Theory of Cosmological Perturbations

Σχετικά έγγραφα
Theory of Cosmological Perturbations

Cosmological Perturbations from Inflation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Higher Derivative Gravity Theories

Cosmological Space-Times

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Dark matter from Dark Energy-Baryonic Matter Couplings

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order Partial Differential Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Space-Time Symmetries

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Srednicki Chapter 55

Symmetric Stress-Energy Tensor

The Simply Typed Lambda Calculus

EE512: Error Control Coding

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Homework 8 Model Solution Section

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Finite Field Problems: Solutions

6.4 Superposition of Linear Plane Progressive Waves

Differential equations

1 String with massive end-points

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Reminders: linear functions

Geodesic Equations for the Wormhole Metric

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Section 8.3 Trigonometric Equations

[Note] Geodesic equation for scalar, vector and tensor perturbations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

4.6 Autoregressive Moving Average Model ARMA(1,1)

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

D Alembert s Solution to the Wave Equation

Concrete Mathematics Exercises from 30 September 2016

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Example Sheet 3 Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Every set of first-order formulas is equivalent to an independent set

Statistical Inference I Locally most powerful tests

derivation of the Laplacian from rectangular to spherical coordinates

PARTIAL NOTES for 6.1 Trigonometric Identities

Forced Pendulum Numerical approach

CRASH COURSE IN PRECALCULUS

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Approximation of distance between locations on earth given by latitude and longitude

( ) 2 and compare to M.

Problem Set 3: Solutions

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

6.3 Forecasting ARMA processes

C.S. 430 Assignment 6, Sample Solutions

Exam to General Relativity (Winter term 2011/2012) Prof. V. F. Mukhanov, LMU München Solution! Problem: 1a 1b 1c 1d 1e

Dual null formulation (and its Quasi-Spherical version)

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

3+1 Splitting of the Generalized Harmonic Equations

Numerical Analysis FMN011

4.4 Superposition of Linear Plane Progressive Waves

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Lifting Entry (continued)

Non-Gaussianity from Lifshitz Scalar

ST5224: Advanced Statistical Theory II

Second Order RLC Filters

8.324 Relativistic Quantum Field Theory II

Matrices and Determinants

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

From the finite to the transfinite: Λµ-terms and streams

Cosmology with non-minimal derivative coupling

Tutorial problem set 6,

Homework 3 Solutions

Math221: HW# 1 solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

( y) Partial Differential Equations

Other Test Constructions: Likelihood Ratio & Bayes Tests

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

NonEquilibrium Thermodynamics of Flowing Systems: 2

Congruence Classes of Invertible Matrices of Order 3 over F 2

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Tridiagonal matrices. Gérard MEURANT. October, 2008

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Relativistic particle dynamics and deformed symmetry

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Sixth lecture September 21, 2006

Transcript:

1 heory of Cosmological Perturbations Part I gauge-invariant formalism Misao Sasaki PDF files available at http://www2.yukawa.kyoto-u.ac.jp/~misao/pdf/cp/

1. Formulation Background spacetime Friedmann-Lematre-Robertson-Walker metric K = ±1, 0): ds 2 = dt 2 + a 2 t)dσ 2 K ; dσ 2 K = γ ij dx i dx j = dχ 2 + sinh2 K χ) K dω 2 2) 2 Conformal time coordinate: dη = dt a ds 2 = a 2 η) ) dη 2 + dσk 2 Energy momentum tensor in the perfect fluid form: µν = ρu µ u ν + pg µν + u µ u ν ) ; u ν dx ν = dt = adη. Friedmann equation: G 0 0 = R 0 0 1 2 R = 8πG 0 0) ȧ ) 2 + K a a = 8πG ρ, ρ + 3ȧρ + p) = 0 2 3 a ) a 2 + K = 8πG a 3 ρ a2, ρ + 3 a ρ + p) = 0 a ȧ = da ) dt a = da ). dη

3 Hereafter, we use the symbols: H = ȧ a, H = a a Spatial harmonics scalar harmonics + k 2 ) Y k = 0 γ ij D i D j ). k 2 K) for K 0 k 2 : continuous) k 2 = nn + 2)K for K > 0 n = 0, 1, 2, ) Examples in the case of K = 0: Y k = e ik x ; k 2 = k 2, or Y k = j l kχ)y lm Ω) ; k = k, l, m).

