Premia 14 Closed Formula Methods

Σχετικά έγγραφα
4.6 Autoregressive Moving Average Model ARMA(1,1)

Part III - Pricing A Down-And-Out Call Option

Inverse trigonometric functions & General Solution of Trigonometric Equations

Approximation of distance between locations on earth given by latitude and longitude

2 Composition. Invertible Mappings

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Homework 3 Solutions

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Section 8.3 Trigonometric Equations

Second Order RLC Filters

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Solution Series 9. i=1 x i and i=1 x i.

Homework 8 Model Solution Section

Concrete Mathematics Exercises from 30 September 2016

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Every set of first-order formulas is equivalent to an independent set

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Solutions to Exercise Sheet 5

Parametrized Surfaces

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

6.3 Forecasting ARMA processes

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Matrices and Determinants

Example Sheet 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Other Test Constructions: Likelihood Ratio & Bayes Tests

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

The Simply Typed Lambda Calculus

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

C.S. 430 Assignment 6, Sample Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

D Alembert s Solution to the Wave Equation

Statistical Inference I Locally most powerful tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Higher Derivative Gravity Theories

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Uniform Convergence of Fourier Series Michael Taylor

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ST5224: Advanced Statistical Theory II

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Math221: HW# 1 solutions

EE512: Error Control Coding

Second Order Partial Differential Equations

Areas and Lengths in Polar Coordinates

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Reminders: linear functions

Areas and Lengths in Polar Coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Mean-Variance Analysis

If we restrict the domain of y = sin x to [ π 2, π 2

The challenges of non-stable predicates

Instruction Execution Times

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Homomorphism in Intuitionistic Fuzzy Automata

Notes on the Open Economy

Problem Set 3: Solutions

Finite Field Problems: Solutions

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Oscillatory integrals

Differential equations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Section 7.6 Double and Half Angle Formulas

EE101: Resonance in RLC circuits

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ECON 381 SC ASSIGNMENT 2

( ) 2 and compare to M.

Fractional Colorings and Zykov Products of graphs

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

( y) Partial Differential Equations

Strain gauge and rosettes

w o = R 1 p. (1) R = p =. = 1

CRASH COURSE IN PRECALCULUS

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

DuPont Suva 95 Refrigerant

Section 8.2 Graphs of Polar Equations

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

On a four-dimensional hyperbolic manifold with finite volume

Transcript:

19 pages 1 Premia 14 Closed Formula Methods Routine cf_spm_nig.c Routine cf_hullwhite1d_zbputeuro.c Routine cf_hullwhite1d_zcbond.c Routine cf_hullwhite1d_payerswaption.c Routine cf_hullwhite1d_zbcalleuro.c Routine cf_hullwhite1d_floor.c Routine cf_hullwhite1d_receiverswaption.c Routine cf_hullwhite1d_cap.c Routine cf_libor_affine_cir1d_capfloor_fourier.c Routine cf_libor_affine_cir1d_swaption_fourier.c Routine cf_libor_affine_cir1d_capfloor_direct.c Routine cf_libor_affine_cir1d_swaption_direct.c Routine cf_carr_bns.c Routine cf_attari_bns.c Routine cf_callma.c Routine cf_echange.c Routine cf_putmin.c Routine cf_bharchiarella1d_zcbond.c Routine cf_cgmy_varianceswap.c Routine cf_rogersveraart2.c Routine cf_merhes_varianceswap.c Routine cf_carr_merhes.c Routine cf_attari_merhes.c Routine cf_put_merhes.c Routine cf_call_merhes.c Routine cf_swaptionhw2d.c Routine cf_caphw2d.c Routine cf_zcbondhw2d.c Routine cf_zbputeurohw2d.c Routine cf_floorhw2d.c Routine cf_zbcalleurohw2d.c Routine cf_attari_dps.c Routine cf_carr_dps.c Routine cf_jarrowyildirim1d_yyiis.c Routine cf_jarrowyildirim1d_iicaplet.c

