Lecture 3 Reactions in the continuum

Σχετικά έγγραφα
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Finite difference method for 2-D heat equation

Derivation of Optical-Bloch Equations

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Higher Derivative Gravity Theories

Variational Wavefunction for the Helium Atom

Hartree-Fock Theory. Solving electronic structure problem on computers

Example Sheet 3 Solutions

( ) 2 and compare to M.

Section 8.3 Trigonometric Equations

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Matrices and Determinants

Parametrized Surfaces

The Simply Typed Lambda Calculus

Lecture 21: Scattering and FGR

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Space-Time Symmetries

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Srednicki Chapter 55

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Homework 8 Model Solution Section

derivation of the Laplacian from rectangular to spherical coordinates

C.S. 430 Assignment 6, Sample Solutions

Reminders: linear functions

Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lecture 26: Circular domains

EE512: Error Control Coding

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Three coupled amplitudes for the πη, K K and πη channels without data

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Second Order RLC Filters

MA 342N Assignment 1 Due 24 February 2016

Every set of first-order formulas is equivalent to an independent set

Partial Trace and Partial Transpose

Geodesic Equations for the Wormhole Metric

ψ ( 1,2,...N ) = Aϕ ˆ σ j σ i χ j ψ ( 1,2,!N ) ψ ( 1,2,!N ) = 1 General Equations

The Hartree-Fock Equations

m i N 1 F i = j i F ij + F x

Lecture 34 Bootstrap confidence intervals

Solutions to Exercise Sheet 5

Forced Pendulum Numerical approach

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Areas and Lengths in Polar Coordinates

D Alembert s Solution to the Wave Equation

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Concrete Mathematics Exercises from 30 September 2016

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

CRASH COURSE IN PRECALCULUS

Finite Field Problems: Solutions

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

2 Composition. Invertible Mappings

1 String with massive end-points

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Section 9.2 Polar Equations and Graphs

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Approximation of distance between locations on earth given by latitude and longitude

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Eulerian Simulation of Large Deformations

Graded Refractive-Index

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

(As on April 16, 2002 no changes since Dec 24.)

The Spiral of Theodorus, Numerical Analysis, and Special Functions

LTL to Buchi. Overview. Buchi Model Checking LTL Translating LTL into Buchi. Ralf Huuck. Buchi Automata. Example

ST5224: Advanced Statistical Theory II

Math221: HW# 1 solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Oscillatory integrals

Bounding Nonsplitting Enumeration Degrees

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Numerical Analysis FMN011

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Trigonometric Formula Sheet

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

SPECIAL FUNCTIONS and POLYNOMIALS

Orbital angular momentum and the spherical harmonics

MET 4302 LECTURE 3A 23FEB18

4.6 Autoregressive Moving Average Model ARMA(1,1)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

The Pohozaev identity for the fractional Laplacian

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

Solution Series 9. i=1 x i and i=1 x i.

Transcript:

C.A. Bertulani, Texas A&M University-Commerce Lecture 3 Reactions in the continuum 1

Problem: continuum w.f. extends to infinity Matrix elements for EM multipole operators <j x l i> explode Solution: bunch states around discrete energy E i CB, Canto, NPA 539, 163 (1992) φ 0 = E 0,J 0 M 0 e ie 0 t /! φ jjm = e ie j t /! Γ( j E) E,JM de Γ i E ( ) Γ j E ( )de = δ ij Ex: histograms Γ j ( E) = 1, for (j 1)σ < E < jσ σ = 0, otherwise Or, some other sort of smooth, orthogonal functions: better 2

Application example: plane waves e iq r = 4π i l j ( l qr)y ( lm r ) * Y lm q lm ( ) r Elm = u l,e (r)y lm = 2µ " 2 E1/ 4 r ( ) π j ( l qr)y lm r ( ) ElmE'l'm' = δ ll' δ mm' δ E E' ( ) Histogram-like Γ i Smooth, orthogonal functions: better (no beats, faster convergence) Smooth function Γ i 3

Application example: dipole transitions I jl;j'l' = r 2 dr de Γ( j E) de' Γ ( * j' E' )u l,e ( r)r u ( l',e' r) I jl;j'l' =!2 µ l + l'+2 2 for histograms F jj' + δ l,l'+1 G j,j' + δ l+1,l' G j' j l l' =1 F jj' = dqγ j ( E)Γ j' E ( ) F jj' = dqγ j E ( ) d dq Γ j' ( E) E =!2 q 2 2µ E 0 =!2 η 2 2µ I 00;j1 = 2ησ π 3 / 4 E j 2! ( E 0 + E j ) 2 2µ 3 / 4 Continuum Bound state I jl;j'l' =! 2 1 µσ [ ] if j = j' 1 2 l + l'+1 ( ) j j 1 ( ) ( j+l j' l' ) 1 ( ) if j j' =1 2 j + j' 1 0 otherwise E j = ( j 1/2)σ 4

