J Jpn Soc Soil Phys No ++*, p 1 /+,**2 * * * * * * A New Method for Measuring Early Nutrient Release Pattern from Manure Compost Using Sand Column and its Application to Some Kinds of Cattle Manure Compost Noburo H ARAGUCHI*, Yusuke A RAKAWA*, Akihiro T ANAKA*, Takashi K USABA*, Kenichi Y AKUSHIDO* and Ichiro Y AMADA* * National Agriculture and Food Research Organization, National Agricultural Research Center for Kyushu Okinawa Region,,,+ Suya, Koshi, Kumamoto 20+ ++3,, Japan Abstract Currently, various types of livestock manure composts have been developing for application to farmlands as an organic fertilizer Nutrients released from these newly developed composts play an important role in the overall chemical dynamics in soils In the traditional methods, such as an incubation method, the nutrient release patterns were measured under soilcompost mixing conditions, in which the major cations and anions were not analyzed precisely Thus, in this study, a new method for measuring early nutrient release pattern from composts was developed using sand column mixed with manure compost and was applied for analyzing the nutrient release patterns for four kinds of cattle manure compost A sand column of 3 cm height and of / cm diameter, having the unsaturated sand layer of, cm height mixed with compost overlain the saturated sand layer of 1 cm height, was prepared Distilled water was supplied to the top of the column at a constant rate and the pattern of the nutrient concentration in drained water was measured This could be evaluated as BTC normalized with pore volume This method performed well in detecting the delayed release of nutrients and the increase in the released K in the pelletized composts compared with the traditional ones Key words : Livestock manure compost, Nutrient release pattern, Sand column, Breakthrough curve (BTC) + CO +332,,**, 3,***,**, ;,** * 20+ ++3,,,+ : BTC
38 ++*,**2,*** ;,**+ ;,** Wang et al,,**+ ;,**,, + Pore Volume Break through Curve : BTC +33 BTC +331 +,**/ BTC BTC,, / cm, / cm + +, cm, +* cm s,, 3 KPa * cm H O +321 +, / mm / mm 2 : /,**0 ;,**1,,
: 39 Fig + + Schematic view of experimental setup / mm, 2/ mm + NO N +0 2 +0 + / +0 +/ /, + BTC 3 2 KPa +** cm
40 ++*,**2 Table + + Selected properties of four TC TN, EC, ph H O, +, + ( kg kg ) (dsm ) + ( kg kg ) +* +* + +,24 0420 ++4,,24/ *42 +243 04, +4++,343 341 +41/ 24+ +,4,2 0/4,241 +,40+ 042 341 /24+,042 +, / / mm : + : +*,***, MKCl HO / mm +*, 1 cm + 1 cm +/1 +* cms *+ mm + + +/1 cms +* // 2 +** cm EC +* B+1 Horiba 1 / mm, +* EC,* mscm /* mscm +/ cm, + /, */ g,, *2 g, *,/ g Ca, Mg, K, Na SOLAAR M 0, UNICAM Cl SO Quanta *** E, WatersNH N, NO N, PO P, TN, TP TRAACS 2**, BRANLUEBBE EC,/ EC
: 41 kinds of cattle manure compost C/N P O K O CaO MgO NH N NO N / /, /, +* +* + + ( kg kg ) ( kg kg ) 24+ +34,4+,+41 +*4+ 24 +140 24 +14+,34/,*4 342 24, +14 +,41,41 4 +14/ +,4+ +41 +41 +4 24 040 +04/ +4/ +4, 4, Ca, Mg, K, Na NO N, PO P, Pore Volume TN, TP +331, 1 cm NH N +*,** 1 / mm, +* +* mmoll KNO 1/ mm+* +,, +* mm mm, +/ cm EC HTV N+** KP, HYNET, : CR+* X, Campbell + BTC +, / +*/, 1,/ cm +* ph,/ ph ph B, cm +* mmoll,+, Horiba KNO +/ 0* 0/ 1 NO, Pore Volume +, +,,,, + /1 +* cm s + + : Pore Volume +321,, Pore Volume, +/ cm BTC,
42 ++*,**2 Fig,, Change in pore water pressure at two points in the saturated sand layer during the nutrient release experiment,,, Pore Volume, + +/ EC 3/ KNO 10 cm a A KNO // cm : b,* cm : 1/ 2 cm Pore Volume BTC B C NO N +/ * mg NO N *,3 mg, KNO B C +**, NO BTC / + PV NO * PV NO
