Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

Σχετικά έγγραφα
Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Structural Expression of Exo-Anomeric Effect

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Accessory Publication

Supporting Information

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Supporting Information for

Synthesis, characterization and luminescence studies of

Electronic Supplementary Information

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Electronic Supplementary Information for

Electronic Supplementary Information

Electronic Supplementary Information (ESI) for

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Chemical Communications. Electronic Supporting Information

Supporting Information

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Supporting Information

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Supporting Information

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Supporting Information. Halogen Photoelimination from Monomeric Ni(III) Complexes Enabled by the Secondary Coordination Sphere

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Supporting Information

Supporting Information

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

Electronic Supplementary Information (ESI)

Sculpting the β-peptide foldamer H12 helix via a designed side chain shape

Bis(perylene diimide) with DACH bridge as nonfullerene. electron acceptor for organic solar cells

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Amplification of a metallacyclic receptor out of a dynamic combinatorial library. - Supporting Information -

Supporting Information for:

Supplementary Information

Supporting Information

Supporting Information File for. Design of van der Waals Two-Dimensional Heterostructures from

Supporting Information

Supporting Information. Generation of Pyridyl Coordinated Organosilicon Cation Pool by Oxidative Si-Si Bond Dissociation

Disulfide-based metal free sulfanylation of ketones

SUPPORTING INFORMATION

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supporting Information

Differentiation of Diastereoisomers of Protected 1,2-Diaminoalkylphosphonic Acids by EI Mass Spectrometry and Density Functional Theory

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Table of Contents 1 Supplementary Data MCD

Supporting Information

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information

Sequential Addition of Phosphine to Alkynes for the Selective. Synthesis of 1,2-Diphosphinoethanes under Catalysis. Well-Defined

Supporting Information

Electronic Supplementary Information

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supplementary!Information!

Supporting Information

Supporting Information

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

Supporting Information

Supporting Information

Supplementary Figures

Supporting Information

Deprotonative Cadmation of Functionalized Aromatics

Supporting Information

difluoroboranyls derived from amides carrying donor group Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Synthesis and Photophysical Properties of Novel Donor- Acceptor N-(Pyridin-2-Yl) Substituted Benzo(thio)amides and Their Difluoroboranyl Derivatives

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Electronic Supplementary Information

Commiphoratones A and B, Two Sesquiterpene Dimers from Resina Commiphora

A turn-off emission based chemosensor for HSO formation of a hydrogen-bonded complex

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

Electronic Supplementary Information

The role of exchange in systematic DFT errors for some organic reactions: Electronic supplementary information

Supporting Information

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Transcript:

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies. Juan Forniés* a, Violeta Sicilia *b, José Mª Casas a, Antonio Martín a, José A. López a, Carmen Larraz a, Pilar Borja a and Carmen Ovejero b a Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Facultad de Ciencias, Universidad de Zaragoza-CSIC, Plaza. S. Francisco s/n, 50009, Zaragoza, Spain. E-mail: juan.fornies@unizar.es; Fax: +34 976-761159 b Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Escuela Universitaria de Ingeniería Técnica Industrial, Universidad de Zaragoza-CSIC, Campus Universitario del Actur, Edificio Torres Quevedo, 50018, Zaragoza, Spain. E-mail: sicilia@unizar.es; Fax: +34 976-762189

103,6 100 95 90 85 80 75 70 %T 65 60 55 50 ν 1691 C = O 45 40 35 1097 νclo - 4 1039 30 1077 23,6 180 1700 1600 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 25 cm-1 Figure S1. IR spectra of powdered solid (black) and crystals (blue) of compound 3. Figure S2.- DFT-Optimized structure of complex [Pt(bzq)(S 2 CNC 4 H 8 )] (1)

Table S1.- DFT-Optimized structure of complex 1 Center Coordinates (Å) x y z Pt -0.01976 0.03119-0.01015 S 1.71296 1.81858-0.03754 S 1.75781-0.74876 1.30148 N -1.55192 0.78706-1.17749 N 3.8063 0.99964 1.46211 C -1.29656-1.51551 0.12349 C -1.19313-2.72888 0.79332 H -0.30288-2.96385 1.36757 C -2.23437-3.67831 0.7443 H -2.11578-4.61446 1.28076 C -3.39968-3.44953 0.03296 H -4.18818-4.19384 0.00878 C -3.55787-2.23529-0.66512 C -4.72305-1.89221-1.43414 H -5.53657-2.60883-1.48505 C -4.82756-0.70279-2.09196 H -5.71752-0.46776-2.66551 C -3.76802 0.2656-2.0434 C -3.78649 1.51603-2.68822 H -4.64961 1.8079-3.27686 C -2.69989 2.36205-2.56368 H -2.6831 3.33035-3.04707 C -1.59617 1.96521-1.79883 H -0.73109 2.60493-1.68243 C -2.61892-0.06163-1.29073 C -2.49959-1.29843-0.60115 C 2.59966 0.73422 0.97553 C 4.57298 0.07048 2.3148 H 4.55989-0.93223 1.88433 H 4.11126 0.01844 3.30675

