A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

Σχετικά έγγραφα
A Laplace Type Problem for a Lattice with Cell Composed by Three Triangles with Obstacles

Congruence Classes of Invertible Matrices of Order 3 over F 2

LAPLACE TYPE PROBLEMS FOR A DELONE LATTICE AND NON-UNIFORM DISTRIBUTIONS

On a four-dimensional hyperbolic manifold with finite volume

CRASH COURSE IN PRECALCULUS

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Hitting Probabilities for Random Convex Bodies and Lattices of Triangles

Other Test Constructions: Likelihood Ratio & Bayes Tests

Areas and Lengths in Polar Coordinates

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Section 8.3 Trigonometric Equations

Homework 8 Model Solution Section

ST5224: Advanced Statistical Theory II

Areas and Lengths in Polar Coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Matrices and Determinants

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homomorphism in Intuitionistic Fuzzy Automata

derivation of the Laplacian from rectangular to spherical coordinates

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Homomorphism of Intuitionistic Fuzzy Groups

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Math221: HW# 1 solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

D Alembert s Solution to the Wave Equation

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Homework 3 Solutions

2 Composition. Invertible Mappings

Statistical Inference I Locally most powerful tests

On Numerical Radius of Some Matrices

Numerical Analysis FMN011

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Generating Set of the Complete Semigroups of Binary Relations

Solution Series 9. i=1 x i and i=1 x i.

Reminders: linear functions

Section 7.6 Double and Half Angle Formulas

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Parametrized Surfaces

Commutative Monoids in Intuitionistic Fuzzy Sets

Finite Field Problems: Solutions

GÖKHAN ÇUVALCIOĞLU, KRASSIMIR T. ATANASSOV, AND SINEM TARSUSLU(YILMAZ)

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

High order interpolation function for surface contact problem

The Simply Typed Lambda Calculus

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

Strain gauge and rosettes

Example Sheet 3 Solutions

Every set of first-order formulas is equivalent to an independent set

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Answer sheet: Third Midterm for Math 2339

4.6 Autoregressive Moving Average Model ARMA(1,1)

Second Order Partial Differential Equations

Μηχανική Μάθηση Hypothesis Testing

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Fuzzifying Tritopological Spaces

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Spherical Coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Lecture 26: Circular domains

Second Order RLC Filters

PARTIAL NOTES for 6.1 Trigonometric Identities

Variational Wavefunction for the Helium Atom

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometric Formula Sheet

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

C.S. 430 Assignment 6, Sample Solutions

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Uniform Convergence of Fourier Series Michael Taylor

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

The k-α-exponential Function

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

( y) Partial Differential Equations

A Note on Intuitionistic Fuzzy. Equivalence Relation

Notes on the Open Economy

CE 530 Molecular Simulation

Solutions to Exercise Sheet 5

Concrete Mathematics Exercises from 30 September 2016

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Longitudinal Changes in Component Processes of Working Memory

Tridiagonal matrices. Gérard MEURANT. October, 2008

Approximation of distance between locations on earth given by latitude and longitude

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Transcript:

Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle Ersilia Saitta Department of Economics University of Messina Via dei Verdi 7 98122 Messina Italy Marius Stoka Sciences Academy of Turin Via Maria Vittoria 3 123 Torino Italy Copyright c 2016 Ersilia Saitta and Marius Stoka. This article is distributed under the Creative Commons Attribution License which permits unrestricted use distribution and reproduction in any medium provided the original work is properly cited. Abstract In this paper we study a Laplace type problem for a lattice composed by four isoscele triangles considering a rectangle as test body. We determine the probability that a random rectangle intersects a side of the fundamental cell represented in fig. 1. Mathematics Subject Classification: 60D0 2A22 Keywords: Geometric Probability stochastic geometry random sets random convex sets and integral geometry 1 Introduction Considering the several results obtained in recent years by different papers 1] 2] 3] and 7] the authors studied some Buffon-Laplace type problems for particular lattices 4] ] and 6]. In particular Caristi and Stoka 6] considered a

362 Ersilia Saitta and Marius Stoka Laplace type problem for three different lattices with non-convex fundamental cells. Starting from these results in this paper we consider as the fundamental cell a lattice composed by four isoscele triangles introducing as test body a rectangle and the Laplace type problems were solved. In other words we computed the probability that a random rectangle intersects the fundamental cell represented in fig. 1. 2 Main Results Let R a be the lattice with the fundamental cell C 0 represented in fig.1 A B E C 01 C 03 C 02 C 04 C D F fig.1 With the notations of this figure we have: and C 0 = C 01 C 02 C 03 C 04 AC = AD 2a cos π DF = a 2 cos π 1 areac 0 = a2 2 sin π 2 cos π 2 1. 2 We want to compute the probability that a rectangle r with a random position and with sides of constant length l m with 0 m < l < α 4 cos π intersects a side of the lattice i.e. the probability P int that r intersects a side of

