Primordial non-gaussianity from inflation

Σχετικά έγγραφα
Non-Gaussianity from Lifshitz Scalar

Dark matter from Dark Energy-Baryonic Matter Couplings

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Hadronic Tau Decays at BaBar

Constitutive Relations in Chiral Media

Lecture 21: Scattering and FGR

Cosmological Perturbations from Inflation

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Sampling Basics (1B) Young Won Lim 9/21/13

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Cosmological dynamics and perturbations in Light mass Galileon models

Space-Time Symmetries

Lukasz STAWARZ. on Behalf of the Fermi LAT Collaboration.

Forced Pendulum Numerical approach

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

ST5224: Advanced Statistical Theory II

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Higher Derivative Gravity Theories

EE512: Error Control Coding

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Section 8.3 Trigonometric Equations

Matrices and Determinants

Derivation of Optical-Bloch Equations

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Lifting Entry (continued)

Graded Refractive-Index

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Durbin-Levinson recursive method

Homework 3 Solutions

the total number of electrons passing through the lamp.

3+1 Splitting of the Generalized Harmonic Equations

[1] P Q. Fig. 3.1

Second Order RLC Filters

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.3 Forecasting ARMA processes

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

Higher spin gauge theories and their CFT duals

Μετρήσεις ηλιοφάνειας στην Κύπρο

Statistical Inference I Locally most powerful tests

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Wavelet based matrix compression for boundary integral equations on complex geometries

Supporting Information

Spectrum Representation (5A) Young Won Lim 11/3/16

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Srednicki Chapter 55

6.003: Signals and Systems. Modulation

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Εξοικονόμηση Ενέργειας σε Εγκαταστάσεις Δρόμων, με Ρύθμιση (Dimming) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

X g 1990 g PSRB

Μεταπτυχιακή διατριβή

UV fixed-point structure of the 3d Thirring model

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Ala Wai Drogue Survey

Bayesian modeling of inseparable space-time variation in disease risk

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΘΕΩΡΗΤΙΚΗ ΚΑΙ ΠΕΙΡΑΜΑΤΙΚΗ ΙΕΡΕΥΝΗΣΗ ΤΗΣ ΙΕΡΓΑΣΙΑΣ ΣΚΛΗΡΥΝΣΗΣ ΙΑ ΛΕΙΑΝΣΕΩΣ

Elements of Information Theory

Calculating the propagation delay of coaxial cable

Weak Lensing Tomography

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Example Sheet 3 Solutions

2.1

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Finite difference method for 2-D heat equation

Galatia SIL Keyboard Information

( y) Partial Differential Equations

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Notes on the Open Economy

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

BandPass (4A) Young Won Lim 1/11/14

Eulerian Simulation of Large Deformations

Περίληψη (Executive Summary)

[Note] Geodesic equation for scalar, vector and tensor perturbations

1 String with massive end-points

Theory of Cosmological Perturbations

Table A.1 Random numbers (section 1)

The challenges of non-stable predicates

Abstract Storage Devices

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

CorV CVAC. CorV TU317. 1

Research on Economics and Management

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Supplementary Appendix

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

TUNING FORK TUNES. exploring new scanning probe applications


Numerical Analysis FMN011

Reforming the Regulation of Political Advocacy by Charities: From Charity Under Siege to Charity Under Rescue?

Variational Wavefunction for the Helium Atom

Transcript:

Quantum Universe, Groningen 7 th March 0 Primordial non-gaussianity from inflation David Wands Institute of Cosmology and Gravitation University of Portsmouth wor with Chris Byrnes, Jon Emery, Christian Fidler, Gianmassimo Tasinato, Kazuya Koyama, David Langlois, David Lyth, Misao Sasai, Jussi Valiviita, Filippo Vernizzi review: Classical & Quantum Gravity 7, 400 00 arxiv: 004.088

COBE launched 990, data 994 WMAP NASA launched 00, latest data 0

NASA

5!".9?%@%.6A%#$".*"*%,-*6!%-7%8/,-*/"!%9-#,-!-0+! ESA

ε = n 4 π P δ +, P π B,, + = δ + Wiipedia: AllenMcC

5!".9?%@%.6A%#$".*"*%,-*6!%-7%8/,-*/"!%9-#,-!-0+! +,-.#/%#%0!##4505!fNL!45#/5&!6! 78#9:!%!9,%050!;%0<!=5,>! fnl f NL B,, = P P + P P + P P

inflation primordial non-gaussianity

+ +,, B + + +,, B + + 8,, B

t = curvature perturbation on uniform-density hypersurface in radiation-dominated era φ,t i N = final initial Hdt on large scales, neglect spatial gradients, solve as separate universes N = N i I φ φ, t N δφ +... Starobinsy 85; Salope & Bond 90; Sasai & Stewart 96; Lyth & Rodriguez 05; Langlois & Vernizzi... I I

δφi = δφ I + δφi = + +... = e.g., < > I N φ I +... δφ + I I N δφi + φ I I, J N φ φ I I δφ Iδφ J +... N N N N N N sub-hubble field interactions super-hubble classical evolution Byrnes, Koyama, Sasai & DW arxiv:0705.4096

= δφ δφ Φ =/5... 5......... + = + = + = + + = f N N N N N NL δφ δφ δφ δφ δφ δφ δφ N N N