C 5.96994 0.70079 2.36285 H 6.56762 0.34829 1.51745 H 6.50324 0.44671 3.27982 C 5.68828 2.20515 2.22242 H 5.36844 2.62056 3.18234 H 6.55488 2.77411 1.88303 C 4.53306 2.2601 1.21686 H 3.86537 3.11085 1.35904 H 4.88925 2.28128 0.18133

L+1 (96) LUMO(95) HOMO (94) H-1 (93) Figure S3. Representative frontier orbitals involved in the absorption of [Pt(bzq)(pdtc)](1).

Table S2. Absorption data for compounds 1 and 2 in solutions 10-4 M at room temperature. Compound Solvent λ abs / nm (10 3 ε M -1 cm -1 ) Toluene 298 (13.7), 316 (15.8), 336 (14.2), 350 (13.2), 360 (12.3), 400 (12.7), 448 (1.7) 2-MeTHF 308sh (9.3), 318 (12.4), 336 (12.1), 348sh (11.3), 360sh (10.3), 397 (10.3), 446 (1.3) 1 CH 2 Cl 2 292sh (15.8), 308 (18.9), 320 (17.7), 332 (12.8), 350 (12.5), 391 (9.9), 444 (1.5) DMF 294sh (11.3), 312 (12.9), 332 (11.2), 350 (10.7), 364sh (7.5), 390 (8.8), 438 (1.4) NCMe 294sh (11.4), 308 (12.6), 328 (11.0), 348 (11.1), 386 (8.4), 434 (1.2) Toluene 238(9.0), 246 (9.1), 256 (9.6), 264 (9.7), 276 (10.0), 298 (10.1), 318 (11.9), 338 (11.3), 350sh (10.6), 360 (9.7), 398 (9.8), 450 (1.2) 2 2-MeTHF 240 (20.9), 256 (26.5), 274sh (8.1), 282 (6.4), 316 (11.2), 336 (11.2), 350sh (10.2), 360 (9.4), 397 (9.3), 448 (0.4) CH 2 Cl 2 222 (56.1), 238sh (56.1), 256 (34.1), 294 (11.8), 312 (12.7), 332 (12.1), 352 (11.9), 391 (9.3), 438 (1.9) DMF 292 (11.8), 310 (12.9), 332 (11.6), 350 (11.0),390 (8.8), 436 (1.6) NCMe 220 (50.0), 236 (36.7), 252 (33.7), 290 (12.6), 308 (13.6), 330 (12.4), 348 (12.3), 354sh (11.1), 386 (9.1), 430 (1.8)

Toluene, 2-MeTHF, CH 2 Cl 2, DMF, MeCN Absorbance (u.a.) 300 400 500 600 (a) 4 10-2 M, 2x10-3 M, 10-3 M, 8x10-4 M, 5x10-4 M 2x10-4 M, 10-4 M, 8x10-5 M, 5x10-5 M, 2x10-5 M 1,8 1,6 3 1,4 Absorbance (a.u.) 2 1 Absorbance (a.u.) 1,2 Y = A + B * X Parameter Value Error ------------------------------------------------------------ A 4,55757E-4 0106 B 172,03 0,32603 ------------------------------------------------------------ R SD N P 0 ------------------------------------------------------------ 0,99999 0299 10 <0.0001 ------------------------------------------------------------ 400 450 500 550-00 02 04 06 08 10 C (mol.l -1 ) (b) (c) Figure S4. a) UV-visible absorption spectra of 1 in different solvents (10-4 M) showing negative solvatochromism. b) Expansion of the low-energy region of the UV-visible spectra of 1 in CH 2 Cl 2 at 298K at different concentrations. c) Representation of the linear fit of the absorbance at 444 nm (A 444 ) vs. concentration.