19 pages 2 Routine cf_gaussianmapping_cds.c Routine cf_call_merton.c Routine cf_put_merton.c Routine cf_cirpp1d_zcbond.c Routine cf_cirpp1d_payerswaption.c Routine cf_cirpp1d_zbcalleuro.c Routine cf_cirpp1d_cap.c Routine cf_cirpp1d_receiverswaption.c Routine cf_cirpp1d_zbputeuro.c Routine cf_cirpp1d_floor.c Routine cf_hes_varianceswap.c Routine cf_attari_heston.c Routine cf_call_heston.c Routine cf_carr_heston.c Routine cf_put_heston.c Routine cf_libor_affine_gou1d_capfloor_fourier.c Routine cf_libor_affine_gou1d_swaption_fourier.c Routine cf_vasicek1d_cap.c Routine cf_vasicek1d_zcbond.c Routine cf_vasicek1d_floor.c Routine cf_vasicek1d_zbcalleuro.c Routine cf_vasicek1d_receiverswaption.c Routine cf_vasicek1d_zbputeuro.c Routine cf_vasicek1d_payerswaption.c Routine cf_rogersveraart1.c Routine cf_cir1d_zbcalleuro.c Routine cf_cir1d_zcbond.c Routine cf_cir1d_zbputeuro.c Routine cf_varianceswap_dhes.c Routine cf_carr_doubleheston.c Routine cf_callupout.c Routine cf_putdownout.c Routine cf_callupin.c Routine cf_putupout.c Routine cf_putdownin.c Routine cf_calldownin.c Routine cf_putupin.c Routine cf_calldownout.c Routine cf_call.c Routine cf_digit.c Routine cf_callspread.c

19 pages 3 Routine cf_put.c Routine cf_putin_kunitomoikeda.c Routine cf_callin_kunitomoikeda.c Routine cf_putout_kunitomoikeda.c Routine cf_callout_kunitomoikeda.c Routine cf_fied_calllookback.c Routine cf_floating_putlookback.c Routine cf_floating_calllookback.c Routine cf_fied_putlookback.c Routine cf_hullwhite1dgeneralized_receiverswaption.c Routine cf_hullwhite1dgeneralized_zbcalleuro.c Routine cf_hullwhite1dgeneralized_zbputeuro.c Routine cf_hullwhite1dgeneralized_floor.c Routine cf_hullwhite1dgeneralized_cap.c Routine cf_hullwhite1dgeneralized_payerswaption.c Routine cf_quadratic1d_zbputeuro.c Routine cf_quadratic1d_cap.c Routine cf_quadratic1d_zbcalleuro.c Routine cf_quadratic1d_floor.c Routine cf_quadratic1d_payerswaption.c Routine cf_quadratic1d_zcbond.c Routine cf_quadratic1d_receiverswaption.c Contents 1 The Black and Scholes model 4 2 Standard European Options 5 2.1 Call Options............................ 5 2.2 Put Options............................ 5 2.3 Call Spread Options....................... 5 2.4 Digit Options........................... 6 3 European Barrier Options 6 3.1 Down-Out Call Options..................... 8 3.2 Down-Out Put Options...................... 8 3.3 Up-Out Call Options....................... 9 3.4 Up-Out Put Options....................... 9 3.5 Down-In Call Options...................... 9 3.6 Down-In Put Options....................... 10

19 pages 4 3.7 Up-In Call Options........................ 10 3.8 Up-In Put Options........................ 11 4 Double Barrier European Option 11 4.1 Knock-Out Call Options..................... 12 4.2 Knock-Out Put Options..................... 13 4.3 Knock-In Call Options...................... 13 4.4 Knock-In Put Options...................... 13 5 Lookback European Options 14 5.1 Fied Lookback Call Options.................. 14 5.2 Fied Lookback Put Options................... 15 5.3 Floating Lookback Call Options................ 16 5.4 Floating Lookback Put Options................. 16 6 Standard 2D European Options 17 6.1 Call On the Maimum...................... 17 6.2 Put On the Minimum....................... 18 6.3 Echange Options........................ 18 6.4 Best Of Option.......................... 18 1 The Black and Scholes model Suppose the underlying asset price (S t, t 0) evolves according to the Black and Scholes model with continuous yield δ, that is ds s = S s ((r δ)ds + db s ), S t = From now on, we denote by T = maturity date (T t) θ = T t b = r δ K = strike price In the following, we state the closed form solutions for the price of options whose payoff is given by f(s T ), being f a suitable function, i.e. for the quantity F(t, ) = E [ e rθ f(s T ()) ].

