SUPPORTING INFORMATION

Σχετικά έγγραφα
SUPPORTING INFORMATION

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Cyclic Cystine-Bridged Peptides from the Marine. Sponge Clathria basilana Induce Apoptosis in. Tumor Cells and Depolarize the Bacterial

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Identification of Fish Species using DNA Method

Supporting Information

Natural Products Research Institute, College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea

Eremophila spp. by Combined use of Dual High-Resolution PTP1B and α- Glucosidase Inhibition Profiling and HPLC-HRMS-SPE-NMR

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

New Cytotoxic Constituents from the Red Sea Soft Coral Nephthea sp.

SUPPORTING INFORMATION

Supporting Information for. Update of spectroscopic data for 4-hydroxyldictyolactone and dictyol E isolated from a Halimeda stuposa - Dictyota

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Supporting Information

SUPPLEMENTARY MATERIAL

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Depsidomycins B and C: New Cyclic Peptides from a Ginseng Farm Soil-derived Actinomycete.

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

svari Real-time RT-PCR RSV

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Supporting Information

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Electronic Supplementary Information

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Supporting information

ΜΟΡΙΑΚΕΣ ΜΕΘΟΔΟΙ ΚΡΙΤΗΡΙΑ ΕΠΙΛΟΓΗΣ ΑΞΙΟΛΟΓΗΣΗ

Electronic Supplementary Information

Electronic Supplementary Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

The effect of curcumin on the stability of Aβ. dimers

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Electronic Supplementary Information. Carbon dioxide as a reversible amine-protecting

A strategy for the identification of combinatorial bioactive compounds. contributing to the holistic effect of herbal medicines

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information. Experimental section

Electronic Supplementary Information

Supporting Information

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides

The Sponge-Derived Fijianolide Polyketide Class: Further Evaluation of Their Structural and Cytotoxicity Properties

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

c Key words: cultivation of blood, two-sets blood culture, detection rate of germ Vol. 18 No

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Rudi Hendra 1, Paul A. Keller 1* Telephone: Fax:

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Selective mono reduction of bisphosphine

Design and Solid Phase Synthesis of New DOTA Conjugated (+)-Biotin Dimers Planned to Develop Molecular Weight-Tuned Avidin Oligomers

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information for

Supporting Information

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Table of Contents 1 Supplementary Data MCD

The Free Internet Journal for Organic Chemistry

Chemical Constituents and Antioxidant Activity of Teucrium barbeyanum Aschers.

Supporting Information

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Characteristic Fluctuations in Glycosidically Bound Volatiles during Tea Processing and

phase: synthesis of biaryls, terphenyls and polyaryls

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Identification of Salmonella,Campylobacter jejuni and Enterohemorrhagic E.coli by Denaturing High-performance Liquid Chromatography

Supporting Information

Supporting Information

Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

TABLE OF CONTENTS Page

Supporting Information

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Electrolyzed-Reduced Water as Artificial Hot Spring Water

Transcript:

SUPPORTING INFORMATION Trichodermides A E: New Peptaibols isolated from Australian Termite Nestderived Fungus Trichoderma virens CMB-TN16 Wei-Hua Jiao,, Zeinab Khalil, Pradeep Dewapriya, Angela A. Salim, Hou-Wen Lin, and Robert J. Capon* Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China 1

Table of contents 1. DNA taxonomy of the fungus CMB-TN16... 4 1.1. ITS gene sequence of the fungus CMB-TN16... 4 1.2. BLAST search (closest match)... 5 2. Spectroscopic characterization for trichodermides A-E (1-5)... 6 3. MS/MS fragmentation for tichodermides A-E (1-5)... 30 4. C3 Marfey analysis... 33 5. Cytotoxicity assay... 38 6. Antimicrobial assay... 39 List of Tables Table S1. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 1... 6 Table S2. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 2... 8 Table S3. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 3... 10 Table S4. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 4... 12 Table S5. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 5... 14 List of Figures Figure S1. 1 H NMR (600 MHz, DMSO-d 6 ) spectrum of 1... 16 Figure S2. 13 C NMR (150 MHz, DMSO-d 6 ) spectrum of 1... 17 Figure S3. HSQC (600 MHz, DMSO-d 6 ) spectrum of 1... 17 Figure S4. COSY (600 MHz, DMSO-d6) spectrum of 1... 18 Figure S5. COSY (600 MHz, DMSO-d 6 ) spectrum of 1... 18 Figure S6. HMBC (600 MHz, DMSO-d 6 ) spectrum of 1... 19 Figure S7. HMBC (600 MHz, DMSO-d 6 ) spectrum of 1... 19 Figure S8. HMBC (600 MHz, DMSO-d 6 ) spectrum of 1... 20 Figure S9. ROESY (600 MHz, DMSO-d 6 ) spectrum of 1... 20 Figure S10. ROESY (600 MHz, DMSO-d 6 ) spectrum of 1... 21 Figure S11. HR-QTOF-MS spectrum of 1... 21 Figure S12. 1 H NMR (600 MHz, DMSO-d 6 ) of 2... 22 Figure S13. 13 C NMR (150 MHz, DMSO-d 6 ) of 2... 23 Figure S14. HR-QTOF-MS spectrum of 2... 23 Figure S15. 1 H NMR (600 MHz, DMSO-d 6 ) spectrum of 3... 24 Figure S16. 13 C NMR (150 MHz, DMSO-d 6) spectrum of 3... 25 Figure S17. HR-QTOF-MS spectrum of 3... 25 Figure S18. 1 H NMR (600 MHz, DMSO-d 6 ) spectrum of 4... 26 Figure S19. 13 C NMR (150 MHz, DMSO-d 6 ) of 4... 27 Figure S20. HR-QTOF-MS spectrum of 4... 27 Figure S21. 1 H NMR (600 MHz, DMSO-d 6 ) of 5... 28 Figure S22. 13 C NMR (150 MHz, DMSO-d 6 ) of 5... 29 Figure S23. HR-QTOF-ESI-MS spectrum of 5... 29 Figure S24. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 1... 30 Figure S25. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 2... 30 Figure S26. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 3... 31 Figure S27. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 4... 31 Figure S28. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 5... 32 Figure S29. C 3 Marfey s method analysis of 1.... 33 2