Isoscele triangles test body rectangle 363 the the fundamental cell C 01. The position of the rectangle r is determinated by centre and by the angle ϕ definite in fig. 2 In order to compute the probability P int we consider the limiting positions of rectangle r for a fixed value of ϕ in the cell C 0i i = 1 2 3 4. So we have fig. 2 A a B 1 2 A' b 1 A 1 E 1 c 1 B a 2 B' E '' c E Ĉ 01 ϕ b 2 Ĉ 03 ϕ a 3 C 2 C ' a A 2 A'' Ĉ 02 ϕ E E 2 3 E ' d 1 E '' b c 2 c 4 D 4 D 2 E 4 d 2 Ĉ 04 ϕ d F 2 C 1 a 4 C '' b 3 b 4 D' D'' D 3 c 3 F ' d 3 d 4 C D F D 1 fig.2 F 1 and the following: areaĉ01 ϕ = areac 01 areaaj ϕ 3 By fig.1 and fig. 2 we have: j=1 areaĉ02 ϕ = areac 02 areac j ϕ 4 j=1 areac 03 ϕ = areac 03 areab j ϕ j=1 areac 04 = areac 04 aread j ϕ. 6 j=1 areab ϕ = l2 2 tgϕ

364 Ersilia Saitta and Marius Stoka areab 4 ϕ = m2 cos ϕ sin π ϕ 2 sin 2π areaa 8 ϕ = l2 sin 2π ϕ sin 2π ϕ 2 sin π areaa 7 ϕ = m2 π 2 tg ϕ areaa ϕ = m2 sin π ϕ cos π ϕ 2 sin 2π areaa 6 ϕ = α 2 π ϕ m sin π ϕ ] 2 m2 π π π ] 2 tg ϕ ϕ m sin ϕ areaa 1 ϕ = areaa 3 ϕ = a 2 l sin 2π ϕ sin π m cos π ϕ ] sin 2π areaa 4 ϕ = l2 2 tg π ϕ areaa 2 ϕ = m2 2 tg π ϕ π ϕ m sin π ϕ] 2 sin π ϕ 2 sin π cos π ϕ l sin π ϕ m cos 1 π π ] l sin 2 ϕ m cos ϕ π ϕ m sin π ϕ sin π l 2 π 2 tg ϕ 2 π ϕ ] m sin π ϕ ] sin 2π areaa 9 ϕ = areaa 2 ϕ = m2 2 tg π ϕ

Isoscele triangles test body rectangle 36 We obtain: areaa ϕ = a cos π π π ] ϕ m sin ϕ l sin 2π ϕ π ϕ m sin π ϕ] 2 sin π π ϕ m sin π ϕ] 2 sin π ϕ 2 sin π cos π ϕ π m 2 tg ϕ. areaĉ01 ϕ = areac 01 { a cos π π π ] ϕ m sin ϕ π π ] a l sin ϕ m cos ϕ 1 4 sin π sin π cos 2ϕ cos π sin 2ϕ cos π l 2 2 cos π sin 2ϕ sin π cos 2ϕ cos π ] m 2 4 sin 2π sin π 6 cos π cos 2ϕ 6 sin π sin 2ϕ 2 cos π cos π 6 sin π ]}. 7 To compute areaĉ03 ϕ we have: areab 8 = m2 2 tg π ϕ areab 7 ϕ = π ϕ m sin π ϕ] 2 sin ϕ 2 sin 2π cos π ϕ areab 6 ϕ = a l sin ϕ m cos ϕ 2 l sin ϕ m cos ϕ π ϕ m sin π ϕ m sin π ϕ] 2 sin 2π

366 Ersilia Saitta and Marius Stoka We obtain: 2 l2 2 tgϕ areab 1 ϕ = areaa 8 ϕ = l2 sin 2π ϕ sin 2π ϕ 2 sin π areab 2 ϕ = areaa 8 ϕ = m2 π 2 tg ϕ areab 3 ϕ = a cos π π ϕ m sin π ϕ ] π ϕ π ϕ m sin π ϕ] 2 sin π m cos ϕ π ϕ m sin π ϕ] 2 sin 2π 2 m2 π 2 tg ϕ areab ϕ = areab 8 ϕ = m2 2 tg π ϕ areab 9 ϕ = a cos π π ϕ m sin π ϕ ] π ϕ π ϕ m sin π ϕ] 2 sin π π ϕ m sin π ϕ] 2 sin ϕ 2 sin 2π cos π ϕ π m 2 tg ϕ. areaĉ03 ϕ = areac 03 a 3l2 l sin ϕ m cos ϕ 2 4 sin π l 2 4 sin 2π a cos π cos π ϕ m sin ϕ cos 2ϕ cos π cos π sin 2ϕ sin π cos 2ϕ sin π