1, 2 1,2 Intensity (a.u) 200 300 400 500 600 700 Figure S5. Normalized Diffuse Reflectance UV-vis (DRUV) spectra of 1 and 2 in solid state at room temperature. λ exc = 490nm, 1, λ exc = 450nm, 2, λ em = 630nm, 1, λ em = 510nm, 2 2,0 1,8 1,6 1,4 Intensity (a.u.) 1,2 300 350 400 450 500 550 600 650 700 750 800 Figure S6. Normalized emission and excitation spectra of 1 and 2 in 2-Me-THF (10-3 M) at 298 K

λ exc = 420nm, λ em = 480nm, λ em = 550nm, λ em = 620nm Intensity (a.u.) 250 300 350 400 450 500 550 600 650 700 750 800 850 λ(nm) Figure S7. Normalized emission and excitation spectra of 1 in 2-Me-THF (10-3 M) at 77 K. 3,5 3, 4, 5, 6 3,0 2,5 Absorbance (a.u.) 2,0 1,5 0,5-0,5 200 250 300 350 400 450 500 550 600 Figure S8. Absorption spectra of compounds 3-6 in acetonitrile solution 5x10-4 M

1, 3, 5 3 Absorbance (a.u.) 2 1 0 200 250 300 350 400 450 500 550 600 Figure S9. Absorption spectra in acetonitrile solution of 1 (10-4 M), 3 (5x10-4 M) and 5 (5x10-4 M ) at room temperature. 2, 4, 6 3,5 3,0 2,5 Absorbance 2,0 1,5 0,5-0,5 200 250 300 350 400 450 500 550 600 Figure S10. Absorption spectra in acetonitrile solution of 2 (10-4 M), 4 (5x10-4 M) and 6 (5x10-4 M ) at room temperature.

1, 3, 5 1,2 Absorbance 200 300 400 500 600 700 Figure S11. Normalized Diffuse Reflectance UV-vis (DRUV) spectra of 1, 3, 5 in solid state. 2, 4, 6 Absorbance (a.u.) 200 300 400 500 600 700 Figure S12. Normalized Diffuse Reflectance UV-vis (DRUV) spectra of compounds 2, 4, 6 in solid

state. λ exc = 510nm, 298K; λ exc = 475nm, 77K; λ exc = 520nm, 77K; λ em = 615nm, 298K; λ em = 625nm, 77K 100000000 90000000 Intensity (a.u.) 80000000 70000000 60000000 50000000 40000000 30000000 20000000 10000000 0 Intensity (a.u.) -10000000 500 550 600 650 700 750 800 850 350 400 450 500 550 600 650 700 750 800 850 Figure S13. Normalized excitation and emission spectra of 4 in the solid state at 298K (Orange) and 77 K(Grey). Inset: Unnormalized spectra.

λ exc = 400nm (298K); λ exc = 500nm (77K); λ exc = 550nm (77K); λ em = 620nm (298K); λ em = 580nm (77K); λ em = 650nm (77K); λ em = 700nm (77K) 1,20E+008 0E+008 1,2 Intensity (a.u.) 8,00E+007 6,00E+007 4,00E+007 2,00E+007 0E+000 Intensity (a.u.) 400 450 500 550 600 650 700 750 800 300 350 400 450 500 550 600 650 700 750 800 Figure S14. Normalized excitation and emission spectra of 5 in the solid state at 298K (yellow) and 77K (Grey). Inset: Unnormalized spectra.

λ exc = 510nm, 298K; λ exc = 440nm, 77K; λ exc = 510nm, 77K; λ em = 620nm, 298K; λ em = 510nm, 77K; λ em = 640nm, 77K 1,1 60000000 0,9 Intensity (a.u.) 50000000 40000000 30000000 20000000 Intensity (a.u.) 0,7 0,5 0,3 0,1-0,1 10000000 0 450 500 550 600 650 700 750 800 850 300 350 400 450 500 550 600 650 700 750 800 850 Figure S15. Normalized excitation and emission spectra of 6 in the solid state at 298K (yellow) and 77K (grey). Inset: Unnormalized emission spectra.

λ exc = 400nm, λ em = 480nm, λ em = 500nm, λ em = 570nm, λ em = 620nm Intensity (a.u.) 250 300 350 400 450 500 550 600 650 700 750 800 Figure S16. Normalized emission and excitation spectra of a saturated solution of 3 in 2-Me-THF at 77K.

