equations

Living and Nonliving Created by: Maria Okraska

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Α. Διαβάστε τις ειδήσεις και εν συνεχεία σημειώστε. Οπτική γωνία είδησης 1:.

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Part III - Pricing A Down-And-Out Call Option

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

Precision Metal Film Fixed Resistor Axial Leaded

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Ερώτηση και Αίτηση Κατάθεσης Εγγράφων Προς τον κ. Υπουργό Ανάπτυξης και Ανταγωνιστικότητας

Calculating the propagation delay of coaxial cable

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Transcript:

Information*Loss*and* Entanglement*in* Quantum*Theory* Jürg%Fröhlich% ETH%Zurich%&%IHES%

Some-basic-claims-to-be-justi>ied,-afterwards)- 1. The%quantum'mechanical-state-the% wave%function )%does% not-have%an% ontological%status.%it%does%not-describe% what% is.%it%is%a%mathematical%device%enabling%us%to%make%bets% about%what%may%happen%in%the%future.% 2. In%the%presence%of%information%loss%and%entanglement%with% lost%degrees%of%freedom,%pure-states-typically%evolve%into% mixed-states-without%violation%of%any%basic%principles%of% quantum%theory),%and%it%is%this%fact%that%makes%a%rational% theory%of%measurements/observations%possible!%% 3. Without%fundamental%loss-of-information-and%entanglement%% of%observed%degrees%of%freedom%with%unobservable/ lost - degrees%of%freedom,%retrieval%of%information%about% quantum%systems%by%measurements/observations%would% actually%be%impossible.%%

Basic-claims,-ctd.- 4. No%information'%or%unitarity-paradoxes%in%quantum% theory,%even%if%spacertime%is%curved,%e.g.,%in%the% presence%of%black%holes)!%time%evolution%of%states%of% quantum%systems%exhibiting%information%loss%and% entanglement%with%unobservable%degrees%of%freedom% that,%for%example,%may%have%disappeared%in%a%heat% bath,%or%escaped%towards%intinity,%or%have%fallen% through%a%horizon%of%a%black%hole)%is%actually%never% unitary% %it%is% treerlike!% 5. Operator%algebras%including%type%III 1 %factors!)%and% other%sophisticated%mathematical%tools%have%been% invented%to%be%used-in%quantum%theory,%rather%than%to% be%ignored!%% %

CreditsandContents: Motivation from recent experiments, in particular the onesoftheharoche1raimondgroup;papersbybauer& Bernard,Maassen&Kümmerer,andothers;jointwork with my former PhD student Baptiste Schubnel;some joint efforts with Ballesteros, Faupin, Fraas, Pickl, Schilling, Schubnel); discussions with Detlev Buchholz andothers. 1. Introduction 2. InformationLoss 3. ProjectivevonNeumann)measurements 4. Conclusions

1.%Introduction% %Questions%to%be%Addressed% In our courses, we tend to describe quantumg mechanical systems as pairs of a Hilbert space,, and a propagator, Ut,s), describing timegevolution. Unfortunately,thesedataencodealmostnoinvariant structurebesides spectral properties of Ut,s)) and give the erroneous impression that quantum theory might be deterministic. Thus, among fundamental problemsofquantumtheoryare: Whatdowehavetoaddtotheusualformalism ofquantumtheoryinordertoarriveatamatheg maticalstructurethatthrough interpretation ) canbegivenphysicalmeaning,independentlyof observers?

%%%%%%%%%%%%%%%%%%%%%%%%%%%%Questions,%ctd.% Where% does% intrinsic- randomness- in% quantum% theory% come% from,% given% the% deterministic% character% of% the% Schrödinger%equation?%In%which%way%does%it%differ%from% classical%randomness?% Do% we% understand% the% effective- dynamics- of% quantum% systems,% e.g.,% ones% in% contact% with% a% heat% bath% Quantum- Brownian- Motion ),! or% systems% under% repeated%measurements"exhibiting quantum-jumps )?% What% do% we% mean% by% an% isolated- system - in% quantum% mechanics,% and% why% is% this% an% important% notion?% How% does%one%prepare%a%system%in%a%prescribed-state?% %%%%%Answers%and%insight%come%from-understanding%roles%of% Information-Loss-&-Entanglement-

2.%Information%Loss% Asimple1mindeddeUinitionofquantum1mechanicalsystems: Anisolatedquantumsystem,S,ischaracterizedby followingchoices: i)u=unitarypropagator) ii)alist,,ofbounded,selfadjoint operatorsonrepresentingphysicalquantities/ potentialpropertiesofsthatcanbemeasured/ observedindirect projectivemeasurements ; Smustbeanisolatedsystemchosenlargeenoughfor quantitiesrepresentedby,tobemeasureable).

