C.F. e P. IVA 01735990507 WIND TURBINE GENERATOR SYSTEM ACOUSTIC NOISE TEST REPORT FOR THE WIND TURBINE REVISION 1.1

Σχετικά έγγραφα
UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

Approximation of distance between locations on earth given by latitude and longitude

the total number of electrons passing through the lamp.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva 95 Refrigerant

Chapter 7 Transformations of Stress and Strain

DuPont Suva 95 Refrigerant

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Homework 8 Model Solution Section

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Section 8.3 Trigonometric Equations

Ακουστικός θόρυβος ανεμογεννητριών

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

[1] P Q. Fig. 3.1

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Correction Table for an Alcoholometer Calibrated at 20 o C

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

Section 9.2 Polar Equations and Graphs

10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Aluminum Electrolytic Capacitors (Large Can Type)

Supplementary Appendix

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

Aluminum Electrolytic Capacitors

Second Order RLC Filters

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Μεταπτυχιακή διατριβή

derivation of the Laplacian from rectangular to spherical coordinates

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Reminders: linear functions

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Areas and Lengths in Polar Coordinates

Εθνικό Μετσόβιο Πολυτεχνείο National Technical University of Athens. Aerodynamics & Aeroelasticity: Applications Σπύρος Βουτσινάς / Spyros Voutsinas

Numerical Analysis FMN011

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

EE512: Error Control Coding

Areas and Lengths in Polar Coordinates

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

Matrices and Determinants

Assalamu `alaikum wr. wb.

Concrete Mathematics Exercises from 30 September 2016

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ

PhysicsAndMathsTutor.com 1

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Έλεγχος και Διασφάλιση Ποιότητας

2 Composition. Invertible Mappings

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

Calculating the propagation delay of coaxial cable

Example Sheet 3 Solutions

Type selection. Type selection for pressure series from 100 dapa to 3150 dapa

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Nuclear Physics 5. Name: Date: 8 (1)

Finish: Anticorrosive finish in polyester. Number of motor poles 4=1400 r/min. 50 Hz 6=900 r/min. 50 Hz 8=750 r/min. 50 Hz

Inverse trigonometric functions & General Solution of Trigonometric Equations

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

NMBTC.COM /

C.S. 430 Assignment 6, Sample Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Homework 3 Solutions

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

LUMINAIRE PHOTOMETRIC TEST REPORT

Consolidated Drained

SAMSUNG ELECTRONICS CO., LTD TEST REPORT SAMSUNG ELECTRONICS CO., LTD. 1, Samsung-Ro, Giheung-Gu, Yongin-Si, Gyeonggi-Do 17113, Korea

Αναερόβια Φυσική Κατάσταση

DETERMINATION OF THERMAL PERFORMANCE OF GLAZED LIQUID HEATING SOLAR COLLECTORS

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

Second Order Partial Differential Equations

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

for fracture orientation and fracture density on physical model data

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Section 7.6 Double and Half Angle Formulas

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Transcript:

studio associato Alfinito Nencini La Russa 56125 PISA Via Santa Maria, 19 C.F. e P. IVA 01735990507 e-mail : info@studioanl.it fax: 050 38 35 10 94 WIND TURBINE GENERATOR SYSTEM ACOUSTIC NOISE TEST REPORT FOR THE ARIA LIBELLULA WIND TURBINE REVISION 1.1 Studio Associato Alfinito-Nencini-La Russa Dott. Luca Nencini Fisico specialista Tecnico Competente in Acustica 349/59 44 737

1 TEST OBJECTIVE The objective of this test is to give an estimate of the noise emission of the Libellula wind turbine. This report documents the measurements techniques, equipment, analisys procedures and results for apparent sound power level and dependance on wind speed. 2 WIND TURBINE GENERAL DATA Table 1. Turbine data GENERAL DATA Make Model ARIA SRL Serial Number 10004 Rotation Axis Orientation Number of blades 2 Rotor diameter (m) 18 Hub Height (m) 24 PERFORMANCE Rated electrical power (kw) Rated wind speed (m/s) Cut in wind speed (m/s) Cut out wind speed (m/s) ROTOR Libellula 55kW Horizontal Upwind 55kW 11m/s 3m/s 25m/s Swept area (m2) 254 Rotational speed (rpm) 0 to 90 Tilt angle (degrees) 7 Blade pitch angle 6,8 Direction of rotation Clockwise Overspeed control/protection Passive pitch regulation Power regulation (active/passive) Active 110517_N284_test report1.1.doc 2

3 TEST SITE The Libellula turbine was located at approximately 700 meters from Campiglia Marittima (LI), Tuscany, Italy. The test site is located at an approximate elevation of 320 m above sea level. N Via Firenze Via Aurelia Turbine Figure 1: Test location Wind transducer n.1 Measurement point 110517_N284_test report1.1.doc 3