Figure S30. C 3 Marfey s method analysis of 2.... 34 Figure S31. C 3 Marfey s method analysis of 3... 35 Figure S32. C 3 Marfey s method analysis of 4.... 36 Figure S33. C 3 Marfey s method analysis of 5... 37 Figure S34. Cytotoxicity assay of the trichodermids 1 5 against (a) NCI-H460 (lung cancer cell line) and (b) SW620 (human colon cancer cell line)... 38 Figure S35. Antimicrobial assay screening graphs of trichodermides A-E (1 5)... 39 3

1. DNA taxonomy of the fungus CMB-TN16 Genomic DNA of the fungus CMB-TN16 was extracted from the mycelia using the DNeasy Plant Mini Kit (Qiagen) as per the manufacturers protocol. The 18S rrna genes were amplified from genomic DNA by PCR using the universal primers ITS 1 (5ʹ-TCCGTAGGTGAACCTGCGG-3ʹ) and ITS 4 (5ʹ- TCCTCCGCTTATTGATATGC-3ʹ). The PCR mixture (50 μl) contained 1 μl of genomic DNA (20 40 ng), 200 μm of each deoxynucleoside triphosphate (dntp), 1.5 mm MgCl2, 0.3 μm of each primer, 1 U of Taq DNA polymerase (Fisher Biotec) and 5 μl of PCR buffer. PCR was performed using the following conditions: initial denaturation at 95 C for 3 min, 30 cycles in series of 94 C for 30 s (denaturation), 55 C for 60 s (annealing) and 72 C for 60 s (extension), followed by one cycle at 72 C for 6 min. The PCR products were purified with PCR purification kit (Qiagen) and sequenced. The BLAST search showed the amplified ITS sequence (GenBank accession no. KU521856.1) has 99% homology with other members of the genus Trichoderma virens. 1.1. ITS gene sequence of the fungus CMB-TN16 TCCCAACCCATGTGACGTTACCAAACTGTTGCCTCGGCGGGATCTCTGCCCCGGGTG CGTCGCAGCCCCGGACCAAGGCGCCCGCCGGAGGACCAACCAAAACTCTTATTGTAT ACCCCCTCGCGGGTTTTTTACTATCTGAGCCATCTCGGCGCCCCTCGTGGGCGTTTC GAAAATGAATCAAAACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAAC GCAGCGAAATGCGATAAGTAATGTGAATTGCAGAATTCAGTGAATCATCGAATCTTT GAACGCACATTGCGCCCGCCAGTATTCTGGCGGGCATGCCTGTCCGAGCGTCATTTC AACCCTCGAACCCCTCCGGGGGGTCGGCGTTGGGGATCGGCCCTTTACGGGGCCGGC CCCGAAATACAGTGGCGGTCTCGCCGCAGCCTCTCCTGCGCAGTAGTTTGCACACTC GCATCGGGAGCGCGGCGCGTCCACAGCCGTTAAACACCCCAAACTTCTGAAATGTTG ACCTCGGATCAGGTAGGAATACCCGCTGAACTTAAGCATATCATAA CGGGAGG 4

1.2. BLAST search (closest match) 5

2. Spectroscopic characterization for trichodermides A-E (1-5) Table S1. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 1 No. C H (J in Hz) COSY HMBC ROESY Ac 1 170.8, a C 2 22.9, CH 3 1.93, s 1 Iva 1 -NH D-Iva 1 1 176.0, C 2 58.6, C 3 27.3, CH 2 1.89, i m 4 NH 1.69, m 4 4 7.6, CH 3 0.76, o dd 3 2, 3 NH 5 22.4, CH 3 1.28, s 1, 2, 3 NH NH 8.48, s Ac-1, 1, 2, 3,5 Ac-2, Gln 2 -NH, 3, 4, 5 L-Gln 2 1 172.7, b C 2 55.0, CH 3.96, m NH, 3 1, 2 Ile 3 -NH 3 25.6, c CH 2 1.91, i m 2, 4 NH 1.85, j m 2, 4 2 4 31.3, CH 2 2.24, m 3, 5 2, 3 2.16, m 3, 5 2, 3 5 174.4, C NH 8.73, d (5.4) 2 Iva 1-1, 2, 3 Iva 1 -NH, Ile 3 -NH, 3 5-NH 2 7.42, s 5-NH 5 6.91, s 5-NH 5 L-Ile 3 1 170.9, a C 2 59.2, CH 3.89, m NH, 3 1, 3, 4, 5 3 34.9, d CH 1.91, i m 2, 4, 6 2, 4 4 25.3, c CH 2 1.74, k m 3, 5 1.50, m 3, 5 5 10.9, CH 3 0.83, l t 4 3 6 15.3, e CH 3 0.88, q d 3 2 NH NH 7.73, d (7.2) 2 Gln 2-1, 2, 3 Gln 2 -NH, Val 4 -NH L-Val 4 1 172.6, b C 2 58.6, CH 4.09, m NH, 3 1, 3, 4 NH 3 29.6, CH 2.09, m 2, 4, 5 1, 2 4 19.1, CH 3 0.83, l d 3 2, 3, 5 NH 5 17.9, CH 3 0.85, l d 3 NH, Aib 5 -NH NH 7.24, d (8.4) 2 Ile 3-1, 2, 3 Ile 3 -NH, Aib 5 -NH Aib 5 1 171.6, C 2 56.1, C 3 25.4, c CH 3 1.38, s 1, 2, 4 NH 4 23.0, f CH 3 1.44, s 1, 2, 3 NH NH 7.92, s Val 4-1, 1, 3, 4 Val 4 -NH, 3, 4, Pro 6-5 6