16 Experimental Section Full IR and NMR data of complexes 1-6 [Pt(bzq)(pdtc)] (1): IR data, υ max (cm -1 ): 1615 m, 1564 m, 1508 vs (υ C-N ), 1443 vs, 1398 s, 1326 s, 1164 m, 940 m (υ C-S ), 825 vs, 815 vs, 750 s, 710 vs, 365 s (υ Pt-S ), 310 s (υ Pt-S ). 1 H NMR (400 MHz, CD 2 Cl 2, 298 K) δ H : 8.81 (1H, dd, 3 J 2,3 = 5.2 Hz, 4 J 2,4 = 1.2 Hz, 3 J Pt-H = 40.4 Hz, 2-H bzq), 8.40 (1H, dd, 4 J 4,2 = 1.2 Hz, 3 J 4,3 = 8.1 Hz, 4-H bzq), 7.81 (1H, AB, 3 J 5,6 = 8.8 Hz, 5-H bzq), 7.65 (1H, dd, 3 J 7,8 = 7.8 Hz, 4 J 7,9 = 0.9 Hz, 7-H bzq), 7.62 (1H, AB, 3 J 6,5 = 8.8 Hz, 6-H bzq), 7.47 (2H, m, 3-H, 8-H bzq), 7.42 (1H, dd, 4 J 9,7 = 0.9 Hz 3 J 9,8 = 7.0 Hz, 3 J Pt-H = 48 Hz, 9-H bzq), 3.90 (4H, m, CH a 2 ), 2.10 (4H, m, CH 2 b ) ppm. 1 H NMR (300 MHz, Acetonitrile-d 3, 298 K) δ H : 8.86 (1H, dd, 3 J 2,3 = 5.3 Hz, 4 J 2,4 = 1.2 Hz, 3 J Pt-H = 39.4 Hz, 2-H bzq), 8.54 (1H, dd, 4 J 4,2 = 1.2 Hz, 3 J 4,3 = 8.1 Hz, 4-H bzq), 7.86 (1H, AB, 3 J 5,6 = 8.8 Hz, 5-H bzq), 7.72 (1H, AB, 3 J 6,5 = 8.8 Hz, 6-H bzq), 7.68 (1H, dd, 3 J 7,8 = 7.8 Hz, 4 J 7,9 = 0.8 Hz, 7-H bzq), 7.55 (1H, dd, 3 J 3,2 = 5.3 Hz, 3 J 3,4 = 8.1 Hz, 3-H bzq), 7.48 (1H, dd, 3 J 8,7 = 7.8 Hz, 4 J 8,9 = 7.2 Hz, 8-H bzq), 7.37 (1H, dd, 3 J 9,7 = 0.8 Hz, 4 J 9,8 = 7.2 Hz, 3 J Pt-H = 55.4 Hz, 9-H bzq), 3.87 (4H, m, CH a 2 ), 2.10 (4H, m, CH b 2 overlapped with solvent signals) ppm. 13 C NMR (100.58 MHz, CD 2 Cl 2, 298K) δ C : 149.00 (s, 2 J Pt-C = 34.6 Hz, 2-C bzq), 144.15 (s), 137.15 (s, 4-C bzq), 134.21 (s), 130.28 (s, 3-C bzq), 130.20 (s, 8-C bzq), 129.78 (s, 5-C bzq), 127.42 (s), 123.53 (s, 6-C bzq), 122.27 (s, 2 J Pt-C 37.1 Hz, 9-C bzq), 121.40 (7-C bzq), 50.78 (s), 50.10 (s), 25.08 (s), 24.93 (s) ppm; [Pt(bzq)(dmdtc)] (2): IR data, υ max (cm -1 ): 1618 m, 1543 vs (υ C-N ), 1446 s, 1397 vs, 1328 s, 1244 m, 1155 s, 1135 s, 963 s (υ C-S ), 821 s, 810 vs, 738 s, 707 vs, 502 m, 436 s, 382 m (υ Pt-S ), 320 m (υ Pt-S ). 1 H NMR (400 MHz, CD 2 Cl 2, 298 K) δ H : 8.82 (1H, dd, 3 J 2,3 = 5.2 Hz, 4 J 2,4 = 1.3 Hz, 3 J Pt-H = 39.6 Hz, 2-H bzq), 8.40 (1H, dd, 4 J 4,2 = 1.3 Hz, 3 J 4,3 = 8.1 Hz, 4-H bzq), 7.81 (1H, AB, 3 J 5,6 = 8.7 Hz, 5-H bzq), 7.65 (1H, dd, 3 J 7,8 = 7.7 Hz,