19 pages 5 2 Standard European Options We have the general version of the Black-Sholes Formula [4] to price European options on stocks paying a continuos dividend yieald. In this section, we set: d 1 = log ( ) ( ) K + b + 2 d 2 = d 1 and N as the cumulative normal distribution function: 2.1 Call Options N(d) = 1 2π d Payoff C T = (S T K) + e 2 /2 d. Price C(t, ; K) = e δθ N(d 1 ) Ke rθ N(d 2 ) Routine cf_call.c C(t, ; K) = e δθ N(d 1 ) 2.2 Put Options Payoff P T = (K S T ) + Price P (t, ; K) = Ke rθ N( d 2 ) e δθ N( d 1 ) Routine cf_put.c P (t, ) = e δθ N( d 1 ) 2.3 Call Spread Options Payoff CS T = (S T K 1 ) + (S T K 2 ) + Price CS(t, ) = C(t, : K 1 ) C(t, ; K 2 ) CS(t, ) Routine cf_callspread.c = C(t, : K 1) C(t, : K 2)

19 pages 6 2.4 Digit Options Payoff : C T = { K if ST K, 0 Price : C(t, ) = Ke rθ N(d 1 ) : Routine cf_digit.c C(t, ) = e rθ K e d2 2 /2 2πθ 3 European Barrier Options Barrier options are known as knock-out if the value of the option nullifies if the underlying asset price reaches a fied barrier before the maturity date and knock-in if it does not. We use the names up-out and up-in call/put options, or down-out and down-in call/put options, to stress if the considered barrier is an upper or lower one. Reiner-Rubinstein [3] have developed formulas for pricing standard barrier options with cash rebate R. We set here: A = φe δθ N(φ 1 ) φke rθ N(φ 1 φ) B = φe δθ N(φ 2 ) φke rθ N(φ 2 φ) C = φ( L )2(µ+1) e δθ N(ηy 1 ) φke rθ ( L )2µ N(ηy 1 η) D = φ( L )2(µ+1) e δθ N(ηy 2 ) φke rθ ( L )2µ N(ηy 2 η) E = Re rθ [ N(η 2 η) ( L )2µ N(ηy 2 η) ] F = R( L )µ+λ N(ηz) + ( L )µ λ N(ηz 2ηλ))

19 pages 7 and da = φe δθ N(φ 1 ) db = φe δθ N(φ 2 ) + e δθ n( 2 ) (1 k) θ l dc = 1 φ2µ [ ) 2µ ( L e δθ L 2 N(ηy 2 1 ) Ke rθ N(ηy 1 η) φ ( ) 2(µ+1) L e bθ N(ηy 1 )] [ ) dd = 2µ φ 2µ ( L se δθ L 2 N(ηy 2 2 ) Ke rθ N(ηy 2 ) ( N ηy 2 η φ ( ) 2µ+2 L e δθ) N(ηy 2 ) φη ( ) 2µ+2 L e δθ] n(y ( ) 2) 1 k l [ de = 2 R e rθ ( L )2µ N(ηy 2 η)µ + η n(ηy 2 ] θ) where df = R ( L )µ+λ [ (µ + λ)n(ηz) + (µ λ)( L )2λ] 2ηR( L )µ+λ n(z) 1 = log(/k) y 1 = log(l2 /K) z = log(l/) + (1 + µ) 2 = log(/l) + (1 + µ) y 2 = log(l/) + λ µ = b 2 /2 2 λ = µ 2 + 2r 2 + (1 + µ) + (1 + µ) and η, φ are suitable numbers belonging to { 1, 1} (see net sections for details). Let M t,t = sup S τ and m t,t = inf S τ t τ T t τ T

19 pages 8 3.1 Down-Out Call Options and take Payoff C T = Price C(t, ) = C(t, ) Routine cf_calldownout.c = (S T K) + if m t,t L, R A C + F if KL B D + F da dc + df if KL db dd + df η = 1 φ = 1 3.2 Down-Out Put Options Payoff P T = Price P (t, ) = and take P (t, ) = Routine cf_putdownout.c (K S T ) + if m t,t L, R A B + C D + F if KL, F da db + dc dd + df if KL, df η = 1 φ = 1

