- :..... ( ). :., Snowdon.. Frohrib Jennige -.[ ]...[ ] Ghannadi-Asl Zahrai..,.[ ]... Frahm Frahm [ ] Den Hartog. mzahrai@ut.ac.ir, hashemif@conwag.com
. - Den Hartog g(t)=0 ω f(t)=p 0 sinωt. ω y st =P 0 /K :[] y R = y max st 2 2 2 2 ( α β ) + ( 2ξα αβ) 2 2 2 2 2 2 2 2 ( α β )( 1 β ) α β + ( 2ξαβ α ) ( 1 β β ) = 2 2 β=ω/ω s : α=ω a /ω s 2 ω a = k m 2 ω s = K M µ=m/ M ξa = c cc = c 2mω a.. ξ a β α µ ξ α = µ = [ ]. β (ξ=// ).. M ξ a.. P. Q ξ a α α. : 1 = 1 + 2 R = 1+ Zahrai.[ ].[ ] ] [.... ) 1 1 1 :.( My () t + Cy () t + Ky () t = cz () t + kz () t + f () t mz () t + cz () t + kz () t = - my () t + g() t 1 y 1 (t) k c, z(t) K C f(t). g(t).[ ] m/m µ µf(t) : ( ) 1 1 1 M + m y () t + Cy () t + Ky () t = f () t + g() t mz () t m f(t)+g(t) f(t) m z(t) ].[ [ ].
ادامه جدول شماره 1 µ ξ s R opt / / / / / / / / / / / / / / / ξ Brock Q P β R ξ :[ ] ξ opt = 3 8 1 ( + ) / / /. - R Q P.. Ikeda Loi..[ ] ξ a α Warburton (.[ ] () ξ s ξ a ξ s < ) µ.. - Wirsching. Campbell. [ ]... ( )... β. [ ] (α = µ =)... µ ξ s R opt / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
). (... -.... ) - g ( ) - (.. % % % K TMD (kg/s 2 ) C TMD (kg/s) M TMD (kg) % % % % % % % % % % % % T (sec) :.. : [ ]..... Citicorp ( ). mg. (g ). ±.. - -. %. % %.. [] SAP2000. ( Non-Linear Link ) Damper Nllink
. - :. - -.. x. AB A.. ( )...... y x ) x (. ( ). % : % m m 0.05 = 79300 = M..
. x.. F(t)=10000 [] Reed Park sinπt... %....... ) - ( ) - (. g. % % % % % % % % % -.. % % % % - % % %. % %.
..... (ξs =% ).. % =% ξ s =% = = =% µ : (ξs =% ). ( ). - -. :. - - -.( ).... % % K TMD (kg/s 2 ) C TMD (kg/s) M TMD (kg) % % T (sec).. ( )
..... % % / / / K TMD (kg/s 2 ) C TMD (kg/s) M TMD (kg) / / T (sec) % % % %. % % / / / K TMD (kg/s 2 ) C TMD (kg/s) M TMD (kg) / / T (sec) % % % % ). (.. -.... :. - - - ( ).
. %.. % %.... (fluctuations) ( ). ). ( ( ).. % % / / K TMD (kg/s 2 ) C TMD (kg/s) M TMD (kg) / / T (sec) % %..... % % % / / / / / K TMD (kg/s 2 ) C TMD (kg/s) M TMD (kg) / / / T (sec) % % % % % %...
(MTMD). - - -. -. -. -... y x [] Lin..... - : [] -. -......... -... ( ). ( ) - - ( ) % % % % % %. % % % % % % %. % %..
Earthquake Excitation, Engineering Structures, Vol.23, 2001, PP. 802-814. [12] Lin, C.C., Ueng, J.M., Haung, T.C., Seismic Response Reduction of Irregular Buildings Using Passive Tuned Mass Dampers, Engineering Structures, Vol. 21, 1999, PP. 513-524.... ( ).. () [1] Soong, T.T., Dargush, G.F., Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons Ltd, 1987. [2] Den Hartog, J.P., Mechanical Vibrations, 4 th edition, McGraw-Hill, NY, 1956. [3] Jennige, R.L., Frohrib, D.A., Alternative Tuned Absorbers for Steady State Vibration Control of Tall Structures, J. Mech. Des., ASME, Paper No. 77-DET-84, 1977, PP. 1-7. [4] Soong, T.T., Spencer, B.F., Supplemental Energy Dissipation, State-of-the-Art and State-of-the-Practice, Engineering Structures, Vol. 24, 2002, PP. 243-259. [5] Zahrai, S.M., Ghannadi_Asl, A., Seismic Performance of TMDs in Improving the Response of MRF Buildings, Scientia Iranica, Vol. 18, No. 1, 2008. [6] Zahrai, S.M., Dehghan-Niri, E., Mohtat, A., Design Methodology for MTMD Performance Optimization Using a New Criterion for Robustness, COMPDYN European conference on computational methods in structural dynamics and earthquake engineering, Rethymno, Greece, 2007. [7] Kwok, K.C.S., Samali, B., Performance of Tuned Mass Dampers Under Wind Loads, Engineering Structures, Vol.17, No.19, 1995, PP. 655-667. [8] Rana, R., Soong, T.T., Parametric Study and Simplified Design of Tuned Mass Dampers, Engineering Structures, Vol.20, No.3, 1993, PP. 193-204. [9] Cao, H., Reinhorn, A.M., Soong, T.T., Design of an Active Mass Damper for a Tall TV Tower in Nanjing, china, Engineering Structures, Vol.20, No.3, 1998, PP. 134-143. [10] Habibullah, A., Wilson, E., SAP2000 Manual, ver.7.42, 2001. [11] Park, J., Reed, D., Analysis of Uniformly and Linearly Distributed Mass Dampers Under Harmonic and