17 4 J 7,9 = 1.0 Hz, 7-H bzq), 7.62 (1H, AB, 3 J 6,5 = 8.7 Hz, 6-H bzq), 7.48 (3H, m, 3-H, 8-H, 9-H bzq), 3.40 (3H, s, CH 3 ), 3.39 (3H, s, CH 3 ) ppm. 1 H NMR (300 MHz, Acetonitriled 3, 298 K) δ H : 8.86 (1H, dd, 3 J 2,3 = 5.2 Hz, 4 J 2,4 = 1.3 Hz, 3 J Pt-H = 39.6 Hz, 2-H bzq), 8.54 (1H, dd, 4 J 4,2 = 1.3 Hz, 3 J 4,3 = 8.1 Hz, 4-H bzq), 7.86 (1H, AB, 3 J 5,6 = 8.8 Hz, 5-H bzq), 7.72 (1H, AB, 3 J 6,5 = 8.8 Hz, 6-H bzq), 7.68 (1H, dd, 3 J 7,8 = 7.9 Hz, 4 J 7,9 = 0.9 Hz, 7-H bzq), 7.56 (1H, dd,, 3 J 3,2 = 5.2 Hz, 3 J 3,4 = 8.1 Hz, 3-H bzq), 7.51 (1H, dd, 3 J 8,7 = 7.8 Hz, 4 J 8,9 = 7.0 Hz, 8-H bzq), 7.39 (1H, dd, 3 J 9,7 = 0.9 Hz, 4 J 9,8 = 7.0 Hz, 3 J Pt-H = 55.1 Hz, 9-H bzq), 3.38 (3H, s, CH 3 ), 3.37 (3H, s, CH 3 ) ppm. 13 C NMR (75.43 MHz, CD 2 Cl 2, 298K) δ C : 148.68 (s, 2 J Pt-C = 34.3 Hz, 2-C bzq), 144.25 (s), 136.85 (s, 4-C bzq), 133.87 (s), 129.94 (s, 3-C bzq), 129.70 (s, 8-H bzq), 129.45 (s, 5-C bzq), 127.08 (s), 123.16 (s, 6-C bzq), 121.89 (s, 2 J Pt-C = 37.9 Hz, 9-C bzq), 121.08 (7-C bzq), 38.99 (s), 40.08 (s) ppm. [{Pt(bzq)(pdtc)} 2 Ag 2 ](ClO 4 ) 2 (3): IR data, υ max (cm -1 ): 1618 w, 1531 s (υ C-N ), 1446 m, 1405 m, 1335 m, 1097 vs (ClO - 4 ), 1039 vs (ClO - 4 ), 923 m, 909 m, 843 m, 763 m, 712 s, 618 vs (ClO - 4 ), 362 m (υ Pt-S ). 1 H NMR (300 MHz, Acetonitrile-d 3, 298 K) δ H : 8.68 (2H, m, 3 J Pt-H = 40.5 Hz, 2-H bzq), 8.49 (2H, dd, 4 J 4,2 = 0.9 Hz, 3 J 4,3 = 8.1 Hz, 4-H bzq), 7.82 (2H, AB, 3 J 5,6 = 8.8 Hz, 5-H bzq), 7.68 (4H, 6-H bzq (AB), 7-H bzq), 7.51 (2H, dd, 3 J 3,2 = 5.3 Hz, 3 J 3,4 = 8.1 Hz, 3-H bzq), 7.44 (2H, dd, 3 J 8,7 = 7.9 Hz, 4 J 8,9 = 7.1 Hz, 8-H bzq), 7.28 (2H, d, 4 J 9,8 = 7.1 Hz, 3 J Pt-H = 55.2 Hz, 9-H bzq), 3.75 (8H, m,ch a 2 ), 2.03 (8H, m, CH b 2 overlapped with solvent signals) ppm. [{Pt(bzq)(dmdtc)} 2 Ag 2 ](ClO 4 ) 2 (4): IR data, υ max (cm -1 ): 1620 w, 1575 s (υ C-N ), 1449 m, 1405 s, 1080 vs (ClO - 4 ), 832 s, 815 m, 762 m, 709 s, 620 vs (ClO - 4 ), 435 m, 386 m (υ Pt-S ), 330 m (υ Pt-S ). 1 H NMR (300 MHz, Acetonitrile-d 3, 298 K) δ H : 8.74 (2H, dd, 3 J 2,3 = 5.1 Hz, 4 J 2,4 = 0.9 Hz, 3 J Pt-H = 39.1 Hz, 2-H bzq), 8.51 (2H, dd, 4 J 4,2 = 0.9 Hz, 3 J 4,3 = 8.2 Hz, 4-H bzq), 7.83 (2H, AB, 3 J 5,6 = 8.8 Hz, 5-H bzq), 7.70 (2H, AB, 3 J 6,5 = 8.8 Hz,

