The Sponge-Derived Fijianolide Polyketide Class: Further Evaluation of Their Structural and Cytotoxicity Properties

Σχετικά έγγραφα
New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

SUPPORTING INFORMATION

Electronic Supplementary Information

Supporting Information for. Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

Supporting Information

Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Supporting Information

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting information

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

SUPPORTING INFORMATION

phase: synthesis of biaryls, terphenyls and polyaryls

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

Supporting Information. Experimental section

SUPPORTING INFORMATION

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting information

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

# School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan , China.

Supporting Information

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Cyclic Cystine-Bridged Peptides from the Marine. Sponge Clathria basilana Induce Apoptosis in. Tumor Cells and Depolarize the Bacterial

Electronic Supplementary Information

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Supporting Information

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

SUPPORTING INFORMATION

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

SUPPLEMENTARY MATERIAL

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Sulfonated graphene as highly efficient and reusable acid carbocatalyst for the synthesis of ester plasticizers

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Table of Contents 1 Supplementary Data MCD

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

Supporting Information

Supplementary information

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Available online at shd.org.rs/jscs/

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Antioxidant Activities of Chemical Constituents Isolated from Echinops orientalis Trauv.

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

Electronic Supplementary Information

Supporting Information

National d Histoire Naturelle, 57 rue Cuvier (C.P. 54), Paris, France. Contents:

Divergent synthesis of various iminocyclitols from D-ribose

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Electronic Supplementary Information

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

and Trimethylene Carbonate

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supporting Information

Supporting Information for: electron ligands: Complex formation, oxidation and

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supplementary Information

Electronic Supplementary Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Electronic Supplementary Information (ESI)

Electronic Supporting Information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Transcript:

The Sponge-Derived Fijianolide Polyketide Class: Further Evaluation of Their Structural and Cytotoxicity Properties Tyler A. Johnson, Karen Tenney, Robert H. Cichewicz, Brandon I. Morinaka, Kimberly N. White, Taro Amagata, Balanehru Subramanian, Joseph Media, Susan L. Mooberry, Frederick A. Valeriote and Phillip Crews. *, [Supporting Information] Department of Chemistry and Biochemistry and Institute for Marine Sciences, University of California, Santa Cruz, California 95064, Josephine Ford Cancer Center, Henry Ford Health System, Detroit, Michigan 48202, and Southwest Foundation for Biomedical Research, San Antonio, Texas 78245 [Contents] Chart S1. Isolation scheme Table S1. Summary of Cacospongia mycofijiensis type natural products studied by others Table S2. 1 H and 13 C NMR data of 1 in C 6 D 6. Table S3. 1 H and 13 C NMR data of 2 in C 6 D 6 Table S4. 1 H, 13 C, COSY and HMBC NMR data of 7 in C 6 D 6 and CDCl 3 Table S5. 1 H and 13 C NMR data of 8 in C 6 D 6 Table S6. 1 H, 13 C, COSY and HMBC NMR data of 9 in C 6 D 6 and acetone d 6 Table S7. 1 H, 13 C, COSY and HMBC NMR data of 10 in C 6 D 6 Table S8. 1 H, 13 C, and COSY NMR data of 11 in C 6 D 6 Table S9. 1 H, 13 C, and COSY NMR data of 12 in C 6 D 6 Table S10. NOE Enhancements observed for H-23, H-26 and H-27 of Fijianolide G (10) in C 6 D 6 Table S11. Cytotoxicity in zone units of the fijianolides from the disk diffusion soft agar colony formation assay Figure S1. Selected examples of cytotoxic marine-derived polyketides Figure S2. 1 H NMR spectrum of Fijianolide A (1), (500 MHz, C 6 D 6 ) Figure S3. 13 C NMR spectrum of Fijianolide A (1), (125 MHz, C 6 D 6 ) Figure S4. 1 H NMR spectrum of Fijianolide B (2), (500 MHz, C 6 D 6 ) Figure S5. 13 C NMR spectrum of Fijianolide B (2), (125 MHz, C 6 D 6 ) Figure S6. 1 H NMR spectrum of Fijianolide D (7), (500 MHz, CDCl 3 ) Figure S7. 13 C NMR spectrum of Fijianolide D (7), (125 MHz, C 6 D 6 ) Figure S8. 1 H NMR spectrum of Fijianolide E (8), (500 MHz, C 6 D 6 ) Figure S9. 13 C NMR spectrum of Fijianolide E (8), (125 MHz, C 6 D 6 ) Figure S10. 1 H NMR spectrum of Fijianolide F (9), (500 MHz, C 6 D 6 ) Figure S11. 13 C NMR spectrum of Fijianolide F (9), (125 MHz, C 6 D 6 ) Figure S12. 1 H NMR spectrum of Fijianolide G (10), (500 MHz, C 6 D 6 ) Figure S13. 13 C NMR spectrum of Fijianolide G (10), (125 MHz, C 6 D 6 ) Figure S14. 1 H NMR spectrum of Fijianolide H (11), (500 MHz, C 6 D 6 ) Figure S15. 13 C NMR spectrum of Fijianolide H (11), (125 MHz, C 6 D 6 ) Figure S16. 1 H NMR spectrum of Fijianolide I (12), (500 MHz, C 6 D 6 ) Figure S17. 13 C NMR spectrum of Fijianolide I (12), (125 MHz, C 6 D 6 ) Figure S18. NOE enhancement of H-23 of 9 in benzene-d 6 at 600 MHz Figure S19. NOE enhancement of H-26 of 9 in benzene-d 6 at 600 MHz Figure S20. NOE enhancement of H-27 of 9 in benzene-d 6 at 600 MHz Figure S21. NOE enhancement of H-30 of 9 in benzene-d 6 at 600 MHz Figure S22. NOE enhancement of H-23 of 10 in benzene-d 6 at 600 MHz Figure S23. NOE enhancement of H-26 of 10 in benzene-d 6 at 600 MHz Figure S24. NOE enhancement of H-27 of 10 in benzene-d 6 at 600 MHz S1

