New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

Σχετικά έγγραφα
Envelope Periodic Solutions to Coupled Nonlinear Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Second Order Partial Differential Equations

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Matrices and Determinants

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Congruence Classes of Invertible Matrices of Order 3 over F 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

D Alembert s Solution to the Wave Equation

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

New Exact Solutions of Two Nonlinear Physical Models

Section 8.3 Trigonometric Equations

Section 7.6 Double and Half Angle Formulas

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

2 Composition. Invertible Mappings

PARTIAL NOTES for 6.1 Trigonometric Identities

derivation of the Laplacian from rectangular to spherical coordinates

Differential equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1

The Simply Typed Lambda Calculus

( y) Partial Differential Equations

On a four-dimensional hyperbolic manifold with finite volume

New Applications of an Improved (G /G)-expansion Method to Construct the Exact Solutions of Nonlinear PDEs

Example Sheet 3 Solutions

Concrete Mathematics Exercises from 30 September 2016

Strain gauge and rosettes

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Numerical Analysis FMN011

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Areas and Lengths in Polar Coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

EE512: Error Control Coding

Second Order RLC Filters

Partial Differential Equations in Biology The boundary element method. March 26, 2013

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

CRASH COURSE IN PRECALCULUS

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

ST5224: Advanced Statistical Theory II

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Areas and Lengths in Polar Coordinates

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Homework 8 Model Solution Section

Empirical best prediction under area-level Poisson mixed models

Homework 3 Solutions

The k-α-exponential Function

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Math221: HW# 1 solutions

Homomorphism in Intuitionistic Fuzzy Automata

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

C.S. 430 Assignment 6, Sample Solutions

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Other Test Constructions: Likelihood Ratio & Bayes Tests

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

New Soliton-like Solutions and Multi-soliton Structures for Broer Kaup System with Variable Coefficients

6.3 Forecasting ARMA processes

1 String with massive end-points

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

SPECIAL FUNCTIONS and POLYNOMIALS

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Srednicki Chapter 55

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Tridiagonal matrices. Gérard MEURANT. October, 2008

Approximation of distance between locations on earth given by latitude and longitude

If we restrict the domain of y = sin x to [ π 2, π 2

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Problem Set 3: Solutions

Differentiation exercise show differential equation

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Quadratic Expressions

Statistical Inference I Locally most powerful tests

A summation formula ramified with hypergeometric function and involving recurrence relation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Tutorial problem set 6,

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Solutions to Exercise Sheet 5

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Finite Field Problems: Solutions

Abstract Storage Devices

Symmetry Reduction of (2+1)-Dimensional Lax Kadomtsev Petviashvili Equation

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

F19MC2 Solutions 9 Complex Analysis

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Geodesic Equations for the Wormhole Metric

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Lecture 26: Circular domains

High order interpolation function for surface contact problem

Transcript:

ISSN 1749-3889 print), 1749-3897 online) International Journal of Nonlinear Science Vol.15013) No.,pp.18-19 New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod Peng Guo, Guixin Wan, Xiaoyun Wang, Xiaowei Sun School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China Received 6 October 01, accepted 1 January 013) Abstract: In this paper, we consider nonlinear wave equation in finite deformation elastic rod, and we obtain abundant new exact solutions for it by using the G /G)-expansion method. The obtained solutions include hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that G /G)-expansion method provides a powerful mathematical tool for solving a great many nonlinear partial differential equations in mathematical physics. Keywords: the G /G)-expansion method; travelling wave solutions; nonlinear wave; finite deformation elastic rod 1 Introduction During the last decades, investigations of exact travelling wave solutions to nonlinear evolution equations NLEEs) play an important role in the study of complex physical and mechanical phenomena. Many effective approaches for obtaining exact solutions of NLEEs have been presented, such as the tanh-function expansion method, the Jacobi elliptic function expansion method, the homogeneous balance method, F-expansion method, the exp-function expansion method and others [1-8]. Many exact solutions, including solitary wave solutions, shock wave solutions, and periodic wave solutions of NLEEs were successfully obtained. But because of the complexity of the nonlinear evolution equations, it is difficult for us to determine the solutions for the problems. Recently, Mingliang Wang et al. proposed a new method called the G /G)- expansion method to look for travelling wave solutions of NLEEs [9]. By using the G /G)-expansion method, the authors in [9-11] have successfully obtained hyperbolic function solutions, trigonometric function solutions and rational solutions of some important NLEEs. In Ref.[1], Zhifang Liu et al. derived the nonlinear wave equation in finite deformation elastic rod as follows: u t u c 0 x = x [3E ρ u + E ρ u3 + ν R u t u v 0 )], 1) x where R, c 0= E/ρ), v 0= ν/ρ), ν, E and ρ are the cross-section area of the rod, the square of the linear elastic longitudinal wave velocity, the square of the shear wave velocity, Poisson ratio, the Young s modulus and the density of the rod, respectively. Eq.1) is the double nonlinear wave equation with respect to the axial displacement gradient finite deformation elastic rod. It is shown that when the longitudinal wave propagates, the shear wave also propagates as a result of the transverse Poisson effects. Recently, travelling wave solutions for this equation were constructed by using Jacobi elliptic function expansion method [1-16]. The goal of this work is to implement the G /G)-expansion method to obtain more new exact travelling wave solutions of nonlinear wave equation in finite deformation elastic rod. Description of the G /G)-expansion method The generalized G /G)-expansion method can be summarized as follows [9-11]. Suppose that a given nonlinear partial differential equation has the form P u, u t, u x, u tt, u xx, ) = 0. ) Corresponding author. E-mail address: guopenglzjtu@16.com Copyright c World Academic Press, World Academic Union IJNS.013.04.15/716

P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 183 Step 1. When we seek travelling wave solutions of Eq.), the first step is to introduce the wave transformation: ux, t) = u), = x ct, 3) where c is a real constant. Under the transformation Eq.3), Eq.) becomes an ordinary differential equation Step. Take the solutions of Eq.4) in the more general form u) = a 0 + Qu, u, u, ) = 0. 4) m i=1 [a i G ) G) )i + b i G ) G) ) i ], 5) where a 0, a i and b i i = 1,,, m) are constants to be determined later. The integer m in Eq.5) can be determined by balancing the highest order nonlinear terms and the highest order linear terms of u) in Eq.4). G = G) satisfies the second-order linear ordinary differential equation G + λg + µg = 0, 6) where λ and µ are constants. The explicit expressions for the general solution of Eq.6) are as follows: when λ 4µ > 0, G) = c 1 e λ+ λ 4µ ) + c e λ λ 4µ ) ; when λ 4µ = 0, G) = c 1 + c )e λ ) ; when λ λ 4µ < 0, G) = e ) 4µ λ + c sin 4µ λ ). Step 3. Substitute Eq.5) into Eq.4) and collect all terms with the same order of G /G together. The left-hand side of Eq.4) is converted into a polynomial in G /G. Then, let each coefficient of this polynomial to be zero to derive a set of over-determined algebraic equations for a 0, a i, b i i = 1,,, m), λ, µ and c. Step 4. Solve the algebraic equations obtained in Step 3 with the aid of a computer algebra system such as Mathematica or Maple) to determine these constants. Then, substituting a 0, a i, b i i = 1,,, m), c and the solutions of Eq.6) into Eq.5), we can obtain the exact travelling wave solutions of Eq.). 3 Soliton and periodic solutions for nonlinear wave equation in finite deformation elastic rod Choose the travelling wave transformation Eq.3). Substituting Eq.3) into Eq.1), integrating it with respect to twice, and letting the integrating constant to be zero, we have u + β 1 u + β u + β 3 u 3 = 0, 8) where β 1 = c c 0) ν R c v0 ), β 3c 0 = ν R c v0 ), β c 0 3 = ν R c v0 9) ). According to Step, we get m = 1. Therefore, we can write the solution of Eq.8) in the form u) = a 0 + a 1 G ) G) ) + b 1 G ) G) ) 1. 10) Substituting Eq.10) into Eq.8), collecting the coefficients of G /G) i i = 0, 1,, 3,) and letting it be zero, we obtain the system a 0 β 1 + a 0β + a 1 b 1 β + a 3 0β 3 + 6a 0 a 1 b 1 β 3 + b 1 λ + a 1 λµ = 0, b 3 1β 3 + b 1 µ = 0, b 1β + 3a 0 b 1β 3 + 3b 1 λµ = 0, b 1 β 1 + a 0 b 1 β + 3a 0b 1 β 3 + 3a 1 b 1β 3 + b 1 λ + b 1 µ = 0, a 1 β 1 + a 0 a 1 β + 3a 0a 1 β 3 + 3b 1 a 1β 3 + a 1 λ + a 1 µ = 0, a 3 1β 3 + a 1 = 0, a 1β + 3a 0 a 1β 3 + 3a 1 λ = 0. 7) IJNS homepage: http://www.nonlinearscience.org.uk/