No. C H (J in Hz) COSY HMBC ROESY L-Pro 6 1 172.4, n C 2 63.3, CH 4.20, d (7.8, 7.8) 3 1, 3, 4 Ile 7 -NH 3 28.6, g CH 2 2.06, m 2, 4 1, 5 1.23, m 2, 4 1, 4 4 25.7, c CH 2 1.86, j m 3, 5 1.73, k m 3, 5 5 48.5, CH 2 3.63, m 4 Aib 5 -NH 3.39, m 4 Aib 5 -NH L-Ile 7 1 173.0, C 2 59.4, CH 3.80, t (7.8) NH, 3 1, 3, 6 3 34.9, d CH 1.91, i m 2, 4, 6 4 25.2, c CH 2 1.72, k m 3, 5 1.50, m 3, 5 5 10.8, CH 3 0.83, l t 4 3 6 15.3, e CH 3 0.84, l d 3 2 NH 7.38, d (7.8) 2 1, 2, 3 Pro 6-2 L-Leu 8 1 172.3, n C 2 51.1, CH 4.24, m NH, 3 1, 3 Aib 9 -NH 3 39.6, CH 2 1.53, m 2, 4 4 24.0, CH 1.37, m 3, 5 5 21.5, CH 3 0.80, p d 4 4 6 20.1, CH 3 0.75, o d 4 Leu 8-3 NH 7.08, m d 2 2, 3 Aib 9 1 171.4, h C 2 55.9, C 3 25.5, c CH 3 1.32, s 1, 2, 4 NH 4 23.7, CH 3 1.36, s 1, 2, 3 NH 7.60, s Leu 8-1, 1, 2, 4 3, Pro 10-5, Leu 8-2 L-Pro 10 1 171.4, h C 2 62.0, CH 4.25, m NH, 3 1, 4, 5 3 28.7, g CH 2 2.22, m 2, 4 1, 4 1.61, m 2, 4 4 25.5, c CH 2 1.86, j m 3, 5 1.73, k m 5 47.9, CH 2 3.36, m 4 Aib 9 -NH 3.25, m 4 Aib 9 -NH L-Leuol 11 1 48.7, CH 3.72, m NH, 2, 3, 6 6 2 39.2, CH 2 1.41, m 1, 3 1.36, m 1, 3 3 24.3, CH 1.59, m 2, 4, 5 4 24.0, CH 3 0.88, q d 3 5 23.0, f CH 3 0.80, p d 3 6 64.0, CH 2 3.31, m 1 NH 3.12, m 1 NH NH 7.08, m d 1 1 a-q Assignments for overlapping 1 H and 13 C NMR resonances with the same superscript may be interchanged. 7

Table S2. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 2 No. C H (J in Hz) COSY 1 H 13 C HMBC ROESY Ac 1 170.9, a C 2 23.0, CH 3 1.92, s 1 Aib 1 -NH Aib 1 1 175.9, C 2 55.7, C 3 26.4, CH 3 1.34, s 1, 4 4 23.7, CH 3 1.36, s 1, 2, 3 NH 8.74, s Ac-1, 1, 2, 3 Gln 2 -NH, Ac-2 L-Gln 2 1 172.5, b C 2 55.1, CH 3.94, t (5.4) NH, 3 1, 3, 4 Ile 3 -NH, NH 3 25.8, c CH 2 1.96, f m 2, 4 1.86, g m 2, 4 2 4 31.4, CH 2 2.25, m 3 2, 3 2.16, m 3 2, 3 5 174.4, C NH 8.79, d (5.4) 2 Aib 1-1 Ile 3 -NH, 2 5-NH 2 7.45, s 5 6.90, s 4, 5 L-Ile 3 1 171.5, d C 2 59.2, CH 3.89, m NH, 3 1, 3, 4, 6 3 35.0, n CH 1.93, o m 2, 4, 6 2, 4, 6 4 25.3, c CH 2 1.51, m 3, 5 1.23, m 3, 5 5 10.9, CH 3 0.84, h t 4 3 6 15.4, CH 3 0.86, h d 3 2 NH 7.68, d (7.2) 2 Gln 2-1, 2, 3 Gln 2 -NH, Val 4 -NH L-Val 4 1 172.4, b C 2 58.8, CH 4.07, m NH, 3 1, 3, 4 Aib 5 -NH 3 29.6, CH 2.08, m 2, 4, 5 1, 3 4 19.1, CH 3 0.84, h d 3 2, 3, 5 5 18.2, CH 3 0.89, q d 3 NH 7.31, d (8.4) 2 Ile 3-1 Ile 3 -NH, Aib 5 -NH Aib 5 1 172.8, e C 2 56.1, C 3 25.6, c CH 3 1.39, s 1, 2, 4 4 23.0, CH 3 1.44, s 1, 2, 3 NH NH 7.96, s Val 4-1, 2, 3, 4 Val 4 -NH, Pro 6-2 8