18 6-H bzq), 7.68 (2H, dd, 3 J 7,8 = 7.9 Hz, 4 J 7,9 = 0.7 Hz, 7-H bzq), 7.54 (2H, dd,, 3 J 3,2 = 5.2 Hz, 3 J 3,4 = 8.1 Hz, 3-H bzq), 7.48 (2H, dd, 3 J 8,7 = 7.9 Hz, 4 J 8,9 = 7.1 Hz, 8-H bzq), 7.32 (2H, dd, 3 J 9,7 = 0.7 Hz, 4 J 9,8 = 7.1 Hz, 3 J Pt-H = 53.5 Hz, 9-H bzq), 3.34 (6H, s, CH 3 ), 3.31 (6H, s, CH 3 ) ppm. [{Pt(bzq)(pdtc)} 2 Ag]ClO 4 (5): IR data, υ max (cm -1 ): 1618 w, 1522 s (υ C-N ), 1447 s, 1403 m, 1331 m, 1080 vs (ClO - 4 ), 935 m (υ C-S ), 910 m, 831 vs, 816 m, 762 m, 711 vs, 621 vs (ClO - 4 ), 369 m (υ Pt-S ), 303 m (υ Pt-S ). 1 H NMR, (400 MHz, CD 2 Cl 2, 298 K) δ H : 8.26 (2H, d, 3 J 2,3 = 4.7 Hz, 3 J Pt-H = 39.1 Hz, 2-H bzq), 8.08 (2H, d, 3 J 4,3 = 8.3 Hz, 4-H bzq), 7.61 (2H, AB, 3 J 5,6 = 8.8 Hz, 5-H bzq), 7.50 (2H, d, 3 J 7,8 = 7.9 Hz, 7-H bzq), 7.40 (2H, AB, 3 J 6,5 = 8.8 Hz, 6-H bzq), 7.15 (2H, m, 8-H bzq), 7.03 (4H, m, 3-H, 9-H bzq), 3.84 (8H, m, CH 2 a ), 2.07 (8H, m, CH 2 b ) ppm. 1 H NMR (300 MHz, Acetonitrile-d 3, 298 K) δ H : 8.79 (2H, dd, 3 J 2,3 = 5.3 Hz, 4 J 2,4 = 1.0 Hz, 3 J Pt-H = 40.2 Hz, 2-H bzq), 8.52 (2H, dd, 4 J 4,2 = 1.0 Hz, 3 J 4,3 = 8.1 Hz, 4-H bzq), 7.84 (2H, AB, 3 J 5,6 = 8.8 Hz, 5-H bzq), 7.70 (2H, AB, 3 J 6,5 = 8.8 Hz, 6-H bzq), 7.67 (2H, dd, 3 J 7,8 = 7.9 Hz, 4 J 7,9 = 0.8 Hz, 7-H bzq), 7.54 (2H, dd, 3 J 3,2 = 5.3 Hz, 3 J 3,4 = 8.1 Hz, 3-H bzq), 7.46 (2H, dd, 3 J 8,7 = 7.9 Hz, 4 J 8,9 = 7.1 Hz, 8- H bzq), 7.34 (2H, dd, 3 J 9,7 = 0.8 Hz, 4 J 9,8 = 7.1 Hz, 3 J Pt-H = 55.3 Hz 9-H bzq), 3.82 (8H, m, CH a 2 ), 2.06 (8H, m, CH b 2 overlapped with solvent signals) ppm. [{Pt(bzq)(dmdtc)} 2 Ag]ClO 4 (6): IR data, υ max (cm -1 ): 1618 m, 1554 s (υ C-N ), 1447 m, 1401 s, 1331 m, 1241 m, 1080 vs (ClO - 4 ), 949 m (υ C-S ), 831 vs, 816 m, 760 m, 712 vs, 622 vs (ClO - 4 ), 434 m, 387 m (υ Pt-S ), 327 m (υ Pt-S ); 1 H NMR (300 MHz, Acetonitrile-d 3, 298 K) δ H : 8.76 (2H, dd, 3 J 2,3 = 5.1 Hz, 4 J 2,4 = 0.8 Hz, 3 J Pt-H = 39.8 Hz, 2-H bzq), 8.51 (2H, dd, 4 J 4,2 = 0.8 Hz, 3 J 4,3 = 8.1 Hz, 4-H bzq), 7.83 (2H, AB, 3 J 5,6 = 8.8 Hz, 5-H bzq), 7.70 (2H, AB, 3 J 6,5 = 8.8 Hz, 6-H bzq), 7.67 (2H, dd, 3 J 7,8 = 7.8 Hz, 4 J 7,9 = 0.8 Hz, 7-H bzq), 7.53 (2H, dd,, 3 J 3,2 = 5.2 Hz, 3 J 3,4 = 8.1 Hz, 3-H bzq), 7.48 (2H, dd, 3 J 8,7 = 7.8 Hz,