Figure S25. Gradient LCMS chromatogram of 1 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S26. Gradient LCMS chromatogram of 2 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S27. Gradient LCMS chromatogram of 7 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S28. Gradient LCMS chromatogram of 8 using: 10:90 to 100 (50min) in CH 3 CN/H 2 O. Figure S29. Gradient LCMS chromatogram of 9 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S30. Gradient LCMS chromatogram of 10 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S31. Gradient LCMS chromatogram of 11 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S32. Gradient LCMS chromatogram of 12 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. S2

Chart S1. Isolation of the fijianolides, latrunculin A and mycothiazole S3

Table S1. Summary of Cacospongia mycofijiensis Type Natural Products Studied by Others Entry number Taxonomic identification Collection Site Major Constituents 1 unidentifiable (Bergquist) a American Samoa 1, 4, s3 2 Negombata magnifica b, c Djibouti 4, s4 3 N. magnifica d Egypt 4 4 Hyatella sp. (Bergquist) e Indonesia 1, 2, 4 5 N. magnifica d Israel s4 6 Fasciospongia rimosa (Hooper) f, g Japan 1, 2, s1, 3, 4 7 Cacospongia mycofijiensis h Marshall Islands 1, 2, 4 8 N. magnifica c Saudi Arabia 4 9 N. magnifica c Saudi Arabia s4 10 Dactylospongia sp. (Hooper) i Vanuatu 1, 2, s2, 4, 5 a Gulavita, N. L.; Gunasekera, S. P. and Pomponi, S. A. J. Nat. Prod. 1992, 55, 4, 506-508. b Previously known as Latrunculia magnifica. c Ilan, M. Biol. Bull. 1995, 188: 306-312. d Groweiss, A.; Shmeuli, U. Kashman, Y. Marine Toxins of Latrunculia magnifica. J. Org. Chem. 1983, 48, 3512-3516. e Corley, D. G., Herb, R.; Moore, R. E.; Scheuer, P. J. J. Org. Chem. 1988, 53, 3644-6. f g Tanaka, J.; Higa, T.; Bernardineli, G.; Jefford, C. Chemistry. Lett. 1996, 255. Tanaka J., Higa, T. Tetrahedron Lett. 1996, 37, 5535-5538. h Mooberry, S. L.; Tien, G.; Hernandez, A. H.; Plubrukarn, A.; Davidson, B. Cancer Research 1999, 59, 653-660. i Cutignano, A.; Bruno, I.; Bifulco, G.; Casapullo, A.; Debitus, C.; Gomez- Paloma, L.; Riccio, R. Eur. J. Org. Chem. 2001, 775-778. S4