19 pages 9 3.3 Up-Out Call Options Payoff C T = Price C(t, ) = and take C(t, ) = Routine cf_callupout.c (S T K) + if M t,t < L, R. F if KL, A B + C D + F df if KL, da db + dc dd + df η = 1 φ = 1 3.4 Up-Out Put Options and take Payoff P T = Price P (t, ) = Routine cf_putupout.c P (t, ) = η = 1 (K S T ) + if M t,t < L, R. B D + F if KL, A C + F db dd + df if KL, da dc + df φ = 1 3.5 Down-In Call Options Payoff C T = Price C(t, ) = P (t, ) = R if m t,t L, (S T K) +. C + E if KL, A B + D + E dc + de if KL, da db + dd + de

19 pages 10 and take η = 1 φ = 1 Routine cf_calldownin.c 3.6 Down-In Put Options and take Payoff P T = Price P (t, ) = P (t, ) Routine cf_putdownin.c = η = 1 R if m t,t L, (K S T ) +. B C + D + E if KL, A + E db dc + dd + de if KL, da + de φ = 1 3.7 Up-In Call Options and take Payoff C T = Price P (t, ) = C(t, ) = R if M t,t < L, (S T K) +. A + E if KL, B C + D + E da + de if KL, db dc + dd + de η = 1 φ = 1 Routine cf_callupin.c

19 pages 11 3.8 Up-In Put Options and take Payoff P T = Price P (t, ) = C(t, ) = η = 1 R if M t,t < L, (K S T ) +. A B + D + E if KL, C + E da db + dd + de if KL, dc + de φ = 1 Routine cf_putupin.c 4 Double Barrier European Option A double barrier option is knock-in or knock-out if the underlying price reaches or not a lower and/or an upper boundary prior to epiration. The eact value for double barrier call/put knock-out options is given by the Ikeda-Kunitomo formula [5], which allows to compute eactly the price when the boundaries suitably depend on the time variable t. More precisely, set U(s) = Ue δ 1s L(s) = Le δ 2s where the constants U, L, δ 1, δ 2 in are such that L(s) < U(s), for every s [t, T]. The functions U(s) and L(s) play the role of upper and lower barrier respectively. δ 1 and δ 2 determine the curvature and the case of δ 1 = 0 and δ 2 = 0 corresponds to two flat boundaries. The numerical studies suggest that in most cases it suffices to calculate the leading five terms of the series giving the price of the knock-out and knock-in double barrier call options. Let τ stand for the first time at which the underlying asset price S reaches at least one barrier, i.e. τ = inf{st ; S s L(s) or S s U(s)}.

19 pages 12 We define the following coefficients: µ 1 = 2 b δ 2 n(δ 1 δ 2 ) 2 + 1 µ 2 = 2 n(δ 1 δ 2 ) 2 µ 3 = 2 b δ 2 + n(δ 1 δ 2 ) 2 + 1 4.1 Knock-Out Call Options (S T K) + if τt Payoff C T = 0 + [ Price C(t, ) = e δθ (U n )µ1 ( L n= L n ( L n+1 U n [ (U n where F = Ue δ 1θ and Ke rθ + n= ) µ2 ( N(d + 1 ) N(d+ 2 )) ) µ3 ( N(d + 3 ) N(d+ 4 )) )µ1 2 ( ) L µ2 ( N(d L n 1 ) N(d 2 ) ) ( ) L n+1 µ3 2 ( N(d U n 3 ) N(d 4 ) ) ] d ± 1 = log(u 2n /KL 2n ) + ( ) b ± 2 d ± 3 = log(l2n+2 /KU 2n ) + ( ) b ± 2 d ± 2 = log(u 2n /FL 2n ) + ( ) b ± 2 d ± 4 = log(l2n+2 /FU 2n ) + ( b ± 2 2 ) θ Routine cf_callout_kunitomoikeda.c

19 pages 13 4.2 Knock-Out Put Options (K S T ) + if τt Payoff P T = 0 + [ Price P (t, ) = Ke rθ (U n )µ1 2 ( ) L µ2 ( N(y n= L n 1 ) N(y 2 )) ( ) L n+1 µ3 2 ( N(y U n 3 ) N(y 4 )) e δθ + n= [ (U n where E = Le δ2θ and y 1 ± = log(u 2n /EL 2n ) + ( ) b ± 2 y 3 ± = log(l2n+2 /EU 2n ) + ( ) b ± 2 Routine cf_putout_kunitomoikeda.c )µ1 ( L L n ( L n+1 U n ) µ2 ( N(y + 1 ) N(y + 2 ) ) ) µ3 ( N(y + 3 ) N(y + 4 ) ) y 2 ± = log(u 2n /KL 2n ) + ( ) b ± 2 y 4 ± = log(l2n+2 /KU 2n ) + ( b ± 2 2 ] ) θ 4.3 Knock-In Call Options The double barrier knock-in call option is priced via the no-arbitrage relationship between knock-out and knock-in option: European IN + European OUT = European Standard Routine cf_callin_kunitomoikeda.c 4.4 Knock-In Put Options The double barrier knock-in call option is priced via the no-arbitrage relationship between knock-out and knock-in option: European IN + European OUT = European Standard