19 4 J 8,9 = 7.1 Hz, 8-H bzq), 7.34 (2H, dd, 3 J 9,7 = 0.8 Hz, 4 J 9,8 = 7.1 Hz, 3 J Pt-H = 54.5 Hz 9-H bzq), 3.34 (6H, s, CH 3 ), 3.32 (6H, s, CH 3 ) ppm. 1 General procedures and materials. The starting material [Pt(bzq)(NCMe 2 ) 2 ]ClO 4 was prepared as described elsewhere. Ammonium pyrrolidinedithiocarbamate (NH 4 S 2 CNC 4 H 8 ), sodium dimethyldithiocarbamate dihidrate (NaS 2 CNMe 2 2H 2 O), and silver perchlorate (AgClO 4 ) were purchased from commercial suppliers. Elemental analyses were carried out with a Perkin Elmer 2400 CHNS analyzer. IR spectra were recorded on a Perkin-Elmer Spectrum 100 FT-IR Spectrometer (ATR in the range 250-4000 cm -1 ). Mass spectral analyses were performed with a Microflex MALDI-TOF Bruker or an Autoflex III MALDI-TOF Bruker instruments. NMR spectra were recorded on a Bruker 300 or 400 spectrometer using the standard references: SiMe 4 for 1 H and 13 C. All of the 13 C were proton-decoupled, J are given in Hz and assignments are based on 1 H- 1 H COSY and 1 H- 13 C g-hsqc experiments. UV-visible spectra were obtained on a Thermo electron corporation evolution 600 spectrometer. Diffuse reflectance UV-vis (DRUV) spectra were recorded on a Thermo electron corporation evolution 600 spectrophotometer equipped with a Praying Mantis integrating sphere. The solid samples were homogeneously diluted with silica. The mixtures were placed in a homemade cell equipped with quartz window. Steady-state photoluminescence spectra were recorded on a Jobin-Yvon Horiba Fluorolog FL-3-11 Tau 3 spectrofluorimeter using band pathways of 3 nm for both excitation and emission. Phosphorescence lifetimes were recorded with a Fluoromax phosphorimeter accessory containing a UV xenon flash tube with a flash rate between 0.05 and 25 Hz. Phase shift and modulation were recorded over the frequency range of 0.1-100 MHz. Nanosecond lifetimes were recorded with an IBH 5000F Coaxial nanosecond flahlamp. The lifetime data were fitted using the Jobin-Yvon software package and the Origin Pro 8 program.

20 Computational Details. The computational method used was density functional theory (DFT) with the B3LYP exchange-correlation functional, 2-4 using the Gaussian 03 5 program package. The basic set used was the LanL2DZ effective core potential for the platinum atom, and 6-31G(d,p) for the remaining atoms. Time-dependent densityfunctional theory (TD-DFT) calculation were carried out using the polarized continuum model approach implemented in the Gaussian 03 software. References (1) Forniés, J.; Fuertes, S.; López, J. A.; Martín, A.; Sicilia, V. Inorg. Chem. 2008, 47, 7166. (2) Becke, A. D. Phys. Rev. A: At., Mol., Opt. Phys. 1988, 38, 3098. (3) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter Mater. Phys. 1988, 37, 785. (4) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (5) Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford,

21 J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.