CHEMISTRY 1. A. Paper-2 HINTS & SOLUTIONS C 3. D 4. C + + Sol: Mg N Mg N Mg ( OH) NH Cu ( NH ) 5. AD Sol: α hydrogen absent

Σχετικά έγγραφα
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Section 8.3 Trigonometric Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Matrices and Determinants

Trigonometric Formula Sheet

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Areas and Lengths in Polar Coordinates

CRASH COURSE IN PRECALCULUS

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Areas and Lengths in Polar Coordinates

Trigonometry 1.TRIGONOMETRIC RATIOS

Section 7.6 Double and Half Angle Formulas

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

EE512: Error Control Coding

Solutions to Exercise Sheet 5

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

PARTIAL NOTES for 6.1 Trigonometric Identities

MathCity.org Merging man and maths

Homework 8 Model Solution Section

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π 2, π 2

Differential equations

Example Sheet 3 Solutions

Section 9.2 Polar Equations and Graphs

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Quadratic Expressions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

TRIGONOMETRIC FUNCTIONS

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Approximation of distance between locations on earth given by latitude and longitude

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

IIT JEE (2013) (Trigonomtery 1) Solutions

Strain gauge and rosettes

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Review Exercises for Chapter 7

Math221: HW# 1 solutions

Homework 3 Solutions

2 Composition. Invertible Mappings

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

COMPLEX NUMBERS. 1. A number of the form.

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order Partial Differential Equations

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

is like multiplying by the conversion factor of. Dividing by 2π gives you the

1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

( y) Partial Differential Equations

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Finite Field Problems: Solutions

Section 8.2 Graphs of Polar Equations

1 String with massive end-points

D Alembert s Solution to the Wave Equation

ST5224: Advanced Statistical Theory II

Solution to Review Problems for Midterm III

Math 6 SL Probability Distributions Practice Test Mark Scheme

Solutions to Mock IIT Advanced/Test - 3[Paper-2]/2013

w o = R 1 p. (1) R = p =. = 1

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Differentiation exercise show differential equation

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

EE101: Resonance in RLC circuits

Srednicki Chapter 55

Parametrized Surfaces

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

derivation of the Laplacian from rectangular to spherical coordinates

Rectangular Polar Parametric

2. Chemical Thermodynamics and Energetics - I

Reminders: linear functions

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Numerical Analysis FMN011

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

C.S. 430 Assignment 6, Sample Solutions

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Chapter 7 Transformations of Stress and Strain

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Spherical Coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Chapter 7 Analytic Trigonometry

Chapter 6 BLM Answers

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Second Order RLC Filters

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Capacitors - Capacitance, Charge and Potential Difference

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Uniform Convergence of Fourier Series Michael Taylor

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Answer sheet: Third Midterm for Math 2339

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

6.4 Superposition of Linear Plane Progressive Waves

[1] P Q. Fig. 3.1

the total number of electrons passing through the lamp.

Transcript:

CHEMISTRY. A Sol: hν hν + KE Paper- HINTS & SOLUTIONS. C. D 4. C HO CuSO4 Sol: Mg N Mg N Mg ( OH) NH Cu ( NH ) + + 4 Blue 5. AD Sol: α hydrogen absent 6. CD 7. CD Sol: Spin multiplicity n +, n number of unpaired electrons. 8. ABD 9. BC Sol: MgCl Mg + Cl cathode + anode. A-R; B-PS; C-PST; D-QR; Sol: Specific conductance decreases with dilution, increase with increase in conc. molar conductance increases with dilution, decreases with increase in concentration α increases with dilution, decreases Λm with increase in concentration. α. Resistance increases with increasing the distance between Λ parallel plates. A-PT; B-R; C-Q; D-S LiAlH4 or Zn+ NaOH+ CHOH Sol: CHNO CHN N CH 6 5 6 5 6 5 NaNO,HCl 6 5 6 5 6 5 CHNH CH N CH Cl Aniline carbyl amine α m NaNO, HCl N HO, H 5 CH CH NH CH CH N CH CH C H OH +. wt. Sol:.8.479 wt. of HO. Mol.wt.

. Sol: [ ] a X [ Y ] a b [ X] [ Y] b www.eenadupratibha.net 4. 8 8 4 Sol: No. of α 4 5. 6 XSO.Y SO.4HO Sol: ( ) 4 4 6. + Sol: Ksp Ag Cl solubility of AgCl in.m AgNO Ksp Ksp S; S..5 S Cl S + Ag 7. Sol: K ( ) n p Kc RT 8. 6 Sol: NH NH4 + NH 4 7 NH K No. of amide ions in cm 9. + Zn 4 Sol: S 4 7 6 MATHEMATICS. Ans. : D Sol. Since the roots are real and distinct, dis >, since α <, β <, (α ) (β ) > αβ (α + β) + 9 C c b + 9> K K if g() k + b + c 9a + b + c K > f() > on solving we get a < as the range of a. St is wrong and St- is true.. Ans. : A Sol. Observe that K + if K < + <