184 International Journal of Nonlinear Science, Vol.15013), No., pp. 18-19 Solving this system by Mathematica, we obtain a 0 = β β 18β 3µ β, a 1 =, b 1 = 0, λ = 18β 3µ), 11) 3β 3 β 3 9β 3 a 0 = β + β 18β 3µ, a 1 = 0, 3β 3 b 1 = 1 [β 4 9 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ], β3 9β 1 β 3 β + β β λ = 18β 3 µ) 3 β + β 18β 3µ)9β 1 β 3 β + β β 18β 3 µ) β 4 + 81β 3 β 1 µ) 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ β3 3, 1) a 0 = β β 18β 3µ, a 1 = 0, 3β 3 b 1 = 1 [β 4 9 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ], β3 9β 1 β 3 β β β λ = 18β 3 µ) 3β + β 18β 3µ) 9β 1 β 3 + β + β β 18β 3 µ) β 4 + 81β 3 β 1 µ) 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ β3 3, 13) a 0 = β3 9β 1 β β 3 36β β 3 µ 108β3 µ, a 1 =, β 3 b 1 = [β3 9β 1β β 3 ) 3888β 3 β 3β 1β 3 )µ + 338 µ3 ] 44888018β 7 3 µ4, λ = β3 + 9β 1 β β 3 54µ β 3, 14) a 0 = β 1β + 1β µ, a 1 =, 1β 3 µ β 3 b 1 = [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] 37348 µ4, λ = β β 1 16µ) 6µ β 3, 15) where µ and c are arbitrary constants. By using Eq.11)-Eq.15), Eq.10) can be written as u) = β β 18β 3µ G ) ), 16) 3β 3 β 3 G) u) = β + β 18β 3µ 3β 3 1 [β 4 9 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ] G ) G) ) 1, 17) IJNS email for contribution: editor@nonlinearscience.org.uk

P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 185 u) = β β 18β 3µ 3β 3 1 [β 4 9 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ] G ) G) ) 1, 18) u) = β3 9β 1 β β 3 36β β 3 µ 108β3 µ u) = β 1β + 1β µ 1β 3 µ β 3 G ) G) ) [β3 9β 1β β 3 ) 3888β3 β 3β 1β 3 )µ + 338β3 3µ3 ] 44888018β3 7 G ) µ4 G) ) 1, 19) G ) β 3 G) ) [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] 37348β3 3 G ) µ4 G) ) 1. 0) Substituting the general solutions of Eq.6) into Eq.16), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β β 18β 3µ λ 4µ [ c λ 4µ λ 4µ c 1 )cosh + c + c 1 )sinh ) λ ]. 1) 3β 3 β 3 λ 4µ λ 4µ c + c 1 )cosh + c c 1 )sinh When λ 4µ = 0, u) = β β 18β 3µ c 3β 3 β 3 c 1 + c λ ). ) When λ 4µ < 0, u) = β β 18β 3µ [ c 4µ λ 4µ λ cos c 1 sin ) λ ]. 3) 3β 3 β 3 4µ λ 4µ λ + c sin Substituting the general solutions of Eq.6) into Eq.17), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β + β 18β 3µ 1 [β 4 3β 3 9 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ] [ When λ 4µ = 0, u) = β + β 18β 3µ 1 3β 3 9 When λ 4µ < 0, u) = β + β 18β 3µ 1 3β 3 9 λ 4µ c λ 4µ c 1 )cosh c + c 1 )cosh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ] 1. 4) [β 4 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ] c c 1 + c λ ) 1. 5) [β 4 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) β 3 9β 1β β 3 ) β 18β 3µ] [ c 4µ λ cos c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ] 1. 6) IJNS homepage: http://www.nonlinearscience.org.uk/