19 pages 14 Routine cf_putin_kunitomoikeda.c 5 Lookback European Options Floating strike lookback options can be priced using Goldman-Sosin-Gatto formula [2] while fied strike lookback options can be priced using Conze- Viswanathen formula[7]. We set, as 0 u v T, M u,v = sup S τ and m u,v = inf S τ u τ v u τ v and d 1 = log ( ) ( ) K + b + 2 e 1 = log ( ) ( ) M 0,t + b + 2 f 1 = log ( ) ( ) M 0,t + b + 2 d 2 = d 1 e 2 = e 1 f 2 = f 1 5.1 Fied Lookback Call Options Payoff C T = (M t,t K) + Both price and delta depend on K and M 0,t. if K > M 0,t then Price C(t, ) = e δθ N(d 1 ) Ke rθ N(d 2 ) [ ( ) rθ 2 ( +e 2 N d 1 ) ] θ + e bθ N(d 1 ) K ( ) C(t, ) = e δθ N(d 1 ) 1 + 2 + e δθ n(d 1) K n(d 2 ) e rθ ( ) +e rθ 2 N ( ) ( ) d 1 t 1 2 K

19 pages 15 if K M 0,t then Price C(t, ) = e rθ (M 0,t K) + e δθ N(e 1 ) M 0,t e rθ N(e 2 ) ( ) ( rθ 2 +e 2 N e 1 ) θ + e bθ N(e 1 ) C(t, ) M 0,t = e δθ N(e 1 )(1 + 2 ) + n(e 1) e δθ M e rθ 0,t ) ( ) +e rθ M 0,t Routine cf_fied_calllookback.c 2 N ( e 1 t ) ( 1 2 n(d 2 ) 5.2 Fied Lookback Put Options Payoff P T = (K m t,t ) + Both price and delta depend on K and m 0,t. if K < m 0,t then Price P (t, ) = Ke rθ N( d 2 ) e δθ N( d 1 ) [ ( ) rθ 2 ( +e 2 N d 1 + ) ] θ e bθ N( d 1 ) K ( ) P (t, ) = e δθ N(d 1 ) 1 + 2 + e δθ n(d 1) K n(d 2 ) e rθ if K m 0,t then +e rθ ( K ) 2 N ( d 1 + t ) ( 2 1) e δθ ( 2 Price P (t, ) = e rθ (K m 0,t ) e δθ N( f 1 ) + m 0,t e rθ N( f 2 ) ( ) ( rθ 2 +e 2 N f 1 + ) θ e bθ N( f 1 ) P (t, ) m 0,t ( = e δθ 1 + 2 ) ( ) +e rθ M 0,t 1 (N(f 1 ) 1) + e δθ n(f 1) M e rθ 0,t 2 N ( ) ( f 1 + 2 ) t 1 ) n(d 2 )

19 pages 16 Routine cf_fied_putlookback.c 5.3 Floating Lookback Call Options Payoff C T = S T m t,t Price C(t, ) = e δθ N(f 1 ) m 0,t e rθ N(f 2 ) ( ) rθ 2 +e 2 N ( ) f 1 + θ e bθ N( f 1 ) C(t, ) m 0,t ( = e δθ N(f 1 ) rθ 2 e + e rθ ) 1 + 2 + e δθ n(a 1) ( ) ( 2 N f 1 + m 0,t Routine cf_floating_calllookback.c t ) ( 2 1 ) 5.4 Floating Lookback Put Options Payoff P T = M t,t S T Price P (t, ) = M 0,t e rθ N( e 2 ) e δθ N( e 1 ) ( ) rθ 2 +e 2 N ( ) e 1 θ + e bθ N(b 1 ) P (t, ) M 0,t ( ) ( = e δθ N(e 1 ) 1 + 2 + e rθ ( ) ( ) e rθ n(b1 ) M 0,t 1 Routine cf_floating_putlookback.c M 0,t ) ( 2 N + e δθ ( n(b1 ) 1 ) e 1 ) ) t (1 2 ]