No. C H (J in Hz) COSY 1 H 13 C HMBC ROESY L-Pro 6 1 173.0, C 2 63.3, CH 4.20, dd (7.8, 7.8) 3 1, 3, 4 Ile 7 -NH 3 28.7, i CH 2 2.22, m 2, 4 1, 5 1.23, m 2, 4 1, 4 4 25.8, c CH 2 1.96, f m 3, 5 1.86, g m 3, 5 5 48.5, CH 2 3.64, m 4 3 3.40, m 4 L-Ile 7 1 171.6, d C 2 59.5, CH 3.80, t (7.8) NH, 3 1, 3, 4, 6 3 34.9, n CH 1.93, o m 2, 4, 6 4 25.4, c CH 2 1.73, j m 3, 5 1.50, m 3, 5 5 10.8, CH 3 0.84, h t 4 3 6 15.3, CH 3 0.86, h d 3 2 NH 7.39, d (7.8) 2 Pro 6-1, 2 Pro 6-2, Pro 6-5 L-Leu 8 1 172.6, e C 2 51.1, CH 4.24, k m NH, 3 1, 3 Aib 9 -NH 3 39.6, CH 2 1.54, m 2, 4 4 24.0, r CH 1.59, l m 3, 5 5 21.5, CH 3 0.79, p d (7.2) 4 4, 6 6 20.1, CH 3 0.73, d (6.6) 4 3, 5 NH 7.09, m d Aib 9 1 171.4, d C 2 55.9, C 3 23.7, s CH 3 1.36, s 1, 2, 4 NH 4 23.9, s CH 3 1.32, s 1, 2, 3 NH 7.61, s 1, 2, 3 Pro 10-2 L-Pro 10 1 171.0, a C 2 62.0, CH 4.25, k m 3 3, 4, 5 Aib 9 -NH 3 28.6, i CH 2 2.07, m 2, 4 1.61, m 2, 4 4 25.2, c CH 2 1.73, j m 3, 5 5 48.0, CH 2 3.61, m 4 3.24, m 4 L-Leuol 11 1 48.7, CH 3.71, m NH, 2, 6 2 39.2, CH 2 1.41, m 1, 3 1.37, m 1, 3 3 24.3, r CH 1.59, l m 2, 4, 5 4 23.7, CH 3 0.88, q d 3 5 23.0, CH 3 0.80, p d (6.6) 3 6 64.0, CH 2 3.31, m 1 NH 3.12, m 1 NH NH 7.09, m d a-s Assignments for overlapping 1H and 13C NMR resonances with the same superscript may be interchanged. 9

Table S3. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 3 position C, mult H (J in Hz) COSY 1 H 13 C ROESY HMBC Ac 1 170.8, C 2 22.9, CH 3 1.92, s Ac-1 Iva 1 -NH D-Iva 1 1 176.0, C 2 58.6, a C 3 27.4, CH 2 1.89, i m 4 1.69, m 4 4 7.6, CH 3 0.76, t (6.6) 3 2, 3 NH 5 22.4, CH 3 1.28, s 1, 2, 3 NH, Gln 2 -NH NH 8.50, s Ac-1, 1, 2, 3, 5 Ac-2, Gln 2 -NH, 3, 5 L-Gln 2 1 172.3, b C 2 55.0, c CH 3.97, m NH, 3 1, 3 Ile 3 -NH 3 25.8, CH 2 1.95, m 2, 4 1.86, j m 2, 4 2 4 31.4, CH 2 2.22, k m 3 2, 3 2.15, m 3 2, 3 5 174.5, C NH 8.72, d (5.4) 2 Iva 1-1, 2, 3 Iva 1 -NH, Ile 3 -NH 5-NH 2 7.44, s 5 5-NH 6.91, s 5 5-NH L-Ile 3 1 171.6, d C 2 59.1, CH 3.90, m NH, 3 1, 3, 4, 5 3 34.9, e CH 1.91, i m 2, 4, 6 2, 4 4 25.2, CH 2 1.50, l m 3, 5 NH 1.21, m 3, 5 5 10.9, CH 3 0.83, m t 4 3 6 15.3, f CH 3 0.88, o d 3 2 NH NH 7.75, d (7.2) 2 Gln 2 -NH, Val 4 -NH L-Val 4 1 172.3, b C 2 58.6, a CH 4.09, m NH, 3 1, 3, 4 NH 3 29.6, CH 2.08, m 2, 4, 5 1, 2 4 19.1, CH 3 0.85, m d 3 2, 3, 5 NH 5 18.0, CH 3 0.80, n d 3 NH, Aib 5 -NH NH 7.30, d (8.4) 2 Ile 3-1 Ile 3 -NH, Aib 5 -NH Aib 5 1 172.6, C 2 56.1, C 3 25.4, g CH 3 1.38, s 1, 2, 4 NH 4 22.9, h CH 3 1.43, s 1, 2, 3 NH 10