186 International Journal of Nonlinear Science, Vol.15013), No., pp. 18-19 Substituting the general solutions of Eq.6) into Eq.18), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β β 18β 3µ 1 [β 4 3β 3 9 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ] [ When λ 4µ = 0, u) = β β 18β 3µ 1 3β 3 9 When λ 4µ < 0, u) = β β 18β 3µ 1 3β 3 9 λ 4µ c λ 4µ c 1 )cosh c + c 1 )cosh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ] 1. 7) [β 4 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ] c c 1 + c λ ) 1. 8) [β 4 + 81β 3 β 1 µ)µ 9β β 3β 1 + µ) + β 3 9β 1β β 3 ) β 18β 3µ] [ c 4µ λ cos c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ] 1. 9) Substituting the general solutions of Eq.6) into Eq.19), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β3 9β 1 β β 3 36β β 3 µ λ 4µ 108β3 µ [ c λ 4µ λ 4µ c 1 )cosh + c + c 1 )sinh ) λ β 3 λ 4µ λ 4µ ] c + c 1 )cosh + c c 1 )sinh [β3 9β 1β β 3 ) 3888β3 β 3β 1β 3 )µ + 338β3 3µ3 ] 44888018β3 7µ4 When λ 4µ = 0, λ 4µ [ c c 1 )cosh c + c 1 )cosh λ 4µ + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ] 1. 30) u) = β3 9β 1 β β 3 36β β 3 µ c 108β3 µ β 3 c 1 + c λ ) When λ 4µ < 0, [β3 9β 1β β 3 ) 3888β3 β 3β 1β 3 )µ + 338β3 3µ3 ] 44888018β3 7 µ4 c 1 + c λ ) 1. 31) u) = β3 9β 1 β β 3 36β β 3 µ 108β3 µ [ β 3 c 4µ λ cos c 1 sin 4µ λ + c sin 4µ λ 4µ λ [β3 9β 1β β 3 ) 3888β3 β 3β 1β 3 )µ + 338β3 3µ3 ] 44888018β3 7µ4 [ c 4µ λ cos c 1 sin 4µ λ + c sin c ) λ ] 4µ λ 4µ λ ) λ ] 1. 3) IJNS email for contribution: editor@nonlinearscience.org.uk

P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 187 Substituting the general solutions of Eq.6) into Eq.0), we can obtain the travelling wave solutions of Eq.1) as follows: When λ 4µ > 0, u) = β 1β + 1β µ 1β 3 µ When λ 4µ = 0, u) = β 1β + 1β µ 1β 3 µ When λ 4µ < 0, u) = β 1β + 1β µ 1β 3 µ λ 4µ [ β 3 c λ 4µ c 1 )cosh c + c 1 )cosh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ] [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] 37348β3 3µ4 λ 4µ [ c λ c 1 )cosh 4µ λ + c + c 1 )sinh 4µ ) λ λ 4µ λ 4µ ] 1. 33) c + c 1 )cosh + c c 1 )sinh c β 3 c 1 + c λ ) [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] 37348β3 3 µ4 c 1 + c λ ) 1. 34) [ β 3 c 4µ λ cos c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ] [β 1 β + 16β 1µ β + 9β 3µ) + 16µ 13β + 18β 3µ)] 37348β3 3µ4 [ c 4µ λ 4µ λ cos c 1 sin ) λ 4µ λ 4µ λ ] 1. 35) + c sin 4 Soliton and periodic solutions for truncated nonlinear wave equation If Eq.1) is truncated in Ou 3 ), that is β 3 u 3 = 0 in Eq.8). Then Eq.8) reduce to u + β 1 u + β u = 0. 36) According to Step, we get m =. Therefore, we can write the solution of Eq.36) in the form u) = a 0 + a 1 G ) G) ) + b 1 G ) G) ) 1 + a G ) G) ) + b G ) G) ). 37) Substituting Eq.37) into Eq.36), collecting the coefficients of G /G) i i = 0, 1,, 3, 4,) and letting it be zero, we obtain the system b + a 0 β 1 + a 0β + a 1 b 1 β + a b β + b 1 λ + a 1 λµ + a µ = 0, b β + 6b µ = 0, b 1 b β + 10b λµ + b 1 µ = 0, bβ 1 + b 1β + a 0 b β + 4b λ + 8b µ + 3b 1 λµ = 0, b 1 β 1 + a 0 b 1 β + a 1 b β + 6b λ + b 1 λ + b 1 µ = 0, a 1 β 1 + a 0 a 1 β + a b 1 β + a 1 λ + a 1 µ + 6a λµ = 0, a β 1 + a 1β + a 0 a β + 3a 1 λ + 4a λ + 8a µ = 0, a 1 + a 1 a β + 10a λ = 0, 6a + a β = 0. c IJNS homepage: http://www.nonlinearscience.org.uk/