Table S2. 1 H and 13 C NMR a data of 1 in C 6D 6 1 position H (J in HZ) C C mult. 1 165.6 C 2 5.80 d (12.0) 123.7 CH 3 5.71 ddd (11.4, 9.6, 6.0) 142.2 CH 4a 3.08 ddd (15.9, 10.8, 4.8) 36.1 CH 2 4b 2.28 m 5 4.37 dddd (10.2, 7.2, 4.8, 3.0) 73.2 CH 6 5.56 ddt (10.2, 2.4, 1.2) 128.9 CH 7 5.65 m 125.4 CH 8a 1.81 dd (15.0, 9.6) 32.1 CH 2 8b 1.61 m 9 3.64 tt (12.2, 2.4) 66.7 CH 10a 1.51 ddd (13.8, 9.6, 1.8) 43.0 CH 2 10b 0.93 ddd (13.8, 9.0, 1.8) 11 1.93 ddd (14.4, 7.8, 6.6) 27.4 CH 12a 2.19 m 46.0 CH 2 12b 2.03 m 13 146.1 C 14 2.23 dd (15.6, 10.2) 35.8 CH 2 15 4.15 ddd (6.6, 4.2, 1.2) 71.5 CH 16 4.11 dd (4.8, 1.8) 75.5 CH 17 4.47 ddd (10.2, 5.4, 4.8) 78.3 CH 18 2.13 ddd (13.8, 7.8, 1.8) 35.2 CH 2 19 5.70 ddd (3.9, 3.6, 1.2) 77.0 CH 20 4.45 dd (6.0, 5.4) 82.0 CH 21 5.91 ddd (15.6, 6.0, 1.8) 126.0 CH 22 6.06 ddd (15.6, 5.4, 1.8) 134.0 CH 23 3.93 dddd (11.4, 5.4, 4.8, 0.6) 73.5 CH 24a 2.01 m 36.1 CH 2 24b 1.66 dt (16.8, 3.0) 25 131.3 C 26 5.13 bs 120.5 CH 27a 4.11 brs 65.7 CH 2 27b 4.04 brs 28 0.85 d (6.6) 20.2 CH 3 29 4.95 s, 4.89 s 113.4 CH 2 30 1.50 s 23.0 CH 3 a measured at 500 MHz ( 1 H) and 125 MHz ( 13 C) ` S5

Table S3. 1 H and 13 C NMR a data of 2 in C 6D 6 2 position H (J in HZ) C C mult. 1 166.3 C 2 5.72 d (12.0) 120.8 CH 3 6.06 ddd (11.4, 9.6, 3.6) 150.7 CH 4a 3.90 m 34.1 CH 2 4b 2.15 ddd (16.8, 6.6, 3.6) 5 4.37 m 73.3 CH 6 5.56 dq (10.2, 3.0) 129.3 CH 7 5.65 ddd (9.6, 4.8, 2.4) 125.4 CH 8a 1.79 m 32.1 CH 2 8b 1.71 (17.8, 7.8, 4.2) 9 3.70 dd (9.0, 3.0) 68.0 CH 10a 1.55 dd (14.4, 8.4) 44.0 CH 2 10b 1.19 ddd (14.4, 4.2, 3.0) 11 1.75 m 30.0 CH 2.60 dd (13.2, 4.8) 12a 46.0 CH 2 12b 1.80 m 13 146.1 C 14a 2.15 m 35.8 CH 2 14b 2.14 m 15 3.95 m 67.6 CH 16 2.76 dd (3.2, 2.8) 60.7 CH 17 2.95 ddd (9.0, 3.6, 2.4) 51.6 CH 18a 2.22 ddd (13.8, 3.0, 1.2) 33.7 CH 2 18b 1.48 ddd (14.4, 8.4, 3.6) 19 5.15 ddd (9.6, 5.4, 1.8) 72.7 CH 20 4.13 m 73.4 CH 21 5.74 ddd (16.2, 5.4, 1.8) 129.0 CH 22 5.85 ddd (15.6, 4.8, 1.2) 133.7 CH 23 3.88 m 73.4 CH 24a 1.95 m 36.1 CH 2 24b 1.62 m 25 131.3 C 26 5.13 brs 120.5 CH 27a 4.11 brs 65.8 CH 2 27b 4.04 brs 28 0.88 d (6.6) 21.1 CH 3 29 4.93 s, 4.89 s 112.6 CH 2 30 1.51 s 23.0 CH 3 a measured at 500 MHz ( 1 H) and 125 MHz ( 13 C) S6