position C, mult H (J in Hz) COSY 1 H 13 C ROESY HMBC NH 7.97, s Val 4-1, 1, 3, 4 Val 4 -NH, Pro 6-5 L-Pro 6 1 173.1, C 2 63.3, CH 4.20, dd (7.8, 7.8) 3 1, 3, 4 Ile 7 -NH 3 28.6, CH 2 2.21, k m 2, 4 1, 5 1.61, m 2, 4 1, 4 4 25.5, g CH 2 1.86, j m 3, 5 1.60, m 3, 5 5 48.5, CH 2 3.64, p m 4 Aib 5 -NH 3.40, m 4 L-Ile 7 1 171.4, d C 2 59.4, CH 3.81, t (7.8) NH, 3 1, 3, 6 Leu 8 -NH 3 35.0, e CH 1.94, m 2, 4, 6 4 25.4, g CH 2 1.51, l m 3, 5 1.25, m 3, 5 5 10.8, CH 3 0.83, m t 4 3 6 15.4, f CH 3 0.86, o d 3 3 Leu 8 -NH NH 7.42, d (7.8) 2 Pro 6-1 Pro 6-2, Leu 8 -NH L-Leu 8 1 172.7, C 2 51.0, CH 4.24, q m NH, 3 1, 3 Aib 9 -NH 3 39.8, CH 2 1.55, m 2, 4 4 24.0, CH 1.59, m 3, 5 5 22.9, h CH 3 0.79, n d 4 4 6 20.2, CH 3 0.73, d (6.6) 4 3 NH 7.12, d (8.4) 2 Ile 7-1 Ile 7 -NH, Aib 9 -NH Aib 9 1 171.6, d C 2 55.9, C 3 23.1, h CH 3 1.43, s 1, 2, 4 NH 4 23.7, CH 3 1.36, s 1, 2, 3 NH 7.62, s Leu 8-1, 1, 2, 4 Leu 8 -NH, Pro 10-5 L-Pro 10 1 171.4, d C 2 62.3, CH 4.25, q m 3 1, 4, 5 Valol 11 -NH 3 29.0, CH 2 2.08, m 2, 4 1, 4 1.63, m 2, 4 4 25.6, g CH 2 1.75, m 3, 5 1.53, l m 3, 5 5 48.0, CH 2 3.61, m 4 Aib 9 -NH 3.31, m 4 L-Valol 11 1 55.0, c CH 3.64, p m NH, 2, 6 Pro 10-1, 3, 5 2 28.1, CH 1.84, m 3, 4 3 20.0, CH 3 0.80, n d 2 4 17.2, CH 3 0.80, n d 2 5 61.4, CH 2 3.42, m 1 2 NH 3.35, m 1 2 NH NH 7.00, d (9.6) 2 Pro 10-1 Pro 10-2, 5 a-q Assignments for overlapping 1H and 13C NMR resonances with the same superscript may be interchanged. 11

Table S4. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 4 position C H (J in Hz) COSY 1 H 13 C HMBC ROESY Ac 1 171.0, C 2 23.0, i CH 3 1.92, s 1 Aib 1 -NH Aib 1 1 176.0, C 2 55.9, C 3 26.4, CH 3 1.34, k s 2, 4 NH 4 24.0, CH 3 1.32, k s 1, 2, 3 NH 8.72, s Ac-1, 1, 2, 3 Gln 2 -NH, 3 L-Gln 2 1 172.6, a C 2 55.1, CH 3.94, m NH, 3 1, 3 Ile 3-3, Ile 3-3, NH 3 25.7, b CH 2 1.96, m 2, 4 1.52, l m 2, 4 2 4 31.4, CH 2 2.22, m 3 2, 3 2.16, m 3 2, 3 5 174.4, C NH 8.78, d (5.4) 2 Aib 1-1 Aib 1-4, Ile 3 -NH, 2 5-NH 2 7.45, s 5 6.91, s 5 L-Ile 3 1 171.6, c C 2 59.2, d CH 3.89, m NH, 3 1, 3, 4, 6 3 35.0, e CH 1.93, m 2, 4, 6 2, 4 Gln 2-2 4 25.2, b CH 2 1.51, l m 3, 5 1.22, m 3, 5 5 10.9, f CH 3 0.84, m t (6.6) 4 3 6 15.4, g CH 3 0.89, n d (7.2) 3 2 NH 7.66, d (7.2) 2 Gln 2-2, 2, 3 Gln 2 -NH, Val 4 -NH L-Val 4 1 172.3, h C 2 58.8, CH 4.07, m NH, 3 1, 3, 4 NH 3 29.6, CH 2.07, o m 2, 4, 5 1, 2 4 19.1, CH 3 0.89, n d (6.6) 3 2, 3, 5 5 18.2, CH 3 0.87, n d (6.0) 3 NH 7.30, d (8.4) 2 Ile 3-1 Ile 3 -NH, Aib 5 -NH Aib 5 1 172.7, a C 12