19 pages 17 6 Standard 2D European Options Consider the pair of processes S t = (St 1, S2 t ) solution to ds 1 t = S1 t ((r δ 1)dt + 1 dw 1 t ), S1 0 = 1 ds 2 t = S2 t ((r δ 2)dt + 2 dw 2 t ), S2 0 = 2. where (Wt 1 2, t 0) and (Wt, t 0) denote two real valued Brownian motions with istantaneous correlation ρ. The price of option with payoff f is: F(t, 1, 2 ) = E [ e rt f ( S 1 T (1 ), S 2 T (, 2 ) )]. Here, closed formulas due to Johnson and Stulz are presented [1],[6]. We set d = log 1 2 + ( ) δ 2 δ 1 + 2 theta = 1 2 + 2 2 2ρ 1 2 log ( ) ( ) i K + r δ i + 2 i 2 θ d i =, i = 1, 2 1 θ ρ 1 = 1 ρ 2 ρ 2 = 2 ρ 1 and M as the cumulative bivariate normal distribution function: M(a, b; ρ) = 6.1 Call On the Maimum Payoff C T = (ma(s 1 T, S2 T ) K) + 1 a b 2π e 2 2ρy+y 2 1 ρ 2 2(1 ρ 2 ) ddy. Price C(t, 1, 2 ) = 1 e δ 1θ M(d 1, d; ρ 1 ) + 2 e δ 2θ M(d 2, d + ; ρ 2 ) Ke rθ ( 1 M( d 1 + 1 θ, d2 + 2 θ; ρ) ) C(t, 1, 2 ) 1 = e δ 1θ M(d 1, d; ρ 1 ) C(t, 1, 2 ) 2 = e δ 2θ M(d 2, d + ; ρ 2 )

19 pages 18 Routine cf_callma.c 6.2 Put On the Minimum Payoff P T = (K min(s 1 T, S 2 T)) + Price P (t, 1, 2 ) = Ke rθ c 0 + c 1 where P (t, 1, 2 ) 1 = e δ 1θ (1 N(d)) + e δ 1θ M(d 1, d; ρ 1 ) P (t, 1, 2 ) 2 = e δ 2θ N(d ) + e δ 2θ M(d 2, d ; ρ 2 ) c 0 = 1 e δ 1θ (1 N(d)) + 2 e δ 2θ N(d ) c 1 = 1 e δ 1θ M(d 1, d, ρ 1 ) + 2 e δ 2θ M(d 2, d ; ρ 2 ) Routine cf_putmin.c Ke rθ M(d 1 1 θ, d2 2 θ; ρ) 6.3 Echange Options Payoff E T = (S 1 T λs 2 T)) + where Price E(t, 1, 2 ) = 1 e δ 1θ N( d 1 ) λ 2 e δ 2θ N( d 2 ) d 1 = log ( ) ( ) 1 λ 2 + δ2 δ 1 + 2, d 2 = ˆd 1 θ Routine cf_echange.c 6.4 Best Of Option The payoff is B T = (ma(s 1 T K 1, S 2 T K 2 ))) +.

19 pages 19 References [1] H.JOHNSON. Options on the maimum ot the minimum of several assets. J.Of Finance and Quantitative Analysis, 22:227 283, 1987. 17 [2] B.M.GOLDMAN H.B.SOSIN M.A.GATTO. Path dependent options: buy at low, sell at high. J. of Finance, 34:111 127, 1979. 14 [3] E.REINER M.RUBINSTEIN. Breaking down the barriers. Risk, 4:28 35, 191. 6 [4] F.BLACK M.SCHOLES. The pricing of Options and Corporate Liabilities. Journal of Political Economy, 81:635 654, 1973. 5 [5] N.KUNIMOTO N.IKEDA. Pricing options with curved boundaries. Mathematical finance, 2:275 298, 1992. 11 [6] R.STULZ. Options on the minimum or the maimum of two risky assets. J. of Finance, 10:161 185, 1992. 17 [7] A.CONZE R.VISWANATHAN. Path dependent options: the case of lookback options. J. of Finance, 46:1893 1907, 1992. 14