: 43 Fig Typical pattern of drainage flux versus time during the nutrient release experiment Table,, Selected physical properties of the sand column, + +* kg kg mm +4 +*4, +41 +4,, *4, *4+ 142 +*4, +,4/ +4,1 *4,/ *4+ 1*41,40 +40+ *431 +* BTC Pore Volume tailing NO 32 0 32 2 32 3 Pore Volume 1, 1/ 2 cm BTC *22 *3* *3+ BTC + EC + BTC / EC 0 a + PV, e EC Pore BTC + PV Volume EC,, BTC Pore Volume + +, EC +, EC
44 ++*,**2 Fig Pore volume EC EC versus cumulative drainage in the experiment for determining pore volume Fig / / KNO Breakthrough curves in response to the pulselike inputs of KNO solution 0 b d, EC EC 0 a, EC, EC,
: 45 0 EC : a b c d e Fig 0 Breakthrough curves for EC of drained water : (a) chemical fertilizer, (b) Nenriched cattle manure compost, (c) Nenriched cattle manure compost pellet, (d) cattle manure compost, (e) cattle manure compost pellet 0 c e EC EC,** /, EC, 0 be NO EC,
46 ++*,**2 EC pore volume BTC Table Pore volumes at which the peak ECs 1 ae + were observed in the nutrient release experiments HPO, HPO Run+ +4** PV Run, +4*1 1 a EC 0 a Run+ +4*0 Run, +4+*, Run+ +4 NO, Cl, Ca, Mg Run, +4,+ EC 1 b + Run+ +4+1 K, NH, Na, NO Run, +4+2 Run+ +41 Cl, NO, Run, +43 1 d K NH Na NO EC 0 c BTC 1 c, +, BTC +, BTC + Cl, NO EC 1 ae, + 1 e, SO ph NO Cl HPO, HPO H PO H, PO H 1 be, H, PO HPO H,** NH, HPO PO H NO, Ca, Mg pk, +/ 1,* +, / NH H p +1 +333,, ph 0/ 1, HPO, HPO, p,*/ +331, NO PO P ph 1 b c, pk H, PO HPO NO + 2 / Ca, Mg, K, NH, Na NO, Cl, SO, Harada and Inoko, +32* H, PO HPO H 1 ae,
: 47 1 Fig 1 BTC : a b c d e P H PO HPO P,, Breakthrough curves for the cations and anions : (a) chemical fertilizer, (b) Nenriched cattle manure compost, (c) Nenriched cattle manure compost pellet, (d) cattle manure compost, (e) cattle manure compost pellet, ( P : The sum of phosphorous concentration originated from H, PO and HPO )
48 ++*,**2 2 Fig 2 The relationship between the positive and negative charge in the drained water collected during the nutrient release experiments,, NH N NO N TN +,, + *30 *32, K + * /3 * 1, / HPO HPO TP + P BTC + TN TP + NO +** NH 3* 1 c, K +* h, Ca,** K NO K Cl, SO, H PO HPO,,,
: 49 Table The amount of early released nutrients for chemical fertilizer and the four kinds of cattle manure compost NH N Ca Mg K Na NO N P Cl SO TN TP +* kg kg +* kg kg +* kg kg + + + 34// 241,4* 3,4+ /4+0 *4+0 3413 +4// +40 +//4/* /*4/ 433 +040, 41* 041 4* +14, +4/ 14*, 4*,+400 +4/2 *41 +4*1 *40+ *4, *432 *4+2 *4/ *4+3 14/* *43+ 04*3 *4,,41 *4* +243* *411 401 +140, +4*+ +4,* *4+0 041/ 4,04* *400 +4,2 *4+1 +4+ *400 042/ *4// +40 *4, 240 *4+ 43, +402 *432 4* *4* +41,4+/ 410 *4+1 4/3 *4, +4*1 *422 4+ *41 *430 *4++,+4, *41 /421 402 +4+ 41* *4* +4+ 4/* 1430 *4,3 43+ *4+ *, ** + *** P H PO HPO P,, K +33 K / NO BTC 1 b NO K 1 c 1 b K / + + + BTC 3 cm, / cm, BTC, BTC Pore Volume BTC
50 ++*,**2 / EC 1 : / /2,** : 1/, :,,,,2 Harada, Y and Inoko, A ( +32* ) : The measurement of BTC the cationexchange capacity of composts for the : estimation of the degree of maturity, Soil Sci EC Plant Nutr,,0 ( + ) : +,1 + +33 :, 0/ : 3/0 + NO Cl,*** : HPO HPO, +333 : / K Ca, Mg,**/ : NO N 33 : / / +321 : // 3 :,,2,**0 : 0++ :,1*,**1 : + 0+, :,1+,1 +33 : 1 0/ / : /* /1 Wang, Y, Yamamto, K and Yakushido, K (,**+) : N Release from Livestock Waste Compost Pellets in Barley Fields, Soil Sci Plant Nutr, 1 : 0102,** :,,*** : 0, : +,**, : 1 / : 0/100* 0 :,/,3 +331 :,**+ : :,, +331 :,1 02,** : 0 : 0* 0,** : 1/ : /*+ /*
: 51 3 cm, / cm pore volume BTC K :,**2 0,* :,**2 2 2