position C H (J in Hz) COSY 1 H 13 C HMBC ROESY 2 56.1, C 3 25.5, b CH 3 1.38, s 1, 2, 4 4 23.0, i CH 3 1.44, s 1, 2, 3 NH NH 7.95, s Val 4-1, 3, 4 Val 4 -NH, Val 4-2, Pro 6-5 L-Pro 6 1 173.0, C 2 63.3, CH 4.20, dd (7.8, 7.8) 3 1, 3, 4 Ile 7 -NH 3 28.6, CH 2 2.09, o m 2, 4 1, 5 1.61, p m 2, 4 1, 4 4 25.7, b CH 2 1.96, m 3, 5 1.52, l m 3, 5 5 48.5, j CH 2 3.63, m Ile 7-1, Aib 5 -NH 3.40, m 4 Aib 5-1, 2 L-Ile 7 1 171.4, c C 2 59.4, d CH 3.81, t (7.8) NH, 3 1, 3, 6 3 34.9, e CH 1.93, m 2, 4, 6 4 25.4, b CH 2 1.76, m 3, 5 1.23, m 3, 5 5 10.8, f CH 3 0.84, m t (6.6) 4 3 6 15.3, g CH 3 0.84, m d (7.2) 3 2 NH 7.41, d (7.8) 2 Pro 6-1 Pro 6-2, Leu 8 -NH L-Leu 8 1 172.3, h C 2 50.9, CH 4.26, q m NH, 3 1, 3 Aib 9 -NH 3 39.9, CH 2 1.53, l m 2, 4 4 24.0, CH 1.60, m 3, 5 5 22.9, i CH 3 0.92, d (7.2) 4 4 6 19.9, CH 3 0.74, d (6.6) 4 3 NH 7.12, d (8.4) 2 Ile 7-1 Ile 7 -NH, Aib 9 -NH Aib 9 1 171.6, c C 2 55.7, C 3 25.5, b CH 3 1.32, k s 1, 2, 4 NH 4 23.8, CH 3 1.36, s 1, 2, 3 NH 7.62, s 1, 2, 4 Leu 8 -NH, Pro 10-5 L-Pro 10 1 171.3, c C 2 62.2, CH 4.25, q m 3 1, 4, 5 Valol 11 -NH 3 29.0, CH 2 2.22, m 2, 4 1, 4 1.61, p m 2, 4 4 25.6, b CH 2 1.86, m 3, 5 1.51, l m 3, 5 5 48.0, j CH 2 3.62, m 4 Aib 9 -NH 3.30, m 4 Aib 9 -NH L-Valol 11 1 55.0, CH 3.64, m NH, 2, 6 3, 5 2 28.1, CH 1.85, m 3, 4 3 20.1, CH 3 0.82, m d 2 4 17.2, CH 3 0.79, d 2 5 61.4, CH 2 3.43, m 1 2 NH 3.34, m 1 2 NH NH 7.00, d (9.6) 2 Pro 10-1 Pro 10-2, 5 a-q Assignments for overlapping 1 H and 13 C NMR resonances with the same superscript may be interchanged. 13

Table S5. 1D and 2D NMR (600 MHz, DMSO-d 6 ) data for 5 position C H (J in Hz) COSY 1 H 13 C HMBC ROESY Ac 1 170.7, C 2 22.9, CH 3 1.91, h s 1 Iva 1 -NH D-Iva 1 1 175.8, C 2 58.9, C 3 27.5, CH 2 1.90, h m 4 1.70, m 4 4 7.6, CH 3 0.76, i dd 3 2 5 22.4, CH 3 1.29, s 1, 2, 3 NH 8.47, s Ac-1, 1, 2, 5 L-Gln 2 1 172.7, a C 2 54.9, b CH 3.99, m NH, 3 1, 3 3 25.8, c CH 2 1.96, m 2, 4 1.86, p m 2, 4 2 4 31.3, CH 2 2.21, j m 3 2, 3 2.16, m 3 2, 3 5 174.4, C NH 8.71, d (4.8) 2 Iva 1-1, 1, 2 Val 3 -NH 5-NH 2 7.43, k s 6.89, s L-Val 3 1 171.6, d C 2 60.3, CH 3.91, m NH, 3 1, 3, 4, 5 3 29.0, e CH 2.13 m 2, 4, 5 2, 3 4 19.1, f CH 3 0.93, l d 3 2 5 19.1, f CH 3 0.89, m d 3 2 NH 7.75, d (7.2) 2 Gln 2-1 Gln 2 -NH, Val 4 -NH L-Val 4 1 172.3, g C 2 58.5, CH 4.11, m NH, 3 1, 3, 4 3 29.6, CH 2.09, m 2, 4, 5 1, 2 4 17.9, CH 3 0.88, m d 3 2, 3, 5 5 18.8, CH 3 0.95, l d 3 NH 7.38, d (7.2) 2 Val 3-1, 1 Val 3 -NH, Aib 5 -NH 14 5

position C H (J in Hz) COSY 1 H 13 C HMBC ROESY Aib 5 1 172.7, a C 2 56.0, C 3 25.4, c CH 3 1.38, s 1,2, 4 4 23.1, CH 3 1.43, s 1, 2, 3 NH 8.02, s Val 4-1, 1, 3, 4 Val 4 -NH L-Pro 6 1 172.2, g C 2 62.2, CH 4.23, q m 3 1, 3, 4 Ile 7 -NH 3 28.6, CH 2 2.22, j m 2, 4 1, 5 2.08, m 2, 4 1, 4 4 25.3, c CH 2 1.76, m 3, 5 1.50, n m 3, 5 5 48.4, CH 2 3.65, o m 3.39, m 4 Aib 5-1, 2 L-Ile 7 1 171.5, d C 2 59.3, CH 3.81, t (5.4) NH, 3 1, 3, 6 3 34.9, CH 1.93, m 2, 4, 6 4 25.3, c CH 2 1.76, m 3, 5 1.50, n m 3, 5 5 10.9, CH 3 0.83, dd 4 3 6 15.4, CH 3 0.87, m d 3 2 NH 7.42, k d 2 Pro 6-1, 1 Leu 8 -NH, Pro 6-2 L-Leu 8 1 171.3, d C 2 50.9, l CH 4.25, q m NH, 3 1, 3 3 39.6, m CH 2 1.53, m 2, 4 4 24.0, CH 1.59, m 3, 5 5 20.2, CH 3 0.75, i d 4 4 6 19.9, CH 3 0.79, i d 4 3 NH 7.12, d (8.4) 2 1 Ile 7 -NH, Aib 9 -NH Aib 9 1 172.7, a C 2 55.9, C 3 25.5, c CH 3 1.32, s 1, 2, 4 4 23.6, CH 3 1.36, s 1, 2, 3 NH 7.62, s Leu 8-1/ Pro 10-1, 1, 2, 4 Leu 8 -NH, Pro 10-5 L-Pro 10 1 171.4, d C 2 63.2, CH 4.20, dd (7.8, 7.8) 3 1, 4, 5 3 28.9, e CH 2 2.22, j m 2, 4 1, 4 1.62, m 2, 4 4 25.6, c CH 2 1.86, p m 3, 5 1.51, n m 3, 5 5 48.0, CH 2 3.62, o m 4 Aib 9-1, 2 Aib 9 -NH 3.30, m 4 Aib 9-1, 3 L-Valol 11 1 54.9, b CH 3.64, o m 2 28.1, CH 1.89, h m 3, 4 3 20.2, CH 3 0.75, i d 2 4 17.2, CH 3 0.79, i d 2 5 61.4, CH 2 3.43, m 3.35, m NH 6.99, d (9.6) 2 Pro 10-1 Pro 10-2, 5 a-q Assignments for overlapping 1 H and 13 C NMR resonances with the same superscript may be interchanged. 15