Information%Loss,%ctd.% ChooseTiducialtime,t 0,anddeTineHeisenbergpicture) tobetheoperatorrepresentingthepot.prop.corresp. toattimet;!listofops. Pot.properties,,measureable/observableattimes s tgenerateaw*1alg.,: 1) " 2) #InformationLoss!

DeTine Information%Loss,%ctd.% sothat isa*endom;nota*autominformationloss """"""""""""" entanglementwith lost degreesoffreedom! Itiseasytoconstructexamplesofgenerallynon1 autonomous)quantumsystemsexhibitinginformationloss, inthesenseofeq.2): 1) Independent probes,e j,j=1,2,3,,withe j being destroyedattimeτj,τdiscretetimestep) 2) Small systemstemporarilyinteractingwithquantized wavemedium,e.g.,photons,phonons,etc.)

%%3)Information-loss-in-theories-like-QED% %see%buchh.rrob.- Allops.in arelocalized in for t > t 0 worldlineofjf

3.%An%application:%Projective%von%Neumann)% measurement% Wewillnowdiscusshowphys.quantitiesaremeasuredprojectively.% Somefundamentalquestionstobeaddressed: 1) Whatismeantbya measurement of?aroundwhich timetdoesittakeplace?ameasurementofoughttoresult in havingavalue,i.e.,becomean empirical/objective property ofs at%some%time%t.%proj.-measnts.-vs.-indirect-kraus)-measnts.)- 2)%%Given%a%state%of%S,%does%QM-predict%which%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%will%be%measured%tirst;%what%does%qm-predict%about%the%% %%%%%%%%outcome%of%%measnt.%of%%%%%%?%in%which%way%is%qm-intrinsically% %%%%%%%%indeterministic?%why%does%a%measnt.%of%%%%%%%have%a-random-- --------outcome?%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% "

Projective%measurements,%ctd.% Projective-measurements- We%have%to%clarify%what%may%be%meant%by%a%projectivemeasurement-of%a%potential%property%%%%%%%%%%%%%%%%%%%%and%what%the% role%of%information-loss-&-entanglement-in%measnts.%is:% % % % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%A4)%%%%%%%%%%%% % %%%%%%%% Measurement/observation -of%%%%%%%%around%time%t% %%%%%%%%%%%is%an% empirical/objective-property -of%s-around%time%t-:- % 3)

Projective%measurements,%ctd.- """"State%%%%%%%is%an%incoherent-superposition-of%eigenstates%of%%%%%,%%%%%%- -------------------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------------------,-4)-- - %%%%%where%%%%%%%%%is%the%state%of%%s--right%before%measnt.%of%%%%%,%i.e.,%% % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%""5) % %%%%%Information-Loss------------------------------is%usually%a%mixed%state%% %%%%%on%%%%%%%%%%even%if%the%initial%state%of%s-has%been%pure,%as%a%% %%%%%state%on%%%%%%%!%

Projective%measurements,%ctd.% Suppose,%for%simplicity,%that%%%%%%%%%%is%isomorphic%to%some% B t ),%i.e.,%%%%%%%%%is%of%%%%%%%%%%%%%%%%%%%%%%%%syst.%non'autonomous)%%% %%%%%%%%%%%%%%%%%%%%%%Eq.%4)6) ----------------------------------------------De>inition- % %%%%%%%%%%%%%%%%%%is%measured/observed%around%time%t---------------is%an% empirical/objective-prop. -of%s-around%time%t----iff" --------------------------------------------------------------------------------------------------------%%7) and%some%z-in%the%center%of%%%%%%%%%..%more%generally,%%%%%%%%%%% belongs%%to%the%center-of-the-centralizer-of-the-state-------,------- Note%that%R.S.%of%7)%is%cond.expectation%of%%%%%%%%%%%w.r.%to% %%%%%%%%%%%%Eq.%7)%%%%%%%%Eq.%4)!%%$%%TomitaRTakesaki%theory!)% " -

Projective%measurements,%ctd.- Axiom-A- If%%%%%%%is%measured%i.e.,%an%empirical/objective%prop.%of%S)% around%time%%t--then%%%%%%%has%a%value%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%around% time%%t.-- - - --------------------------------------------------------------------------------------------------------%8)- ------------ ----------------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------%%%%%%%%%%%%%%9) --------------------------------------------------------------------------------------------------------- should%be%used%for%improved%predictions%of%future%after% time%t.-eq.8)isborn srule,eq.9) collapse-postulate.)% %%%%%%%%%%%%%%%%% -