4 vector harmonics index k omitted) scalar type: Y i = k 1 D i Y, vector transverse) type: D i Y 1)i = 0, ) + k 2 Y 1)i = 0 ; + k 2 2K) ) Y i = 0. k 2 = nn + 2) 1)K for K > 0 n = 1, 2, ), k 2 2K) for K 0. tensor harmonics scalar traceless) type: Y ij = k 2 D i D j + 1 ) 3 γ ij Y, + k 2 6K ) Y ij = 0. vector traceless) type with index σ, k): σ = 1, 2): Y 1) ij = 1 ) D i Y 1) j + D j Y 1) i, + k 2 4K ) Y 1) ij = 0. 2k tensor transverse-traceless) type with index σ, k): σ = 1, 2): D j Y 2) ij = Y 2)i i = 0, ) + k 2 Y 2) ij = 0 ; k 2 = nn + 2) 2)K for K > 0 n = 2, 3, ), k 2 3K) for K 0.

Perturbation variables scalar type perturbations metric: g 00 = a 2 1 + 2Aη)Y ), g 0j = a 2 BY j = a 2B ) k D jy, 5 matter: g ij = a 2 [1 + 2H L Y )γ ij + 2H Y ij ] [ ] = a 2 1 1 + 2RY )γ ij + 2H k 2D id j Y ; R H L + 1 3 H. µ ν = ρũ µ ũ ν + τ µ ν ; ρ = ρ1 + δ Y ), ṽ i ũi u = v Y i = v ) 0 k Di Y u 0 = a) 1 ũ0 = u 0 1 AY ) from ũ µ ũ µ = 1 ) τ i j = p [ ] δj1 i + π L Y ) + π Y i j

geometrical meaning 3 + 1)-decomposition: 6 ds 2 = a 2 η)dŝ 2 ; dŝ 2 = Ñ 2 dη 2 + γ ij dx i + Ñ i dη)dx j + Ñ j dη). ~i N dη xi=const. ~ Ndη η + dη =const. η =const. extrinsic curvature: ñ µ dx µ = Ñdη hypersurface normal : Ñ = 1 + AY lapse function, Ñ i = BY i shift vector. ˆK ij = H kb)y ij = kσ g Y ij σ g 1 k H B shear of η =const. hypersurface.

expansion : 7 θ 1 a 4 µ a 3 ñ µ ) = 3 a a 1 + K gy ) = 3H 2 a 1 + K gy ) K g A + H R 1 k ) 3 σ g 3-curvature: In particular, δ s ˆRi jmn = D m δ s Γ i jn D n δ s Γ i jm ; δ s Γ i jm = 1 2 γil D m δγ lj + D j δγ lm D l δγ jm ), s ˆR = 6K + 4k 2 3K) δγ ij = 2H L γ ij + 2H Y ij. H L + 1 ) 3 H Y = 6K + 4k 2 3K)RY. R intrinsic curvature perturbation potential).

Gauge transformation properties 8 x x µ x µ = x µ + ξ { µ η = η + Y, x i = x i + LY i. his induces a gauge transformation, x ξ x x=x+ ξ x ḡ µν = g µν ξ µ;ν + ξ ν;µ ) [ ] in general, Q{A} = Q {A} L ξ Q {A}. {A} spacetime indices)

metric: ) H = a a 9 Ā = A H lapse ) B = B + L + k H L = H L k σ g = σ g k 3 L H R = R H H = H + kl σ g = 1 ) k H B shear R = H L + 1 ) 3 H curvature matter: δ = δ + 31 + w)h v = v + L w p ) ρ v B) = v B) k ) π L = π L + 3c 2 1 + w w c w H 2w p ρ π = π ~ Ndη ~i N dη xi=const. v i dη η + dη =const. u µ η =const. v i ~ + N i )d η =v-b )Y idη Blue quantities depend only on the choice of time-slicing.