Application example: dipole transitions l = 0! l = 1 j! j + 1 j! j reorientation j! j keeping E j = 200 kev CB, Canto, NPA 539, 163 (1992) 5

From lecture 1: da k dt = i! U kj (t) = ψ r j a j (t)u kj (t) ψ k * U(t) ψ e ie n t /! ( ) = a n (t)ψ n ( r) n j d3 r e i ( E k E j )t /! n = j(e)lm (for bound and continuum states n) Amplitudes a n! occupation probabilities a n 2! wavefunctions ψ(r) (normalized if enough # n)! calculate observables 6

i! ψ t = ˆ H ψ H =!2 2µ 2 x 2 + 2 y 2 + 2 z 2 + V r ( ) + U( r,t) Bertsch, CB NPA 556, 136 (1993) PRC 49, 2839 (1994) ψ ijk (t + Δt) = e i H Δt / " ψ( x i,y j,z ) k y j ψ ijk = ψ( x i,y j,z k ) H unitary (no complex U) ψ ijk ( t + Δt) ijk 2 = ψ ijk ( t) ijk 2 x i 7

e i H Δt / " =1+ i H Δt " + i H Δt " ˆ S ψ j (t) = 2 +# Use Crank-Nicolson operator instead: Unitary and accurate to (Δt) 2 Include U: define ψ j ( t + Δt) = H Δt 1 i " + Δt S H Δt 1+ i " k U k ψ k (t) ψ j ( t) Often requires too many terms to preserve unitarity and is unstable ψ j ( t + Δt) = 1 i 1+ i H Δt " H Δt " Good to order (Δt) 2 and preserves unitarity if Δt small enough ψ j ( t) Problem: needs to invert matrix 1 H Δt 1+ i " ψ j t ( ) 8

Solution: use three-point second derivative ( ) /2(Δx) 2 Δ (2) = ψ j 1 2ψ j + ψ j+1 ( ) = Then involves only j, j-1 and j+1 ψ j t + Δt 1 iτ + Δ(2) Δt 2!τ V + Δt ˆ j S!τ 1 iτ Δ(2) + Δt ψ 2!τ V j t j 1 u j (t) = ψ H Δt j ( t) Instead of solve for ψ 1+ i j t " But u j not known! ( ) for neighboring points ( ) = 1+ i H Δt " u j (t) Solution: using 3-point formula! 3-diagonal matrix ψ 1 O 11 O 12 0 0 0 0 u 1 ψ 2 O 21 O 22 O 23 0 0 0 u 2 = 0 O 32 O 33 O 34 0 0 0 0 O 43 O 44 O 44 0 x ψ N u N 9

First operation: ψ 1 = O 11 u 1 + O 12 u 2! assume u 1 = f 1 hold fixed by a boundary condition! f 1 known, u 1, know! u 2 determined Second operation: operation involves ψ 2, u 1, u 2 and u 3! u 1 and u 2 (from previous) ψ 2 known! u 2 determined And so on:! given ψ j on lattice at t! u j obtained. Finally, ( ) = 1+ i ψ j t + Δt H Δt " u j (t) is just a matrix multiplication! One-particle in three-dimensions straightforward! Extension to many-body: e.g., Time Dependent Hartree-Fock (TDHF) 10

b V 0 CB, PRL 94, 072701 (2005) ( ) = S α ( b,z) e ik αz φ α ( r) Ψ R,r R = ( b,z), α z da k dt = i! j a j (t)u kj (t) ( )t /! a α S α with vt z e i E k E j iv z S α f α ( b,z) = U αβ ( b,z)s β ( b,z) e i ( k β k α ) z ( Q) = ik Q = K ' β ( ) δ α,0 [ ] 2π db eiq.b S α b,z = K α = jljm U αβ ( R) = ψ α ( r)u( R,r)ψ β ( r) Eikonal CDCC 11

12

13

L = L LO + L NLO + L N2 LO +! L LO = 1 v 2 µc2 c L NLO = µ4 c 2 8 L N2 LO = µc2 512 1 8 v c 4 2 Z 1Z 2 e 2 r 1 3 m 1 3 1 m 2 v c v c 6 + Z 1Z 2 e 2 16r 3 v r c 4 4 + 2 v rv c Equations of motion r(t), p(t), Θ(b), µ2 Z 1 Z 2 e 2 2m 1 m 2 r 2 + Z 1Z 2 e µc 2 r dσ dω 2 v c 2 3 v r c + v r cr 2 2 v c 2 + 4Z 1 2 Z 2 2 e 4 µ 2 c 4 r 2 14