Projective%measurements% %summary% 1) Given%the%initial-state-of%the%system%S,"time-evolution,% {Ut,s)},%determines%which%pot.%prop.%%%%%%%%%%%%%%%%%%%will%Tirst%be% measured%i.e.,%become%empirical/objective),%and%around% which%time!% 2) Measnt.%of%%%%%%%%%is%independent-of%an%earlier-measnt.%of%%%%%%%%% iff%%%%%%%%%%becomes%empirical/objective%after-time%of%measnt.% of%%%%%%%%%,%no%matter%what%the%outcome%of%measnt.%of%%%%%%%was,%% i.e.,%for-all-states---------------,-j=-1,- -,-k,-with%%%%%%%%%%%%%%%%as%in%9).% -------Decoherence,- consistent-histories.- 3) Time%of%measurement:--Time,%%t *-,%of%observation%of%%%%%%%%% %%%%%%%det.%by%minimizing%in%%t%%the%fu.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%where%%%%%%%%%----------is%the% cond.-exp. -of%%%%%%%%%%%%%onto%%%%%%%%%%%%%- 4) %%%%%%%%%%=%center%of%centralizer%of%%%%%%%%%%%)%contains%all%phys.%% %%%%%%%%quantities%observable%at%time%t.% %%%%%%% -

Projective%measurements% %summary% 5)%A%state%is%called% passive -iff%the%center,%%%%%%%%%,%of%the%% %%%%%%%centralizer%of%%%%%%%%%%%is%time'independent.%there%are%plenty%of%% %%%%%%%examples%of%passive%states:% %%%%%%%Equilibrium%KMS)%states%at%positive%temperature%in%% %%%%%%%%%%%QFT;%KMS%states%of%a%QFT%in%the%spaceRtime%of%a%static% %%%%%%%%%%%black%hole.% %%%%%%%Perturbations%of%the%vacuum%state%by%coherent%clouds%of%% %%%%%%%%%%%massless%particles%e.g.,%of%photons% %courtesy%of%d.%%%% %%%%%%%%%%%Buchholz).% Passive%states%have%the%property%that%they%do%not%admit-anyprojective-measurements/observations%of%any%physical%quantities% % besides%measurements%of%time'independent-parameters% characteristic%of%the%state%in%question,%e.g.,%the%temperature%or%a% chemical%potential%of%an%equilibrium%state,%which,%indeed,%are% timerindependent%quantities).%

4.%Conclusions% Wehavetolearnmoreaboutwhichstatesandwhichtypesof timeevolutionsofisolatedsystemsallowfornon1trivial measurements/observationsoftime1dependentphysical quantitiessatisfyingaxioma. Needforilluminatingexamplesandmodels! Ex.:Dynamics ofatwoglevelatominaheatbathmonitoredbyphoton detectors,see,e.g.,deroeckgderezinski,bauergbernardg ): P t : occupation prob. of upper level, dw t : Brownian motion;, p: consts.) Statesofquantumsystemsdonothaveany ontological signiticance.the ontology ofqtresidesintimegordered sequencesof events =resultsofprojectiveorindirect observationsaccompaniedbyinfo.lossandentanglement withunobservabledegreesoffreedom).

EffectiveDynamics JürgFröhlich ETHZurich&IHES Paris,March2015! Why!should!I!blame!anyone!but!myself!if!I!cannot!understand! what!i!know!nothing!about?! PabloPicasso!

CreditsandContents Credits: Abou!Salem,!Albanese,!Bach,!Ballesteros,!Bauerschmidt,!Benettin,!!!! Blanchard,!De!Roeck,!Faupin,!Fraas,!Gang,!Giorgilli,!Griesemer,!Knowles,! Merkli,!Pizzo,!Schenker,!Schlein,!Schnelli,!Schubnel,!Schwarz,!Sigal,! Spencer,!Ueltschi,!Wayne.!! Today,tworecentexamplesfromquantumtheory,with:Schenker;! Ballesteros,!Fraas,!Schubnel!! Contents:! 1. Introduction surveyofexamples 2. ThermalnoisekillsAndersonlocalization 3. DynamicsofaQuantumSystemunderrepeatedmeasurements 4. Indirect+measurements+&+ pointer+observables 5. Analogy+to+classical+statistical+mechanics+ 6. Effective+dynamics+of+pointer+observables 7. Conclusions