or K < 66.66 K,,,,.. 66. if 67 K 99 observe that 67 K 99 K < + + + < + K + for K,,,.. 66 and for K 67, 68,.. 99. S ( + + 67 terms) + ( + +. terms).. Ans. : A Sol. y The ellipse is + 5 5 Here a 5, b 5/4 4 a by Equation to normal at (, y ) is a b y 8 y 8. (6, ) lies on it. (6, ) is nearest to (, ).. Ans. : C 4. Ans. : BD Sol. Equation of circle with A(, ), B(, ) as ends of diameter is ( ) ( ) + (y ) (y ) and equation to line AB is y. Hence any circle through A and B is ( ) ( ) + (y ) (y ) + λ( y). () If this C lies in st quadrant, it will not cut or y ais in real point. + + + λ and + y y + λy will not have real roots on solving we get λ radius of () is λ + will be greatest when λ ±. Its centre is (, ) or (, ) 5. Ans. : ABCD dy Sol. Given equation is ytan sin d + tan d I. F is e sec Solutions y. sec sin.sec d + C y. sec π sec + c. If it is passes through, C. y sec sec or y cos cos cos cos.

dy sin + sin d dy -sin ( - 4cos ) d d y cos + 4cos sin or cos /4 or π d d y d y > when, or π, < when cos ¼ d d local min,, local maimum 4 6 8 Period of the function is π. 6. Ans. : BD Sol. a b c Given A b c a c a b Since A T A -. (A T ) (A) I det (A T ). dt (A) det I. (det A) (a + b + c abc) a + b + c abc ± a + b + c abc ±. But abc a + b + c ± 4 or 7. Ans. : AB Sol. f() for < for < ( ) for < For <, f o f() f[f()] f(). Now let < then f o f() f[f()] f() Now let < 5 then < f o f() f[f()] f( ) ( ) 4 6. and if 5,, so f() is undefined. Hence g() f o f() for < for < 4 6 for < 5. Domain of f o f() is [, 5/). Observe that g() is continuous but not differentiable at. Now g () > for < 4 > for < 5/ g() g() has no ma or min at 8. Ans. : ABC Sol. Given (aω + b + cω) + (aω + b + cω ) and a, b, c R. Let aω + b + cω and y aω + b + cω then LHS + y ( + y) ( + ωy) ( + ω y) + y or + ωy or + ω y + y a(ω + ω) + b + c(ω + ω )

a( ) + b + ( ) or a + c b Similarly + ωy aω + b + cω + ω(aω + b + cω) ) aω + b( + ω) + c( + ω) or ω (b + c a) or b + c a similarly a + b c. a, c, b are in A.P. Hence A is correct. a + by + c using C b a a + by + b a or a( ) + b(y + ) It passes through (, ) Let f() a b c, or (, ), f() and f() a (b + c) f () has a root in (, ) 6a b c has a root in (, ). 9. Ans. : A QS, B P, C P, D R. Sol. 4 5 6 A. C Sin + sin + sin, using the formula 5 65 θ sin - + sin - y sin - y + y simplify to ( ) get C π/ then cot A + cot B q A and cot p. cot B r p A + B π C π A B cot + on simplification, we get p r q. 4 p + qy + r p + qy + p q p( + ) + q(y ). It passes through (, ). B. Using formula find images to get B (, 8) and C (7, ). A is (, 4). Circumcentre is (8, 9). C. Any normal to the hyperbola y is t yt t 4 +. If it passes through (h, k) then t 4 ht + kt. Co-normal points are ti, /ti). Then t + t + t + t 4 h or + + + 4 h and /t + /t + /t + /t 4 k or y + y + y + y 4 k Let the variable line bc a + by + c. i yi h k Given that a + b + c or a + b + c 4 4 4 4 h k It passes through, 4 4 Here (h, k) (, 6). 4 + sin + asin + bsin D. f() when, is cont at. Lt f() should eists and finite. Lt 4 + sin + asin + bcos is finite using L. Hosp value 4 + b 4 + b or b 4 cos + a cos bsin then Lt + a a substitute these values and final limit which is. f() Lt f(). z + zi Im z z ( + zi) Im z is a parabola whose focus is (, )