Isoscele triangles test body rectangle 367 m 2 2 sin 2π sin π 1 cos 2ϕ 2 sin 2π cos π cos 2ϕ sin π ] sin 2ϕ. 8 To compute areaĉ02 ϕ we have: areac ϕ = l2 4 sin π cos 2ϕ cos π areac 6 ϕ = areaa 2 ϕ = m2 2 tg π ϕ areac 2 ϕ = areac 4 ϕ = areaa 7 = m2 2 tg π ϕ areac 1 ϕ = π ϕ m sin π ϕ] 2 sin π ϕ 2 sin π cos π ϕ areac ϕ = m2 2 ctg π ϕ areac 8 ϕ = m2 sin π ϕ cos π ϕ 2 sin 2π areac 3 ϕ = a cos π π ϕ m sin π ϕ ] l sin 2π ϕ π ϕ m sin π ϕ] 2 sin π π ϕ m sin π ϕ] 2 sin π ϕ 2 sin π cos π ϕ π m 2 tg ϕ areac 7 ϕ = a 2 π π ] ϕ m sin ϕ m cos π ϕ π ϕ m sin π ϕ] 2 sin 2π l sin 2π ϕ π ϕ m sin π ϕ] 2 sin π

368 Ersilia Saitta and Marius Stoka 2 m2 π 2 tg ϕ areac 9 ϕ = a π π ] l sin 2 ϕ m cos ϕ m sin π ϕ l sin π ϕ m cos π ϕ] 2 sin 2π l sin π ϕ m cos π ϕ] π ϕ m sin π ϕ] 2 sin π We obtain: 2 m2 2 ctg π ϕ. areaĉ02 ϕ = areac 02 = cos π cos ϕ sin π sin ϕ a cos π a π m sin π l sin π m cos π sin ϕ π m sin π ] cos ϕ l 2 4 sin π 1 cos 2π cos 2ϕ sin 2π sin 2ϕ 2 cos π ] cos π m 2 2 sin 2π cos π 1 sin π cos 2ϕ sin π cos π cos π sin 2ϕ cos π π ] cos2 4 sin 2π sin π 3 sin π 2 sin 2π cos π cos π 4 cos 2π To compute areaĉ04 ϕ we have: { sin π cos π sin π sin 2ϕ cos π cos π 2 cos 2π sin π 4 cos π ] cos 2ϕ }. 9

Isoscele triangles test body rectangle 369 aread ϕ = areab ϕ = l2 2 tgϕ aread 7 ϕ = areab 7 ϕ = π ϕ m sin π ϕ] 2 sin ϕ 2 sin 2π cos π ϕ aread 6 ϕ = a l sin ϕ m cos ϕ 4 cos π m sin π ϕ l sin ϕ m cos ϕ 2 sin 2π l sin ϕ m cos ϕ π ϕ m sin π ϕ] 2 sin 2π 2 l2 2 tgϕ aread 2 ϕ = m2 2 tg π ϕ aread 1 ϕ = l2 sin 2π ϕ sin 2π ϕ 2 sin π aread 3 ϕ = a 2 π ϕ m sin π ϕ ] l sin 2π ϕ π ϕ m sin π ϕ] 2 sin π m cos ϕ π ϕ m sin π ϕ] 2 sin 2π 2 m2 π 2 tg ϕ aread 9 ϕ = a π π ] 2 ϕ m sin ϕ We obtain: l sin 2π ϕ π ϕ m sin π ϕ] 2 sin π π ϕ m sin π ϕ] 2 sin ϕ 2 sin 2π cos π ϕ π m 2 tg ϕ.

370 Ersilia Saitta and Marius Stoka areaĉ04 ϕ = areac 04 cos ϕ m 4 cos π { sin ϕ a l 4 cos π sin π ] sin ϕ l2 4 sin 2π cos π cos ϕ 2 cos π cos π cos 2ϕ sin π sin 2ϕ 2 π cos2 cos π ] sin π 2 sin 2π m 2 1 sin 2ϕ 2 sin 2π cos π sin π cos 2ϕ 3 cos π ] sin π }. Denoting with M i i = 1 2 3 4 the set of all rectangles r that have their centre in cell C 01 and with N i the set of all rectangles r entirely contained in C 0i we have cf. 9] P int = 1 4 i=1 µ N i 4 i=1 µ M i 11 where µ is the Lebesgue measure in the Euclidean plane. To compute the measure µ M i and µ N i we use the kinematic measure of Poincarè cf. 8]: dk = dx dy dϕ where x y are the coordinates of the the centre of rectangle r and ϕ the fixed angle. We can write: µ M i = π/ 0 dϕ dxdy = {xyɛc 01 } then π/ 0 areac 0i dϕ = π areac 0i i = 1 2 3 4 In view of we can write 4 µ M i = π areac 0. 12 i=1 A i ϕ = areac 0i areaĉ0i ϕ