1.!Introduction!!survey!of!examples!! Returntoequilibrium Masterequations,kineticlimit,etc. examples:equilibrationofspinsoroscillators,thermalionization, easyhalfof0 th!law, ;withb&sig;m seealsojac&pil) Relaxationtoagroundstate scatteringtechniques,cluster expansionsinreal[timevariable[derexample:decayofexcited atomormolecule;preparationofstatesinqm,etc.;withgr,s;schub) ApproachtoaNESSortoaNEtime[periodicstate scattering techniques,resonancetheoryforliouvillians,dynamicswithentropy! production,!onsagerrelationsapplication:e.g.,2 nd! Law!of! Thermodynamics;withM&Ue,A[S) AndersonLocalization multi&scale+analysis,smalldenominators examples:absenceofdiffusionforaquantumparticleinarandom[ or1dqppotential,absenceofheattransportindisorderedarraysof anharmonicoscillators, ;withsp;sp&w;a;b&g)

Survey!of!examples,!ctd.! QuantumBrownianMotion,position[spacedecoherence, equipartition derivationofdiffusivemotion from scratch example:atomwithdinitelymanyinternalstatescoupledto aqmheatbathandhoppingonalattice;withder,piz) Staticdisorderand!thermalnoise:Weakdiffusivetransport examples:dyn.ofabec,electrontransportinasparselypopulated conductionbandofadisorderedsemi[conductor:withj.schenker) Quantum[andHamiltonianFriction frictionthroughemissionof Cherenkov!radiation!examples:heavyatommovingthroughaBose gasexhibitingbec;dipolemovingthroughopticallydensemedium; withgangzhou&sof) Dynamicsofquantumsystemssubjectedtorepeatedmeasurements, emergenceoffactsinqm statisticsofmeasurementprotocols, stochasticevolutioneqs.,largedeviations; theoryofknowledge acquisition.

Survey!of!examples,!ctd. example:experimentsofharoche[raimondgroup,electron conductioninpresenceofcoulombblockade,etc.;withb,f,sch) Dynamics+in+limiting+regimes+ mean[dieldlimit,kineticlimit Gross[PitaevskiidescriptionofBosegases,Bogliubov[)Hatree[Fock: e.g.,neutronstars;point[particlelimitofnlhartreeeq.,etc.;with Schwarz,Kn.andothers) Postmodern!examples!of!effective!dynamics:! Quantumchaosvs.quantumintegr.behavior;e.v.statistics, Quantumquenches,dynamicalproblemsrelatedtohardhalfof0 th! Law!of!Thermodynamicse.g., ETH ) Many[bodylocalizationseealsoresultsw.A;Sp&W;B&G) Veryfastprocesses,suchasionization,involvinglaser)lightF[P[S) Dynamicsofinvertedpopulationsdynamicsofnegative[ temperatureinitialstates;entanglementdynamics; ) Unfortunately,Idon thavemuchtosayabouttheseexamples,yet who!has? Iwilllimitmyattentiontoquantum!systems!

2.!Thermal!noise!kills!Anderson!localization!! with!j.!schenker)! Inthissectionweconsideraquantumparticlehopping onthesimplecubiclattice,d!=2,3,underthe indluenceofarandom!potential!andcoupledtoaheat! bathatsomepositivetemperature.thestateofthe particleisdescribedbyaone[particledensitymatrix,.1) ThedynamicsofisdescribedbyaLiouvilleequation 2) wheret!denotestime,andisthe Liouvillian givenby a Lindblad!generator!oftheform

Thermal!noise,!ctd.!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!,!!!!!!!!!!!!!!!!!!3) wherethehamiltonian 4) isastandardrandom!schrödinger!op.!anderson Hamiltonian),witharandom potentialtheareiidrv swith,e.g.,bd.distr.,,of cpt.support),g!!isa gain!term!andl!!isa loss!term. Introducingthevariables, wecanwritetheintegralkernelofasafunctionof,i.e.,as.theng!andl!aregiven

Thermal!noise,!ctd.! bytheformulae 5) wherethekernelsatisdiesadetailed[balance conditionatthetemperatureoftheheatbathw.r.t. thekineticenergy,,oftheparticle). Ourmainresultisthefollowingtheorem.

Thermal!noise,!ctd. Theorem.ConsiderEq.2)for,with. Ifthecouplingconstantg!>0thenthediffusion!constant!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! wheredenotesanexpectationw.r.totheproduct measureexistsandsatisdies

Thermal!noise,!ctd.!! existsandisdinite. Theproof!ofthistheoremmakesuseofthefollowing formalism.letωdenotethespaceofrandomvariables ω[).wededinethehilbertspace Fouriertransformationofvectors,Ψ,inisdedinedby LetdenotetheFouriertransformof.

Thermal!noise,!ctd. Thensatisdiestheequation where= Fouriertransformof seeblackboard). ThenthediffusionconstantD/d!isgivenbytheexpression Dediningthevector,wedindthat TheR.S.canbeestimatedusingtheFeshbach[Schurmap. Well,thisisalittlesketchy!Butdetailsarefairlyeasy.)