Table S4. 1 H and 13 C NMR a data of 7 in C 6D 6 and CDCl 3 b 7 position H (J in HZ) b C C mult. COSY HMBC 1 165.3 C 2 5.85 d (11.5) 123.5 CH 3 1 3 6.21 ddd (10.5,10.0, 7.0) 142.6 CH 2, 4a 4a 3.16 ddd (11.0, 11.0,4.5) 35.8 CH 2 3, 5 2, 3, 5, 6 4b 2.51 ddd (11.0, 10.5, 7.0) 5 4.26 m 73.3 CH 4 6 5.76 ddd (10.5, 4.5, 3.0) 129.2 CH 7 8 7 5.89 ddd (10.5, 5.0, 2.5) 125.3 CH 6, 8 6, 8 8a 2.00 dd (14.0, 9.0) 32.1 CH 2 7, 9 8b 1.95 ddd (11.0, 6.0, 2.5) 9 3.64 m 66.7 CH 8, 10 8 10a 1.51 ddd (13.5, 9.5, 2.0) 42.9 CH 2 9, 11 9, 11, 12 10b 1.15 ddd (14.0, 10.0, 2.5) 11 1.86 m 27.3 CH 10, 28 12a 2.11 dd (13.5, 6.5) 45.9 CH 2 12b 1.95 m 13 146 C 14 2.32-2.18 (H14a,b, H18a,18b, H24a,b)* 35.1 CH 2 15 15 15 4.07 ddd (9.5, 2.5, 2.5) 71.4 CH 14, 16 16 4.11 m 76.1 CH 15, 17 15, 17 17 4.38 ddd (10.5, 5.0, 5.0) 78.4 CH 16, 18 18 2.32-2.18 (H14a,b, H18a,18b, H24a,b)* 34.2 CH 2 17, 19 19, 20 19 5.59 dd (3.5, 3.5) 76.8 CH 18, 20 20 4.65 dd (4.5, 4.5) 81.4 CH 19, 21 21 5.80 ddd (16.0, 5.0, 1.0) 125.5 CH 20, 22 20, 22 22 5.95 ddd (15.5, 6.0, 1.5) 130 CH 21, 23 20, 23 23 4.86 ddd (10.5, 5.5, 5.0) 75.7 CH 22, 24 24, 25 24 2.32-2.18 (H14a,b, H18a,18b, H24a,b)* 36.2 CH 2 23 25, 26 25 155.3 C 26 5.80 s 117.3 CH 27 27 163.7 C 28 0.86 d (6.5) 20.1 CH 3 11 10, 11, 12 29 4.90 s 113.6 CH 2 12, 13 14 30 1.97 s 22.2 CH 3 24, 25, 26 a measured at 500 MHz ( 1 H) and 125 MHz ( 13 C) b sample run in CDCl 3 * can be interchanged ` S7