Isoscele triangles test body rectangle 371 then µ N i = π/ 0 dϕ {xyɛĉ01ϕ} dxdy = π areac 0i π/ 4 µ N i = π areac 0 i=1 0 π/ 0 A i ϕ] dϕ π/ The formulas 7 8 9 and give us i=1 0 ] areaĉ01 ϕ dϕ = 4 ] A i ϕ dϕ. 13 i=1 4 { A i ϕ = a l 4 cos π cos π cos π sin π m cos π cos π 2 cos π sin π 1 ] cos ϕ 2 π sin π cos π 1 2 1 4 cos π 2m cos π cos π ] } sin ϕ l 2 4 sin 2π 2 cos 2π cos π 2 cos π sin π cos π cos π sin π cos 2ϕ 2 cos π sin 2π 2 cos π cos π cos π sin π sin 2ϕ 12 cos 2 π 2 π cos2 cos π sin π ] m2 2 sin 2π {sin π cos 2ϕ sin 2ϕ 2 2 cos π 1 sin π cos 2ϕ cos π cos π sin π sin 2ϕ cos 2 π cos π ] 2 cos π cos π sin 2ϕ sin π cos 2ϕ cos π } 4 sin 2π { cos π 3 sin π cos π sin π 3 sin π 2 sin 2π

372 Ersilia Saitta and Marius Stoka cos π cos π cos π 2 cos 2π ] cos 2ϕ sin π cos π sin π 8 sin 2ϕ 2 sin π 2 cos π sin π cos π Consequently π/ 0 i=1 2 cos π 12 sin π cos π 4 cos 2π }. 4 ] { A i ϕ dϕ = a l 4 cos π cos π cos π sin π m cos π cos π 2 cos π sin π 1 ] sin π 2 π sin π cos π 1 2 1 4 cos π 2m cos π cos π ] 2 cos 2π cos π 2 sin π cos π 1 cos π } l2 8 sin 2π cos π cos π sin π sin π 1 cos π 1 2 cos π 2 sin 2π cos π sin π π 12 cos 2 π 2 cos 2π cos π sin π ] m 2 2 sin 2π cos π 1 2 sin π sin π cos π cos π 3 2 sin π 1 cos π cos 2 π cos π sin π ] π 8 sin 2π { cos π 3 sin π cos π sin π sin π 3 4 cos π

Isoscele triangles test body rectangle 373 cos π sin π cos π 2 cos 2π ] sin π cos π cos π cos π sin π 8 1 cos π π 2 cos π 2 sin π sin π 2 cos π 12 sin π cos π 4 cos 2π ]}. 14 By formulas 13 14 and 1 we find probability P int wanted and in particular for m = 0 we have the probability calculated in paper 2]. References 1] U. Baesel A. Duma A Laplace type problem for a lattice of rectangles with triangular obstacles Applied Mathematical Sciences 8 2014 no. 166 8309-831. https://doi.org/.12988/ams.2014.411918 2] D. Barilla M. Bisaia G. Caristi and A. Puglisi On Laplace type problems I Journal of Pure and Applied Mathematics: Advances and Applications 6 2011 no. 1 1-70. 3] D. Barilla M. Bisaia G. Caristi and A. Puglisi On Laplace type problems II Far East Journal of Mathematical Sciences 8 2011 no. 2 14-1. 4] D. Barilla G. Caristi M. Stoka A Laplace Type Problem for an Irregular Lattice with Cell Composed by Two Isoscele Triangles and an Isoscele Trapezium International Journal of Mathematical Analysis 9 201 no. 14 683-689. https://doi.org/.12988/ijma.201.124 ] D. Barilla G. Caristi E. Saitta M. Stoka A Laplace type problem for lattice with cell composed by two quadrilaterals and one triangle Applied Mathematical Sciences 8 2014 no. 16 789-804. https://doi.org/.12988/ams.2014.37407 6] G. Caristi M. Pettineo M. Stoka A Laplace type problem for three lattices with non-convex cell J. Nonlinear Sci. Appl. 9 201 7-82. 7] G. Caristi and M. Stoka Some extension of the Laplace problem Rend Cric. Mat. di Palermo 60 2011 89-98. https://doi.org/.07/s1221-011-0031-9

374 Ersilia Saitta and Marius Stoka 8] H. Poincaré Calcul des Probabilités ed. 2 Gauthier Villars Paris 1912. 9] M. Stoka Probabilités géométriques de type Buffon dans le plan euclidien Atti Acc. Sci. Torino 1 197-1976 3-9. Received: July 1 2016; Published: January 26 2017