188 International Journal of Nonlinear Science, Vol.15013), No., pp. 18-19 Solving this system by Mathematica, we obtain a 0 = β 1 6µ, a 1 = 6 β1 + 4µ, b 1 = 0, a = 6 β1, b = 0, λ = + 10β 1µ + 8µ, 38) β β β 5β 1 + 38µ a 0 = 6µ, a 1 = 6 4µ β1, b 1 = 0, a = 6 β1, b = 0, λ = + 10β 1µ + 8µ, 39) β β β 5β 1 + 38µ a 0 = 3β 1 44β 1 µ 156µ, a 1 = 0, b 1 = β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β 1 + 38µ) β 5β 1 + 38µ), a = 0, b = 3β 1µ 44β 1 µ 156µ 3, λ = β 1 4µ), 40) β 5β 1 + 38µ) a 0 = β 1 6µ, a 1 = 0, b 1 = 6 µ β 1 + 4µ), β β a = 0, b = 6µ, β λ = µβ 1 4µ), 41) a 0 = 6µ, a 1 = 0, b 1 = 6 µ β 1 4µ), β β a = 0, b = 6µ, β λ = µβ 1 4µ), 4) a 0 = 0, a 1 = 0, b 1 = 7µ 3 β, a = 0, b = 6µ β, λ = µ, 43) where µ and c are arbitrary constants. By using Eq.38)-Eq.43), Eq.37) can be written as u) = β 1 6µ 6 β1 + 4µ G ) β β G) ) 6 G ) β G) ), 44) u) = 6µ 6 4µ β1 G ) β β G) ) 6 G ) β G) ), 45) u) = 3β 1 44β 1 µ 156µ β 5β 1 + 38µ) β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β 1 + 38µ) G ) G) ) 1 + 3β 1µ 44β 1 µ 156µ 3 G ) β 5β 1 + 38µ) G) ), 46) u) = β 1 6µ 6 µ β 1 + 4µ) G ) β β G) ) 1 6µ G ) β G) ), 47) µ β 1 4µ) u) = 6µ β 6 u) = β 7µ 3 β G ) G) ) 1 6µ β G ) G) ), 48) G ) G) ) 1 6µ β G ) G) ). 49) Substituting the general solutions of Eq.6) into Eq.44), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = β 1 6µ 6 β1 + 4µ λ 4µ [ c λ 4µ c 1 )cosh + c + c 1 )sinh β β λ 4µ c + c 1 )cosh + c c 1 )sinh 6 λ 4µ [ c c 1 )cosh β c + c 1 )cosh λ 4µ + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ λ 4µ λ 4µ ) λ ] ) λ ]. 50) IJNS email for contribution: editor@nonlinearscience.org.uk