Figure S1. 1 H NMR (600 MHz, DMSO-d 6 ) spectrum of 1 16

Figure S2. 13 C NMR (150 MHz, DMSO-d 6 ) spectrum of 1 Figure S3. HSQC (600 MHz, DMSO-d 6 ) spectrum of 1 17

Figure S4. COSY (600 MHz, DMSO-d 6 ) spectrum of 1 Figure S5. COSY (600 MHz, DMSO-d 6 ) spectrum of 1 18

Figure S6. HMBC (600 MHz, DMSO-d 6 ) spectrum of 1 Figure S7. HMBC (600 MHz, DMSO-d 6 ) spectrum of 1 19

Figure S8. HMBC (600 MHz, DMSO-d 6 ) spectrum of 1 Figure S9. ROESY (600 MHz, DMSO-d 6 ) spectrum of 1 20

Figure S10. ROESY (600 MHz, DMSO-d 6 ) spectrum of 1 Figure S11. HR-QTOF-MS spectrum of 1 21

Figure S12. 1 H NMR (600 MHz, DMSO-d 6 ) spectrum of 2 22

Figure S13. 13 C NMR (150 MHz, DMSO-d 6 ) spectrum of 2 Figure S14. HR-QTOF-MS spectrum of 2 23

Figure S15. 1 H NMR (600 MHz, DMSO-d 6 ) spectrum of 3 24

Figure S16. 13 C NMR (150 MHz, DMSO-d 6 ) spectrum of 3 Figure S17. HR-QTOF-MS spectrum of 3 25

Figure S18. 1 H NMR (600 MHz, DMSO-d 6 ) spectrum of 4 26

Figure S19. 13 C NMR (150 MHz, DMSO-d 6 ) spectrum of 4 Figure S20. HR-QTOF-MS spectrum of 4 27

Figure S21. 1 H NMR (600 MHz, DMSO-d 6 ) spectrum of 5 28

Figure S22. 13 C NMR (150 MHz, DMSO-d 6 ) spectrum of 5 Figure S23. HR-QTOF-ESI-MS spectrum of 5 29

3. MS/MS fragmentation for trichodermides A-E (1-5) Figure S24. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 1 Figure S25. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 2 30

Figure S26. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 3 Figure S27. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 4 31

Figure S28. Positive and negative ion HR-QTOF-ESI-MS/MS spectra of 5 32

4. C3 Marfey analysis (a) * (b) L-Glu D-Glu (c) L-Pro D-Pro ion abundance (d) L-Ile L-allo-Ile L-Leu D-allo-Ile D-Leu D-Ile (e) L-Val L-Iva L-Leuol D-Iva D-Val D-Leuol (f) Aib 0 5 10 15 20 25 30 35 40 45 50 retention time (min) Figure S29. HPLC-DAD-MS spectrum extracted from a C 3 Marfey s method analysis of 50 g of 1 derivatized with L-FDAA: (a) UV (340 nm), where * = residue L-FDDA; (b) SIE (m/z 398) for L-FDAA- L-Glu; (c) SIE (m/z 366) for L-FDDA-L-Pro; (d) SIE (m/z 382) for L-FDAA-L-Ile and L-FDAA-L-Leu; (e) SIE (m/z 368) for L-FDAA-L-Val, L-FDAA-D-Iva, and L-FDAA-L-Leuol; (f) SIE (m/z 354) for L- FDAA-Aib. Note for (b)-(f) L-FDAA derivatives of authentic amino acid standards are also displayed (dotted line). 33

(a) * (b) L-Glu D-Glu (c) L-Pro D-Pro ion abandance (d) L-Leu L-Ile L-allo-Ile D-Leu D-allo-Ile D-Ile (e) L-Val L-Leuol D-Val D-Leuol (f) Aib 0 5 10 15 20 25 30 35 40 45 50 retention time (min) Figure S30. HPLC-DAD-MS spectrum extracted from a C 3 Marfey s method analysis of 50 g of 2 derivatized with L-FDAA: (a) UV (340 nm), where * = residue L-FDDA; (b) SIE (m/z 398) for L-FDAA- L-Glu; (c) SIE (m/z 366) for L-FDAA-L-Pro; (d) SIE (m/z 382) for L-FDAA-L-Ile and L-FDAA-L-Leu; (e) SIE (m/z 368) for L-FDAA-L-Val and L-FDAA-L-Leuol; (f) SIE (m/z 354) for L-FDAA-Aib. Note for (b)-(f) L-FDAA derivatives of authentic amino acid standards are also displayed (dotted line). 34