and directri. y. verte is (, ). www.eenadupratibha.net. Ans. : A S, B P, C Q, D RT. Sol. A. Let tan - π π then θ as 6 6 cos - + + tan cos - tanθ + tan θ + tanθ tan- tan θ cos - (sin θ) + tan - (tan θ) π/ θ + θ π/. 5 as π π, π π π θ θ. 6 6 / π d Given integral, using formula, e + / / / π d d + - e + e + π. B. PA + PB < P lies inside the ellipse ( ) y + /4 and PB + PC < P lies inside the ellipse ( ) y +. /4 Both should hold according to given condition. Required to find should area DQ ERD D (, ) B (/, ). A(/, ) From the second ellipse y O ( ) Required area / ( ) 4 y d / d ( ) ( ) / + sin π 4. C. Given f ( )sec d f() sec + c f() sec f() sec + tan + sin f (). f ( ) f() sec f() tan + f () or sec tan. f ( ) f ( ) sin cos sin cos sin. f ( ) cos cos sin cos + sin cos + sin y D. Hyperbola is latus rectum cot θ cos θ cos θ cotθ cos θ sinθ cosθ 4 Q E(, ) F(, ) D B C R

sin θ cos θ sin θ π 5π θ or 6 6 π 5π θ or. Ans. : Sol. AM is + k ; GM k k λ where λ is an integer and also given k 999. Since + k is in the given series, k should be odd. λ 999 4.76 λ 47.57 λ, 4, 5, 6. λ or 5. Hence values.. Ans. : Sol. Let I d ( sec ) + tan ( ) sec + + d( sec + ) / ( + sec ) + C + C + sec + C. + cos + tan + C + + C + cos + cos + C k. + cos. Ans. : Sol. Cosec θ θ sin sinθ θ sinθ sin ( θ θ ) sin / θ sinθ sin θ π 4π 8π cosec θ cot - cot θ. Put θ, and odd. 7 7 7. 4. Ans. : 6 Sol. Given series can be written as ( C ) ( C 5 ) + ( C ) ( C 49 ) +.. + ( C 5 ) ( C ) n C r LHS in the coefficient of 5 in ( + ) ( + ) n C r C 5. n r 6. 5. Ans. : 4 Sol. Given planes are + y, y + z, z + ; + y + z 6

Let OA be + y or y z. () y Its opposite edge BC is z 6. l m n l + m + n Let l, m, n be the dc s of line along shortest distance. Then 6 6 required distance 6 ( ) + 6 ( ) + ( 6 ) 6 6 6 6. Ans. : 8 Sol. P 6 C. D + 6 C 4. D + 6 C 5. D + 56 where D n denotes no. of derangenmtamts of n diff. things. Q (6 + 6 ) Q 46 C 6 46. P 56 4 Q P 8. 7. Let the DRs of the line of intersection be l,m,n. Normal to the palne parallel to i+j+k and i will be in the direction of to (i+j+k) i -j+k and line of intersection of given planes will be perpendicular to this hence m +n similarly l-m+n. On solving l 8. Ans. : 8. Sol. 7. +. +. 7 9 7 8 7 5P 8. 7 m n. Hence cosθ 6 5 and tanθ

PHYSICS 9. Ans. : B Conceptual 4. Ans. : D y y sin (ωt k + π/) y y sin (ωt k + 4π/) 4. Ans. : D PQ R a PQ (PQ)ω Rω. 4. Ans. : B P decay e λt 4. Ans. : AB P AσT 4 A T 4 4 a B T B 44. Ans. : ABCD v iˆ R ˆ ωj iˆ ˆj ( ln ) t t e ¾. t / t www.eenadupratibha.net φ 5π/6. Wein s law λ A T A λ B T B. v, ω V Q 45. Ans. : BC Q φ/r. 46. Ans. : ABD R ωl R/ ω ωc LC I(R/) V V R IR V 5 Z R V S IZ 5V Power I R 4V /R. 47. Ans. : BCD v a + t, a t 48. Ans. : A P, B P, C P, D S Image by slab m + shift 6 cm towards the slab mirror + v 5 5 + 5 + v m u 5 m m m m +. 5 v cm + m + Rω ˆj + v iˆ. 49. Ans. : A P, B R, C T, D S i A V V P i R.6 W Q C 4; R C V R 5. Ans. : 7 W nrt ln W nrt Q C 84.

Q n(7r/) (T ) nrt ( ln ) ln 4 η. 7 nrt 7 5. Ans. : 6 Z Mosely law L Z 6. 5. Ans. : 4 Energy of incident photon.7 +.8.55eV For H-atom E.6eV, E.4eV E.5eV E 4.85eV. Note that.85 (.4).55eV n 4. 5. Ans. : nλ + 9λ n,, 5, 7 9 n λ > n 4 n < 6 Three minimum 54. Ans. : 5 E V p pcosθ + cos θ cos θ r cosθ + cos θ 5 cos θ 4π r 4π r r 5m 55. Ans. : 8 V VR V i V A R + R R + R R + R V V V R R VR. RR R + R + R R + R R + R R + R R + R Solving R 8R R 8R/. 56. Ans. : v + v f + m for m. v y v y y y y m distance moved m. 57. Ans. : ( ) R a + R d R a + R + d Rd a + d R d mv a + d qb d + ( ) R d d a R

www.eenadupratibha.net a + d + 4 mv qb. d 4