gauge-invariant variables 4 metric variables 2 gauge variables = 2 degrees of freedom) 10 Ψ A 1 ) σ k g + H σ g, σ g = 1 ) k H B Φ R H k σ g. R = H L + 1 ) 3 H s δ + 3 H k 1 + w)σ g V v 1 k H = v B) σ g shear of 4-velocity ũ µ Γ π L c2 w w δ pγ = δp c2 wδρ ) entropy perturbation Π π anisotropic stress perturbation. Ψ = A, Φ = R, s = δ, V = v B on σ g = 0 hypersurface. Shear-free slicing or Newton slicing

Other popular choices: 11 R c R H k v B) = Φ H k V, σ g) c = V, A c A 1 k [v B) + Hv B)] = Ψ 1 k [V + H V ] δ + 3 H k 1 + w)v B) = s + 3 H k 1 + w)v, Velocity-orthogonal or comoving slicing v B = 0) ζ R + 1 31 + w) δ = R c + 1 31 + w) Curvature perturbation on uniform density slices δ = 0) f δ + 31 + w)r = + 31 + w)r c = 31 + w)ζ Density perturbation on flat slices R = 0)

vector type perturbations 12 Ñ 1) j = B 1) Y 1) j, γ 1) ij = γ ij + 2H 1) Y 1) ij. gauge transformation: ṽ 1)j = aũ [ 1)j = v 1) Y 1)j ], τ 1)i j = p δj i + π 1) Y 1) ij. x j = x j + L 1) Y 1)j gauge-invariant variables: { B1) = B 1) + L 1), H 1) = H 1) + kl 1). v 1) = v 1) + L 1), π 1) = π 1). 2 metric variables 1 gauge variable = 1 degree of freedom) σ 1) g = 1 k H1) B 1), V 1) = v 1) B 1), Π 1) = π1). tensor type perturbations [ ] γ 2) ij = γ ij + 2H 2) Y 2) ij. τ 2)i j = p δj i + π 2) Y 2) ij Both H 2) and π 2) are gauge-invariant by themselves..

2. Einstein equations in terms of gauge-invariant variables Scalar type perturbations Einstein equations: δg µ ν = 8πGδ µ ν : δg 0 0 = 2 a 2 [ 3H 2 A + H kσ g 3H R k 2 3K)R ] Y δg 0 j = 2 a [kh A 2 kr + Kσ g ] Y j δg i j = 2 [ ) 2H + H 2 k2 A + H A + k ) σ a 2 3 3 g + 2H σ g R 2HR 1 ] 3 k2 3K)R δjy i 13 + 1 a 2 [ k 2 A + kσ g + 2Hσ g ) k 2 R ] Y i j δ 0 0 = ρ δ Y, δ 0 j = ρ + p)v B)Y j, δ i j = pγ + c 2 wρ δ)δ i jy + pπ Y i j. N.B. pγ + c 2 wρ δ = δp) he above equations depend only on the choice of time slicing. ie, they are spatially gauge-invariant.

Energy-momentum conservation: 14 δ 0 ν ;ν ) = 0 : δ + 3H [ c 2 w w)δ + wγ ] + k1 + w)v B) + 1 + w)3r kσ g ) = 0. δ j ν ;ν ) = 0 : v B) + H1 3c 2 w)v B) = ka + k c2 wδ + wγ 1 + w 2k 3 hese are also spatially gauge-invariant. w 1 + w 1 3Kk ) π 2. o obtain gauge-invariant equations, it is simplest to set a gauge time-slicing) condition that fixes the time slices completely. gauge-invariance complete gauge-fixing Gauge-invariant quantities are NO necessarily directly related to observables Advantage of gauge-invariant formalism is because one does not have to choose a particular gauge while dealing only with physical degrees of freedom, not because the values of the gauge-invariant variables are physical by themselves.