Figure 2: Aerial photo of test location 110517_N284_test report1.1.doc 4

Figure 3: Test turbine 110517_N284_test report1.1.doc 5

4 TEST SETUP 2.1 Wind transducers position The transducer (n. 1) used for detection of wind direction was located 50 meters from the test turbine, at 6 meters height. This was the only possible choice for positioning the anemometer, due to the geomorphology of test site and wind direction coming from NNW. About 8 meters high trees were 15 meters from the anemometer, covering the direction 50º N to 140º N. Wind speed was detected and logged by anemometer (n.2) at the top of the turbine s tower at 24 meters and was corrected by an empirical factor to take in to account rotor blades induced turbulences. 2.2 Microphone position Microphone was located 29 meters from the centre of the tower. It was mounted at the centre on a flat hard circular board pointing towards the wind turbine to reduce the wind noise generated at the microphone and to minimise the influence of ground. The board had a diameter of 1,0 m and was made of plywood with a thickness of 15,0 mm. The angle between the plane of the microphone board and the line from the microphone to the rotor centre was 42 degrees. Preferred values of the above mentioned distance and angle would be respectively 33 meters and between 25 and 40 degrees, but the chosen values were the only possible ones due to the geomorphology of test site. 2.3 Measurement procedure Acoustical and wind data were acquired and recorded for 41 hours consecutively, starting from 00:00 of 11/05/11. Wind direction and speed from both anemometers and sound level were averaged over a minute. Data loggers were time-synchronized. Wind direction was observed from transducer n.1 to ensure that measurement locations were kept within 15 of nacelle azimuth positions with respect to upwind. The complete sound measurement system was calibrated immediately before and after the measurement session with acoustic calibrator 110517_N284_test report1.1.doc 6

5 TEST EQUIPMENT Table 2 shows the list of equipment used for the test: Table 2. Turbine data INSTRUMENT MANUFACTURER MODEL SERIAL NUMBER Microphone 01dB MCE 212 44990 Preamplifier 01dB PRE 21S 11232 Datalogger 01dB Solo 60262 Calibrator 01dB Cal 21 930817 110517_N284_test report1.1.doc 7

6 ANALISYS METHOD 6.1 Data selection Acquired data were selected, excluding particular condition listed below: Wind direction outside of allowable range Test equipment failure Wind speed below cut-in Interference from unwanted noise sources 6.2 Wind speed correction The wind speeds measured is corrected to the wind speed Vs at reference conditions by assuming wind profiles in the following equation: Where: z 0ref is the reference roughness length of 0.05 m z 0 is the roughness length H is the rotor centre height z ref is the reference height, 10 m z is the anemometer height Vz is the wind speed measured by the anemometer 110517_N284_test report1.1.doc 8

6.3 Background noise Because residual sound pressure levels at different wind speeds were estimated to be always at least 15 db(a) below wind turbine noise level, no correction for background noise have been applied. 6.4 Sound power level calculation The apparent sound power level L WA,k from the sound pressure level L Aeq,k at the integer wind speeds at the reference position as follows: L WA, K where: L Aqe, k 4 R 6 10log S 0 2 1 R 1 is the slant distance in meters from the rotor centre to the microphone S 0 is a reference area of S 0 = 1 m 2 The 6 db constant in equation above accounts for the approximate pressure doubling that occurs for the sound level measurements on a ground board. 110517_N284_test report1.1.doc 9

7 RESULTS Figure 4 shows the data used for analysis and linear regression, corrected by 6 db(a) due to reflecting board, using the measured standardized wind speed. Each point represent a single noise measurement averaged over one minute. Figure 4: Polinomial regression of measured levels Data were interpolated by second order regression form Y= a + b 1 x.+ b 1 x 2 Table below shows obtained coefficients. Table 3. Fit coefficients VALUE ERROR a 38.46 0.99 b 2.59 0.28 c -0.08 0.01 110517_N284_test report1.1.doc 10

8 CONCLUSIONS The sound power level Lw of Libellula wind turbine has been estimated by in situ measurements. Resulting values of Lw at integer normalized wind speed are listed in the table below. Pisa, 16/05/2011 Table 4. Sound power level at different normalized wind speed Normalized Wind Speed at 10 meters height m/s Lw db(a) 4 90.1 5 91.9 6 93.6 7 95.2 8 96.6 9 97.8 10 98.9 Approved By Dott.Luca Nencini 110517_N284_test report1.1.doc 11

studio associato Alfinito Nencini La Russa 56125 PISA Via Santa Maria, 19 C.F. e P. IVA 01735990507 e-mail : l.nencini@studioanl.it fax: 050 38 35 10 94 WIND TURBINE GENERATOR SYSTEM SOUND PRESSURE LEVELS OF ARIA LIBELLULA WIND TURBINE

The Sound Pressure Level L p of the Libellula wind turbine has been estimated at various distances for different wind speeds using spherical propagation model and L W values calculated in noise test report 110517_N284_test report1.1. According to statement n. 14 of ETSU-R-97, an estimate of L A90,10min can be obtained subtracting a value of 2.0 db(a) from L Aeq. So the distance at which occur an L A90,10min of 35 db(a) can be calculated for each wind speed as reported in the last column 10. Wind speed at 10 meters m/s Wind speed at rotor m/s Lw in db(a) Lp in db(a) at distances (m) 50 100 200 300 400 500 35 db(a) L A90,10min distance m 4 4.7 90.1 44.2 38.9 33.0 29.5 27.0 25.1 130 5 5.8 91.9 46.0 40.7 34.8 31.3 28.9 26.9 160 6 7.0 93.6 47.7 42.4 36.8 33.0 30.6 28.6 190 7 8.2 95.2 49.3 44.0 38.1 34.6 32.2 30.2 230 8 9.3 96.6 50.7 45.4 39.5 36.0 33.6 31.6 270 9 10.5 97.8 51.9 46.6 40.7 37.2 34.8 32.8 300 10 11.7 98.9 53.0 47.7 41.8 38.3 35.9 33.9 350 First column shows normalized wind speed at 10 meters Second column shows wind speed at rotor using logarithmic wind profile Third column shows sound power level of wind turbine Columns 4-9 shows Sound Pressure Level calculated at various distances 110519_N284_distances_.doc 2