Table S5. 1 H and 13 C NMR a data of 8 in C 6D 6 8 position H (J in Hz) b C C mult. 1 166.2 C 2 5.72 d (11.5) 120.6 CH 3 6.11 ddd (11.0,10.5, 2.5) 151.0 CH 4a 3.90 m 34.1 CH 2 4b 2.02 m 5 3.96 m 73.3 CH 6 5.50 brd (10.5) 129.8 CH 7 5.62 brd (10.5) 125.4 CH 8a 1.79 m 32.1 CH 2 8b 1.67 m 9 3.70 ddd (8.5, 5.0, 4.0) 68.1 CH 10a 1.50 brd (17.0) 44.0 CH 2 10b 1.20 ddd (16.0, 4.5, 3.5) 11 1.78 m 30.0 CH 12a 2.60 dd (13.0, 4.5) 46.4 CH 2 12b 1.85 dd (13.0, 10.0) 13 145.8 C 14 2.12 brs 37.6 CH2 15 3.88 m 67.4 CH 16 2.78 dd (2.0, 2.0) 60.8 CH 17 2.96 brd (10.5) 52.1 CH 18a 2.16 m 34.2 CH2 18b 1.40 m 19 5.12 ddd (11.0, 6.0, 1.0) 72.4 CH 20 4.13 brd (9.0) 72.5 CH 21 5.68-5.60 m 129.2 CH 22 5.68-5.60 m 130.0 CH 23 4.33 brdd (14.0, 3.0) 75.7 CH 24b 1.60 m 34.4 CH 2 24a 1.25 m 25 155.2 C 26 5.61 s 117.3 CH 27 163.5 C 28 0.92 d (6.5) 20.1 CH 3 29 4.98 brs, 4.96 brs 112.6 CH 2 30 1.22 s 22.2 CH 3 a measured at 500 MHz ( 1 H) and 125 MHz ( 13 C) S8

Table S6. 1 H and 13 C NMR a data of 9 in C 6D 6 and acetone d 6 b 9 position H (J in Hz) C C mult. COSY HMBC b 1 165.3 C 2 5.84 d (11.5) 123.6 CH 3 1 3 5.72 ddd (11.5,10.5, 7.0) 142.2 CH 2, 4a 1 4a 3.05 ddd (14.0, 10.5, 5.0) 35.7 CH 2 3, 5 2, 3, 5 4b 2.15 ddd (14.0, 11.5, 6.5) 5 4.35 m 73.2 CH 4 6 5.60 dd (10.0, 2.5) 128.8 CH 7 8 7 5.69 ddd (10.5, 7.5, 2.5) 125.5 CH 6, 8 6, 8 8a 1.84 ddd (12.5, 10.0, 2.5) 32.1 CH 2 7, 9 8b 1.60 dd (14.0, 2.5) 9 3.45 dq (10.0, 2.4) 66.7 CH 8, 10 8 10a 1.55 dt (14.0, 9.5) 42.9 CH 2 9, 11 9, 11, 12 10b 0.93 ddd (13.5, 8.5, 2.0) 11 1.95 m 27.3 CH 10, 28 12a 2.11 dd (14.0, 7.5) 45.9 CH 2 12b 2.05 m 13 146.1 C 14 2.30 m 35.7 CH 2 15 15 15 4.12 ddd (9.5, 3.5, 2.5) 71.4 CH 14, 16 16 3.99 dd (5.0, 2.5) 75.7 CH 15, 17 15, 17 17 4.40 ddd (11.5, 6.0, 2.0) 78.3 CH 16, 18 18 2.15 m 35.3 CH 2 17, 19 19, 20 19 5.47 dt (4.0, 4.0) 76.9 CH 18, 20 20 4.31 dd (4.0, 3.5) 81.7 CH 19, 21 21 5.87 dd (13.0, 4.0) 126.2 CH 20, 22 20, 22 22 5.90 dd (14.5, 4.5) 132.5 CH 21 20, 23 23 4.25 dddd (11.4, 3.6, 2.8, 0.6) 64.6 CH 22, 24 24a 1.50 m 36.1 CH 2 23 25 24b 1.39 dd (14.5, 11.5) 23 25 59.3 C 26 2.68 d (4.2) 59.5 CH 27 27 27 5.13 dd (12.0, 4.2) 88.5 CH 26, OH 28 0.86 d (6.5) 20.1 CH 3 11 10, 11, 12 29 4.88 s, 4.87 s 113.5 CH 2 12, 13 14 30 0.95 s 21.7 CH 3 24, 25, 26 OH 3.30 d (12.0) 27 a measured at 500 MHz ( 1 H) and 125 MHz ( 13 C) b sample run in acetone d 6 S9