Θ ( E,b) Θ LO (%) N 2 LO Θ LO NLO Deviations from Rutherford N 2 LO NLO 15

dσ E,θ ( ) dσ LO dσ LO % ( ) NLO N 2 LO 16

dσ dω = dσ dω elast P exc = I( πλµ ) 2 M ( fi πλ, µ ) πλµ 2 M fi ( πλµ ) = f EMOperator(λµ)i I( πλµ ) = orbital integrals I(πλμ) from Lecture 1: ( ) = dt I ω 1 Y r λ +1 t λµ ( r ˆ (t))e iω t ( ) 1 r λ +1 t ( ) Y ˆ λµ ( r (t)) complicated functions of t Possible to include retardation, Lorentz contraction exactly Aleixo, CB, NPA 505, 448 (1989) 17

Deviations from non-relativistic 40 S (100 MeV/nucleon) + Au 18

W ( γ θ ) γ =1+ B κ Q κ E γ κ=2,4 ( ) P ( κ cosθ ) γ Exact/R Deviations from from relativistic theory 38 S (100 MeV/nucleon) + Au 19

20

meson exchange, two-nucleon interaction mean field approximation, U 0 (ω exchange), U S (2π exchange) [ E V C U 0 β( mc 2 + U )] S Ψ = i!cα Ψ non-relativistic reduction!2 2m 2 + U cent +! 2mc ( ) +" U cent = m* U 0 + U S 2 1 r d dr U SO σ L ϕ = Eϕ m* =1 U 0 U S 2mc 2 +" U SO = U 0 U S +" Arnold, Clark, PLB 84, 46 (1979) Dirac phenomenology 21

Long, CB, PRC 83, 024907 (2011). Γ φ Γ ω E = d 3 r ψ a a + 1 2 ( iγ + M)ψ a d 3 rd 3 r' ψ a (r)ψ b (r') Γ φ ( r,r' )D φ ( r r' )ψ a (r)ψ b (r') φ =σ,ω,ρ,γ ( r,r' ) = g σ (r)g σ (r') ( r,r' ) = g ω γ µ ( ) = g ρ γ µ! τ Γ ρ r,r' ab ( ) r ( g ω γ ) µ r'! ( ) ( g ρ γ µ τ ) r r' σ, ω, ρ and γ exchange Γ γ ( r,r' ) = e2 [ 4 γ µ (1 τ z )] r [ γ µ (1 τ z )] r' D φ = 1 4π D γ = 1 r r' e m φ r r' r r' Lorentz transform x p = x t + b, z p = γ(z t + Rcosθ) y p = y t 22

E(A t, A p, v) = E(A t ) + E(A p,v) + E(A t, A p, v) E(A t, A p, v) = d 3 r d 3 r' ψ t, a (r)ψ p, b (r') Γ φ r,r' φ =σ,ω,ρ,γ ab ( ) D φ ( r r' ) ψ t, a (r)ψ p, b (r') Ex: σ and ω contributions E σ = 1 γ d 3 r t d 3 r p ' g σ (r t ) ρ s, t (r t ) D σ ( r r' ) ρ s, p (r ' p )g σ (r ' p ) E ω = d 3 r t d 3 ' r p g ω (r t ) ρ b, t (r t ) D ω ( r r' ) ρ b, p (r ' p )g ω (r ' p ) ρ s (r) = ψ a (r)ψ a (r), ρ b (r) = ψ a (r)γ 0 ψ a (r) a a Projectile densities boosted to the target frame 23

24

25

And the imaginary part of U opt?! No easy solution. Here put by hand 26

27

Eikonal scattering wave amplitudes ψ Eikonal = φ i (r) S i (b,z)exp(ik i R) r K 0 y i x b R r O K i z S i (K i,r) K i = 2µ R (E ε i ) /!, Energy conservation " Boundary condition S i (b,z) z δ i,0 ΔS i (b,z) 0 i! 2 K i d µ R dz S (b) i (z) = i' F (b) ii' (z) S (b) i' (z)e i(k i ' K i )z f E i,0 = E f L L L 2π 2L +1 ik i 4π im Y Lm (Ω)[S b(l;i) i,0 δ i,0 ] 28

Form factor of non-rel. E-CDCC F (b) ( c'c z) i m m' = Φ c' U nucleon T + U core T Φ c e ( )φ = F (b)λ c'c Lorentz tranform of form factor and coordinates F (b)λ c'c ( z) f λ,m' m γ F (b)λ c'c ( γz) λ z ( ) Coul f λ,m' m 1/γ, λ =1, m' m = 0 = 1, otherwise ( ) γ, λ = 2, m' m = ±1 ( ) ( ) nucl f λ,m' m =1 Assumptions # Point charges for 1, 2 and A # Neglecting far-field (r i > R) contribution # Correction to nuclear form factor Ogata, CB, PTP 121 (2009), 1399 PTP, 123 (2010) 701 29

E x = 1.5 MeV θ = 0.06 o 30

all orders σ all σ NR σ all - σ no-nuclear 31

32