15 Example: choose σ g = 0 Newton slicing), so that A = Ψ, R = Φ, δ = s, v B = V. δg 0 0 = 8πGδ 0 0 : δg 0 j = 8πGδ 0 j : 1 a 2 [ 3HHΨ Φ ) k 2 3K)Φ ] = 4πGρ s, 1) k a 2 [HΨ Φ ] = 4πGρ + p)v, 2) δg i j = 8πGδ i j) traceless : k2 a 2 [Ψ + Φ] = 8πpΠ. 3) δg i j = 8πGδ i j) trace : ) 1 [2H + H 2 k2 Ψ + H Ψ a 2 3 Φ 2HΦ 1 ] 3 k2 3K)Φ = 4πGp [ Γ + c 2 wρ s ]. 4) Combining Eqs. 1) and 2) [Hamiltonian and momentum constraints] gives k 2 3K Φ = 4πGρ [ a 2 s + 3 Hk ] 1 + w)v = 4πGρ. 5) Eqs. 3) and 5) algebraically determine Φ and Ψ in terms of and Π. Combining Eqs. 1), 3) and 4), one can derive 2nd order differential equation for Φ. Alternatively, one may appeal to the energy-momentum conservation laws. contracted Bianchi identities)

16 ν δ j ;ν ) = 0 on shear-free Newton) slices : V + H1 3c 2 w)v = kψ + k c2 w s + wγ 1 + w s = 3 Hk ) 1 + w)v 2k 3 w 1 + w 1 3Kk 2 ) π V + H V = kψ + k c2 w + wγ 1 + w 2k w 1 3Kk ) π 3 1 + w 2 6) Ψ = Φ 8πGρ ) a2 w 4πGρ a2 Π k 2, Φ = k 2 3K δ 0 ν ;ν ) = 0 on comoving slices : + 3H [ c 2 w w) + wγ ] + 1 + w) 3R c + kv ) = 0 ; R c = Φ H ) k V k a [HΨ 2 Φ ] = 4πGρ + p)v, V =, 3wH = 1 3Kk ) [1 + w)kv + 2H wπ 2 ] 7) Combining Eqs. 6) and 7) gives a 2nd order differential equation for.

17 + 1 + 3c 2 w 2w) ) H + [ c 2 sk 2 3K) 4πGρa 2 1 + 3w)1 w) + 6w c 2 w) ) + 34w 3c 2 w)k ] = S c [ ] S c = k 2 δp)c c 2 3K) sδρ) c 2 1 3Kk ) H wπ ρ 2 +2 [3w 2 2w + 3c 2w)H 2 + 4w c 2w)K + c2 wk 2 ] 1 3Kk ) 3 2 Master equation for equation for sound waves) Π In the Newtonian, non-relativistic limit w 1, c 2 s 1), + H + c 2 sk 2 4πGρ a 2) S c, + 2H c 2 + s k 2 ) 4πGρ S c a 2 a 2 dispersion relation: ωeff 2 = c2 sk 2 4πGρ Jeans instability: for c 2 w p /ρ = p/ ρ c 2 s) ) k k gravitationally unstable for a < 4πGρ a c 2 s a 2 J or λ > λ J πc 2 s Gρ

Vector type perturbations 18 δg 0 j = 8πGδ 0 j : δg i j = 8πGδ i j : σ g 1) + 2Hσ g 1) k2 2K σ 1) 2a 2 g = 8πG1 + w)ρ V 1). = 8πρa 2w k Π1). Either combining these two or directly from the momentum conservation, For Π 1) δ i µ ;µ ) = 0 : = 0 adiabatic), σ 1) g 1 a 2, V 1) Vorticity Ω: V 1) + 1 3c 2 w)h V 1) = k2 2K 2k 1 ρ1 + w)a 4 1 a 1 3w 1 ρ w/1+w) a his is just the vorticity conservation law. w 1 + w Π1). ) for w = const. Ω µν P α µ u [α;β] P β ν ; P µν = g µν + u µ u ν. Ω ij = a k V 1) Z ij Z ij = 1 ) k D [jy 1) i], Ω ij Ω ij = k2 a 2 V 1) 2 Z ij Z ij ρ w/1+w) S Ω =const. S: area a 2 ).