Table S7. 1 H and 13 C NMR a data of 10 in C 6D 6 10 position H (J in Hz) C C mult. COSY HMBC 1 166.3 C 2 5.74 d (12.0) 121.0 CH 3 1 3 5.72 ddd (11.4,10.2, 3.6) 150.2 CH 2, 4a 1 4a 3.92 m 34.1 CH 2 3, 5 2, 3, 5 4b 1.46 m 5 3.92 m 73.1 CH 4 6 5.46 brd (10.2) 129.4 CH 7 8 7 5.67 brd (10.2) 125.3 CH 6, 8 6, 8 8a 1.81 m 32.1 CH 2 7, 9 8b 1.70 m 9 3.71 m 68.0 CH 8, 10 8 10a 1.54 ddd (16.8, 9.0, 2.4) 43.9 CH 2 9, 11 9, 11, 12 10b 1.20 ddd (14.4, 4.8, 3.0) 11 1.78 m 29.9 CH 10, 28 12a 2.61 dd (12.6, 6.0) 46.3 CH 2 12b 1.90 dd (13.2, 10.2) 13 145.8 C 14a 2.16 dd (13.2, 3.6) 35.7 CH 2 15 15 14b 2.15 m 15 3.96 m 67.5 CH 14, 16 16 2.78 dd (2.4, 2.4) 60.7 CH 15, 17 15, 17 17 2.94 ddd (9.0, 3.0, 1.2) 52.0 CH 16, 18 18a 2.05 ddd (10.2, 4.2, 1.2) 33.6 CH 2 17, 19 19, 20 18b 2.02 ddd (10.8, 3.6, 1.2) 19 5.11 m 72.6 CH 18, 20 20 4.15 brd (10.2) 73.3 CH 19, 21 21 5.62 m 129.2 CH 20, 22 20, 22 22 5.62 m 132.5 CH 21 20, 23 23 4.18 m 64.4 CH 22, 24 24a 1.50 m 36.1 CH 2 23 24b 1.27 m 23 25 59.3 C 26 2.68 d (4.2) 59.5 CH 27 27 27 5.13 d (4.2) 88.4 CH 26, OH 28 0.89 d (6.6) 21.0 CH 3 11 10, 11, 12 29 4.93 s, 4.92 s 112.5 CH 2 12, 13 14 30 0.93 s 21.7 CH 3 24, 26 OH 3.25 d (12.0) 27 a measured at 500 MHz ( 1 H) and 125 MHz ( 13 C) S10

Table S8. 1 H and 13 C NMR a data of 11 in C 6D 6 position H (J in Hz) C C mult. COSY 1 165.3 C 2 5.83 d (12.0) 123.6 CH 3 3 5.72 ddd (11.4,10.8, 7.2) 142.2 CH 2, 4a 4a 3.08 ddd (14.4, 10.2, 4.8) 35.8 CH 2 3, 5 4b 2.16 ddd (15.6, 11.4, 7.0) 3, 5 5 4.37 m 73.2 CH 4, 4 6 5.50 dt (10.8, 3.6) 128.8 CH 7 7 5.62 ddd (10.2, 6.0, 2.4) 125.4 CH 6, 8 8a 1.78 ddd (16.8, 9.0, 4.2) 32.1 CH 2 9 8b 1.60 m 7 9 3.45 dq (10.2, 1.8) 66.7 CH 8, 8 10a 1.57 m 42.8 CH 2 9 10b 0.92 ddd (14.4, 9.6, 1.8) 11 11 1.90 m 27.4 CH 10, 28 12a 2.04 m 46.0 CH 2 12b 2.02 m 13 146.1 C 14a 2.25 m 35.7 CH 2 15 14b 2.24 m 15 4.09 ddd (9.0, 3.6, 2.4) 71.3 CH 14 16 3.97 dd (4.8, 1.8) 75.4 CH 15, 17 17 4.42 ddd (10.8, 3.6, 2.4) 78.2 CH 16, 18 18a 2.06 m 35.1 CH 2 17 18b 2.02 m 19 19 5.48 dd (3.6, 3.6) 76.8 CH 18, 20 20 4.31 dd (4.8,4.8) 81.9 CH 19, 21 21 5.94 dd (15.0, 4.8) 125.8 CH 20, 22 22 6.04 dd (15.6, 4.8) 132.9 CH 21 23 4.50 dddd (12.0, 4.8, 2.4, 1.0) 66.6 CH 22, 24 24a 1.93 dd (15.0, 10.8) 36.1 CH 2 23 24b 1.45 m 25 136.4 C 26 5.45 brs 120.8 CH 27, 30 27 4.92 brs 96.8 CH 26, 30 28 0.84 d (6.6) 20.2 CH 3 11 29 4.85 brs, 4.87 brs 113.3 CH 2 14 30 1.43 s 22.5 CH 3 26, 27 OMe 3.34 s 54.9 CH 3 11 a measured at 500 MHz ( 1 H) and 125 MHz ( 13 C) S11