= N δφ + N 6 τ NL δφ + N δφ +... N N N g NL N N N N τ NL 6f NL /5 < T P > = < B > N

local f NL f Ω χ, decay local NL ε N = O << N f local NL n Maldacena 00 Creminelli & Zaldarriaga 004

Vχ χ - light field, m<<h, during inflation acquires almost scale-invariant, Gaussian distribution of field fluctuations δχ on large scales - quadratic energy density for free field, ρ χ =m χ / - spectrum of initially isocurvature density perturbations χ δρ χ δχ ρ χ χ - transferred to radiation when curvaton decays with some efficiency, 0<r<, where r Ω χ,decay =r χ r δχ χ

simplest quadratic curvaton: V=m χ / first-order perturbations =r χ where r= Ω χ 4 Ω χ decay second-order perturbations = r r f NL = 5 4r 5 5r 5 6 4 third-order perturbations = 9 r + +0r+r g NL = 5 6r r 8 0r 9 r 9 Predictions of the simplest quadratic curvaton model: for r f NL = 5 4, g NL = 9 for r << f NL >>, τ NL = 6 5 f NL >> g NL = 0 f NL

local f NL f Ω χ, decay local NL ε N = O << N f local NL n Maldacena 00 Creminelli & Zaldarriaga 004 Lyth & Wands 00 L 4 ϕ + +... = ϕ f equil NL c s Cheung et al 008

c M eff equil s = f NL Meff + 4θ cs << M eff θ θ f local NL

Constraints on f NL non-gaussianity WMAP9 constraints using estimators based on optimal templates: Local: - < f NL < 77 95% CL Bennett et al 0-5.6 < g NL / 05 < 8.6 Ferguson et al; Smidt et al 00 Equilateral: - < f NL < Orthogonal: -445 < f NL < -45 LSS constraints on local ng from galay power spectrum: Local: -9 < f NL < 70 95% CL Slosar et al 008 [SDSS] 7 < f NL < 7 95% CL Xia et al 00 [NVSS survey of AGNs] -7 < f NL < 0 95% CL Giannantonio et al 0-4.5 < g NL / 0 5 <.6 [cross-correlating SDSS+NVSS] Planc constraints Ade et al March 0 Local: f NL =.7 ± 5.8 68% CL Equilateral: f NL = -4 ± 75 Orthogonal: f NL = -5 ± 9

Constraints on f NL non-gaussianity WMAP9 constraints using estimators based on optimal templates: Local: - < f NL < 77 95% CL Bennett et al 0-5.6 < g NL / 05 < 8.6 Ferguson et al; Smidt et al 00 Equilateral: - < f NL < Orthogonal: -445 < f NL < -45 LSS constraints on local ng from galay power spectrum: Local: -9 < f NL < 70 95% CL Slosar et al 008 [SDSS] 7 < f NL < 7 95% CL Xia et al 00 [NVSS survey of AGNs] -7 < f NL < 0 95% CL Giannantonio et al 0-4.5 < g NL / 0 5 <.6 [cross-correlating SDSS+NVSS] Planc constraints Ade et al March 0 Local: -9.8 < f NL < 4. 95% CL Equilateral: -9 < f NL < 08 Orthogonal: -0 < f NL < 5

signals in the data: Large-scale anomalies Lac of power at low multipoles Hemispherical power asymmetry Dipole modulation? Octopole L= feature in trispectrum? Oscillatory features in the bispectrum? step inflation? resonant features in the potential e.g., aion-mondromy? features in the power spectrum? Folded bispectrum = = non-bunch-davies vacuum? -sigma result

5!".9?%@%.6A%#$".*"*%,-*6!%-7%8/,-*/"!%9-#,-!-0+! +,-.#/%#%0!##4505!fNL!45#/5&!6! 78#9:!%!9,%050!;%0<!=5,>! fnl f NL B,, = P P + P P + P P

non-linearity parameter Sasai, Valiviita & Wands 006 see also Mali & Lyth 006 c.f. eact numerical calculation Planc σ bound r > 0.09

Intrinsic bispectrum of CMB Eisting non-gaussianity templates based on non-linear primordial perturbations + linear Boltzmann codes CMBfast, CAMB, etc Second-order general relativistic Boltzmann codes now available Pitrou 00: CMBquic in Mathematica: f NL ~ 5? Huang & Vernizzi Paris Pettinari, Fidler et al Portsmouth Su, Lim & Shellard Cambridge & London 4 Analytical approimation Numerical bispectrum 0 need templates for secondary non-gaussianity e.g. lensing-isw induced tensor and vector modes from density perturbations testing interactions at recombination δρ e.g., gravitational wave production δρ 00 500 800 00 400 700 000 h

δ = δ +δ +...

.5.0 bias to f NL 0.5 0 0.5 500 000 500 000 500 000 angular scale L ma

.4. signal of intrinsic bispectrum signal of local model with f NL =.0 S / N 0.8 0.6 0.4 0. 0 0 500 000 500 000 500 000 500 angular scale L ma

Non-Gaussian outloo: Complementary to power spectrum detection of primordial non-gaussianity would ill tetboo single-field slow-roll inflation models requires multiple fields and/or unconventional physics No evidence yet for fnl-type non-gaussianity Large fnl is dead long-live fnl = O Need more data Planc 04 + large-scale structure surveys Euclid+SKA? Non-Gaussianity has been detected non-linear physics inevitably generates non-gaussianity infinite variety of non-gaussianity possible need to disentangle primordial and generated non-gaussianity