(a) * (b) L-Glu D-Glu (c) L-Pro D-Pro ion abundance (d) L-Ile L-Leu L-allo-Ile D-Leu D-allo-Ile D-Ile (e) L-Val L-Iva D-Iva D-Val (f) L-Valol Aib D-Valol 0 5 10 15 20 25 30 35 40 45 50 retention time (min) Figure S31. HPLC-DAD-MS spectrum extracted from a C 3 Marfey s method analysis of 50 g of 3 derivatized with L-FDAA: (a) UV (340 nm), where * = residue L-FDAA; (b) SIE (m/z 398) for L-FDAA- L-Glu; (c) SIE (m/z 366) for L-FDAA-L-Pro; (d) SIE (m/z 382) for L-FDAA-L-Ile and L-FDAA-L-Leu; (e) SIE (m/z 368) for L-FDAA-L-Val and L-FDAA-D-Iva; (f) SIE (m/z 354) for L-FDAA-Aib and L- FDAA-L-Valol. Note for (b)-(f) L-FDAA derivatives of authentic amino acid standards are also displayed (dotted line). 35

(a) * (b) L-Glu D-Glu (c) L-Pro D-Pro ion abundance (d) L-Ile L-Leu D-Leu D-Ile L-allo-Ile D-allo-Ile (e) L-Val D-Val (f) L-Valol Aib D-Valol 0 5 10 15 20 25 30 35 40 45 50 retention time (min) Figure S32. HPLC-DAD-MS spectrum extracted from a C 3 Marfey s method analysis of 50 g of 4 derivatized with L-FDAA: (a) UV (340 nm), where * = residue L-FDAA; (b) SIE (m/z 398) for L-FDAA- L-Glu; (c) SIE (m/z 366) for L-FDAA-L-Pro; (d) SIE (m/z 382) for L-FDAA-L-Ile and L-FDAA-L-Leu; (e) SIE (m/z 368) for L-FDAA-L-Val; (f) SIE (m/z 354) for L-FDAA-Aib and L-FDAA-L-Valol. Note for (b)-(f) L-FDAA derivatives of authentic amino acid standards are also displayed (broken line). 36

ion abundance (a) * (b) L-Glu D-Glu (c) L-Pro D-Pro (d) L-Ile L-Leu D-Leu D-Ile L-allo-Ile D-allo-Ile (e) L-Val L-Iva D-Iva D-Val (f) L-Valol Aib D-Valol 0 5 10 15 20 25 30 35 40 45 50 retention time (min) Figure S33. HPLC-DAD-MS spectrum extracted from a C 3 Marfey s method analysis of 50 g of 5 derivatized with L-FDAA: (a) UV (340 nm), where * = residue L-FDAA; (b) SIE (m/z 398) for L-FDAA- L-Glu; (c) SIE (m/z 366) for L-FDAA-L-Pro; (d) SIE (m/z 382) for L-FDAA-L-Ile and L-FDAA-L-Leu; (e) SIE (m/z 368) for L-FDAA-L-Val and L-FDAA-D-Iva; (f) SIE (m/z 354) for L-FDAA-Aib and L- FDAA-L-Valol. Note for (b)-(f) L-FDDA derivatives of authentic amino acid standards are also displayed (dotted line). 37

% cell viability % cell viability 5. Cytotoxicity assay 150 (a) 100 50 5 4 3 2 1 DMSO (1%) doxorubicin (30 mm) 150 (b) 100 50 5 4 3 2 1 DMSO (1%) doxorubicin (30 mm) 0 0.001 0.01 0.1 1 10 100 Concentration (mm) 0.001 0.01 0.1 1 10 100 Concentration (mm) Figure S34. Cytotoxicity assay of the trichodermides 1 5 against (a) NCI-H460 (lung cancer cell line) and (b) SW620 (human colon cancer cell line) 0 38

Absorbance at 600 nm Absorbance at 600 nm Absorbance at 600 nm Absorbance at 600 nm Absorbance at 600 nm Absorbance at 600 nm Absorbance at 600 nm 6. Antimicrobial assay Candida albicans ATCC 10231 Candida parapsilosis ATCC 22019 1.5 1.0 0.5 1 2 3 4 5 DMSO amphotericin B 1.5 1.0 0.5 1 2 3 4 5 DMSO amphotericin B 0.0 0.01 0.1 1 10 100 conc [µm] 0.0 0.01 0.1 1 10 100 conc [µm] Candida krusei ATCC 6258 Bacillus subtilis ATCC 6051 1.5 1.0 0.5 1 2 3 4 5 DMSO amphotericin B 0.8 0.7 0.6 0.5 0.4 0.3 0.2 1 2 3 4 5 DMSO rifampicin 0.1 0.0 0.01 0.1 1 10 100 conc [µm] 0.0 0.01 0.1 1 10 100 conc [µm] Staphylococcus aureus ATCC 25923 Escherichia coli ATCC 11775 1.5 1.0 0.5 1 2 3 4 5 DMSO rifampicin 3 2 1 1 2 3 4 5 DMSO rifampicin 0.0 0.01 0.1 1 10 100 conc [µm] 0 0.01 0.1 1 10 100 conc [µm] Pseudomonas aeruginosa ATCC 10145 4 1 3 2 1 2 3 4 5 DMSO rifampicin 0 0.01 0.1 1 10 100 conc [µm] Figure S35. Antimicrobial assay screening graphs of trichodermides A-E (1 5) and ampicillin and amphotericin served as controls for bacteria and fungi respectively, while DMSO served as positive control. Trichodermide A (1) showed MIC of 30 M. 39