Table S9. 1 H and 13 C NMR a data of 12 in C 6D 6 12 position H (J in Hz) C C mult. COSY 1 165.3 C 2 5.86 d (12.0) 123.6 CH 3 3 5.73 ddd (12.0,10.5, 7.0) 142.3 CH 2, 4a 4a 3.12 ddd (11.0, 5.0, 1.2) 35.8 CH 2 3, 5 4b 2.12 m 3, 5 5 4.44 m 73.3 CH 4, 4 6 5.58 ddd (10.5, 3.0, 1.5) 128.9 CH 7 7 5.65 dd (10.5, 5.5) 125.5 CH 6, 8 8a 1.84 ddd (12.5, 9.5, 2.0) 32.1 CH 2 9 8b 1.50 m 7 9 3.48 tt (10.0, 2.5) 66.8 CH 8, 8 10a 1.55 m 42.8 CH 2 9 10b 0.94 ddd (13.5, 9.0, 2.0) 11 11 1.95 m 27.4 CH 10, 28 12a 2.15 m 46.0 CH 2 12b 2.05 m 13 146.1 C 14a 2.35 m 35.7 CH 2 15 14b 2.34 m 15 4.14 dt (9.5, 3.0) 71.5 CH 14 16 4.09 dd (9.0, 6.5) 75.6 CH 15, 17 17 4.48 ddd (10.5, 5.5, 5.1) 78.4 CH 16, 18 18a 2.15 m 35.1 CH 2 17 18b 2.02 m 19 19 5.54 dt (4.5, 3.5) 77.0 CH 18, 20 20 4.50 dd (4.5, 3.5) 82.0 CH 19, 21 21 5.97 ddd (16.0, 5.5, 1.0) 126.2 CH 20, 22 22 6.07 ddd (15.5, 5.0, 1.0) 133.4 CH 21 23 4.57 dddd (10.7, 4.5, 2.0, 1.0) 66.6 CH 22, 24 24a 2.15 m 36.1 CH 2 23 24b 1.60 m 23 25 136.3 C 26 5.41 brs 121.6 CH 27, 30 27 5.35 brs 89.0 CH 26, 30 28 0.87 d (6.0) 20.2 CH 3 11 29 4.92 brs, 4.89 brs 113.5 CH 2 14 30 1.46 s 22.7 CH 3 26, 27 a measured at 500 MHz ( 1 H) and 125 MHz ( 13 C) S12

Table 10. 1D 1 H NMR Difference of NOE Enhancements a Observed for Fijianolide G (10) at H-23, b H-26, c H-27 d and CH 3-30 e in C 6 D 6. Expt H irrad NOE rel enhanc inten a A 23 21 2.2 22 2.2 24a 1.1 B 26 27 1.7 30 1.9 C 27 26 1 a Relative enhanced intensity data based on setting the height of the weakest difference NOE peak as 1. b Actual spectrum is shown in Figure S22. c Actual spectrum is shown in Figure S23. d Actual spectrum is shown in Figure S24. S13

Table S11. Cytotoxicity in zone units of the fijianolides in the disk diffusion soft agar colony formation assay a Compound Conc. Murine tumor cell lines Human tumor cell lines μg/disk L1210 C 38 H-116 H-125 CEM CFU-GM Fijianolide A 30 150 0 100 50 Fijianolide B 36 800 >1000 9 500 700 250 550 Fijianolide D 100 0 150 0 0 Fijianolide E 40 350 400 500 400 550 500 Fijianolide F 60 150 0 50 100 Fijianolide G 30 150 350 200 200 100 Fijianolide H 40 0 150 0 0 Fijianolide I 30 0 50 0 0 a measured in zone units: 200 zone units = 6mm. Murine cell lines: L1210 (lymphocytic leukemia), C38 (colon adenocarcinoma), CFU(GM) (colony-forming unit-granulocyte macrophage; normal hematopoietic); Human cell lines: H116 (colon), H125 (lung), CEM (leukemia), CFU(GM) (colony-forming unit-granulocyte macrophage; normal hematopoietic). b Significant selectivity is defined by a difference of 250 zone units. S14