19 ensor type gravitational wave) perturbations For K = 0, Π 2) δg i j = 8πGδ i j : H 2) Ḧ 2) + 2H H 2) + k 2 + 2K)H 2) = 8πG p a 2 Π 2) + 3H Ḣ2) + k2 + 2K H 2) a 2 = 8πG p Π 2) = 0, this is the same as the field equation for a massless minimal scalar: ϕ + 3H ϕ + k2 a 2 ϕ = 0. On superhorizon scales k 2 H 2 a 2 = H 2 ), const. H 2) η dη a 2 growing mode decaying mode tensor perturbation a homogeneous, anisotropic universe On subhorizon scales k 2 H 2 a 2 = H 2 ), H 2) 1 a eikη ρ GW Ḣ2) 2 1 a 4

3. Adiabatic perturbations on superhorizon scales Spatially flat universe K = 0) is a good approximation in the early universe. hen, ρ a 3 ) + 1 + 3c 2 w)hρ a 3 ) + [c 2sk 2 32 ] 1 + w)h2 ρ a 3 ) = ρ a 3 S c. 20 Here, c 2 w p /ρ, c 2 s p/ ρ) comoving δp) c = c 2 sδρ) c + entropy perturbation Also, all cosmologically relevant scales exceed Hubble horizon. ln L phys λ = 2πa k a, H 1 ρ { 1/2 a 3/2 for dust w = 0) a 2 for radiation w = 1/3) λ for a 0 H 1 k = const. L ~ a) L = 1/H ~ a2 in rad-dom universe) ln a

21 For S c = 0 adiabatic perturbation), one general solution in the limit c 2 sk 2 0 is ρ a 3 H 1 a H a = 1 decaying mode 2 H a 3 Using the Wronskian for 2 independent solutions, the other solution is found as ρ a 3 H a η 0 1 H a 2 1 + w)a 2 dη η 0 t 1 + w)a 2 dη = 1 1 + w)adt growing mode H a 3 0 η 2 for w = const. ) Conservation of growing mode amplitude Let us set = C 1 k 2 H a 2 η 0 1 + w)a 2 dη his gives, from the Hamiltonian and momentum constraints, Φ = 3 2 k = 3 2 2 C H 1 a 2 H 2 η R c = Φ H k V = C 1. 0 1 + w)a 2 dη, H k V = 2 1 3 1 + w)h Φ + H Φ)

22 he growing mode amplitude of R c stays constant on superhorizon scales. he condition for the linear perturbation theory to be valid is R c = C 1 1. linear theory is applicable up to t = 0 singularity if only the growing mode is present. For the decaying mode, where = C 2 k 2 H a 2, R c = C 2 ηf η η f = R c = H c2 s + wγ c 1 + w c 2 sk 2 1 + w)a 2dη Γ c δp) c c 2 sδρ) c ρ { for w 1/3 0 finite) for w < 1/3 ) = 0 Decaying mode amplitude for R c is not constant. he standard lore that R c = const. on superhorizon scales is not strictly correct. It is correct only if the decaying mode can be ignored.

23 Growing mode solution for several other variables assuming w =const.) a η 2/3w+1) 2 ), H = 3w + 1)η ζ = R c + 31 + w) C 1 ζ = R on uniform density slice) is also constant. his is true not only for GR but also for any metric theory. Wands et al. 2000) 3w + 1)2 1 + w) 23w + 5) σ g ) c = V 3w + 1 C 1 kη) 2, A c = R c = c2 s 1 + w 3w + 1)2 w 23w + 5) C 1 kη) 2, 3w + 5 C 1 kη, 31 + w) Ψ = Φ 3w + 5 C 61 + w) 1, s 2Φ 3w + 5 C 1 Φ curvature perturbation on Newton slices) or Ψ Newton potential) stays constant for w =const., but the amplitude changes when w changes. In particular, during inflation when w 1, the amplitude of Φ stays very small, but it grows significantly at the end of inflation. During inflation, quasi-nonlinear perturbations C 1 1) can be studied in Newton gauge.