Figure S1. Selected examples of cytotoxic marine-derived polyketides. S15

Figure S2. 1 H NMR spectrum of fijianolide A (1), (500 MHz, C 6 D 6 ) 29 28 27 1 30 S16

Figure S3. 13 C NMR spectrum of fijianolide A (1), (125 MHz, C 6 D 6 ) 29 28 27 1 30 S17

Figure S4. 1 H NMR spectrum of fijianolide B (2), (500 MHz, C 6 D 6 ) 29 28 27 1 30 S18

Figure S5. 13 C NMR spectrum of fijianolide B (2), (125 MHz, C 6 D 6 ) 29 28 27 1 30 S19

Figure S6. 1 H NMR spectrum of fijianolide D (7), (500 MHz, CDCl Figure S4. 13 3 ) C NMR spectrum of fijianolide B (2), (125 MHz, C 6 D 6 ) 29 29 28 28 27 27 1 1 30 30 S20 19

Figure S7. 13 C NMR spectrum of fijianolide D (7), (125 MHz, C 6 D 6 ) 29 28 27 1 30 S21 20

Figure S8. 1 H NMR spectrum of fijianolide E (8), (500 MHz, C 6 D 6 ) 29 28 27 1 30 S22

Figure S9. 13 C NMR spectrum of fijianolide E (8), (125 MHz, C 6 D 6 ) 29 28 27 1 30 S23 22

Figure S10. 1 H NMR spectrum of fijianolide F (9), (500 MHz, C 6 D 6 ) 29 28 27 1 30 S24

Figure S11. 13 C NMR spectrum of fijianolide F (9), (125 MHz, C 6 D 6 ) 29 28 27 1 30 S25

Figure S12. 1 H NMR spectrum of fijianolide G (10), (500 MHz, C 6 D 6 ) 29 28 27 1 30 S26

Figure S13. 13 C NMR spectrum of fijianolide G (10), (125 MHz, C 6 D 6 ) 29 28 27 1 30 S27

Figure S14. 1 H NMR spectrum of fijianolide H (11), (500 MHz, C 6 D 6 ) 29 28 27 1 30 S28

Figure S15. 13 C NMR spectrum of fijianolide H (11), (125 MHz, C 6 D 6 ) 29 28 27 1 30 S29

Figure S16. 1 H NMR spectrum of fijianolide I (12), (500 MHz, C 6 D 6 ) 29 28 27 1 30 S30

Figure S17. 13 C NMR spectrum of fijianolide I (12), (125 MHz, C 6 D 6 ) 29 28 27 1 30 S31

Figure S18. NOE enhancement of H-23 of 9 in benzene-d 6 at 600 MHz. S32

Figure S19. NOE enhancement of H-26 of 9 in benzene-d 6 at 600 MHz. S33

Figure S20. NOE enhancement of H-27 of 9 in benzene-d 6 at 600 MHz. S34

Figure S21. NOE enhancement of CH 3-30 of 9 in benzene-d 6 at 600 MHz. S35

Figure S22. NOE enhancement of H-23 of 10 in benzene-d 6 at 600 MHz. S36

Figure S23. NOE enhancement of H-26 of 10 in benzene-d 6 at 600 MHz. S37

Figure S24. NOE enhancement of H-27 of 10 in benzene-d 6 at 600 MHz. S38

Figure S25. Gradient LCMS chromatogram of 1 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S26. Gradient LCMS chromatogram of 2 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. S39

Figure S27. Gradient LCMS chromatogram of 7 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S28. Gradient LCMS chromatogram of 8 using: 10:90 to 100 (50min) in CH 3 CN/H 2 O. S40

Figure S29. Gradient LCMS chromatogram of 9 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S30. Gradient LCMS chromatogram of 10 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. S41

Figure S31. Gradient LCMS chromatogram of 11 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. Figure S32. Gradient LCMS chromatogram of 12 using: 30:70 to 80:20 (50min) in CH 3 CN/H 2 O. S42