P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 189 When λ 4µ = 0, When λ 4µ < 0, u) = β 1 6µ 6 β1 + 4µ c β β c 1 + c λ ) 6 c β c 1 + c λ ). 51) u) = β 1 6µ 6 β1 + 4µ [ c 4µ λ cos c 1 sin β β 4µ λ + c sin 6 [ c cos β 4µ λ 4µ λ 4µ λ ) λ ] c 1 sin 4µ λ 4µ λ 4µ λ ) λ ]. 5) + c sin Substituting the general solutions of Eq.6) into Eq.45), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = 6µ 6 4µ β1 λ 4µ [ β β When λ 4µ = 0, c λ 4µ c 1 )cosh λ 4µ c + c 1 )cosh 6 λ 4µ [ c c 1 )cosh β c + c 1 )cosh + c + c 1 )sinh + c c 1 )sinh λ 4µ + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ ) λ λ 4µ ] λ 4µ λ 4µ ) λ ]. 53) u) = 6µ 6 4µ β1 c β β c 1 + c λ ) 6 c β c 1 + c λ ). 54) When λ 4µ < 0, u) = 6µ 6 4µ β1 [ c 4µ λ cos c 1 sin β β 4µ λ + c sin 6 [ c cos β 4µ λ 4µ λ 4µ λ ) λ ] c 1 sin 4µ λ 4µ λ 4µ λ ) λ ]. 55) + c sin Substituting the general solutions of Eq.6) into Eq.46), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = 3β 1 44β 1 µ 156µ β 5β 1 + 38µ) [ λ 4µ + 3β 1µ 44β 1 µ 156µ 3 λ 4µ [ β 5β 1 + 38µ) When λ 4µ = 0, u) = 3β 1 44β 1 µ 156µ β 5β 1 + 38µ) β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β 1 + 38µ) c λ 4µ c 1 )cosh λ c + c 1 )cosh 4µ + c + c 1 )sinh + c c 1 )sinh c c 1 )cosh c + c 1 )cosh λ 4µ λ 4µ λ 4µ + c + c 1 )sinh λ 4µ + c c 1 )sinh ) λ ] 1 β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β 1 + 38µ) c 1 + c λ ) 1 c + 3β 1µ 44β 1 µ 156µ 3 β 5β 1 + 38µ) λ 4µ λ 4µ c ) λ ]. 56) c 1 + c λ ). 57) IJNS homepage: http://www.nonlinearscience.org.uk/

190 International Journal of Nonlinear Science, Vol.15013), No., pp. 18-19 When λ 4µ < 0, u) = 3β 1 44β 1 µ 156µ β 1 4µ)β 1 + 6µ) 3β 1 + 6µ) β 5β 1 + 38µ) β 5β 1 + 38µ) [ c 4µ λ cos c 1 sin 4µ λ + c sin + 3β 1µ 44β 1 µ 156µ 3 [ c cos β 5β 1 + 38µ) 4µ λ 4µ λ 4µ λ ) λ ] 1 c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ]. 58) Substituting the general solutions of Eq.6) into Eq.47), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = β 1 6µ 6 µ β 1 + 4µ) λ 4µ [ c λ c 1 )cosh 4µ + c + c 1 )sinh β β λ 4µ c + c 1 )cosh When λ 4µ = 0, When λ 4µ < 0, 6µ λ 4µ [ β c c 1 )cosh c + c 1 )cosh λ 4µ + c c 1 )sinh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ λ 4µ λ 4µ ) λ ] 1 ) λ ]. 59) u) = β 1 6µ 6 µ β 1 + 4µ) c β β c 1 + c λ ) 1 6µ c β c 1 + c λ ). 60) 4µ λ u) = β 1 6µ 6 µ β 1 + 4µ) [ c 4µ λ cos c 1 sin ) λ β β 4µ λ 4µ λ ] 1 + c sin 6µ [ c 4µ λ cos c 1 sin β 4µ λ + c sin 4µ λ 4µ λ ) λ ]. 61) Substituting the general solutions of Eq.6) into Eq.48), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = 6µ 6 µ β 1 4µ) λ 4µ [ c λ c 1 )cosh 4µ + c + c 1 )sinh β β λ 4µ c + c 1 )cosh When λ 4µ = 0, 6µ λ 4µ [ β c c 1 )cosh c + c 1 )cosh λ 4µ + c c 1 )sinh + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ λ 4µ λ 4µ ) λ ] 1 ) λ ]. 6) u) = 6µ 6 µ β 1 4µ) c β β c 1 + c λ ) 1 6µ c β c 1 + c λ ). 63) IJNS email for contribution: editor@nonlinearscience.org.uk

P. Guo et al: New Soliton and Periodic Solutions for Nonlinear Wave 191 When λ 4µ < 0, u) = 6µ 6 µ β 1 4µ) [ c 4µ λ cos c 1 sin β β 4µ λ 6µ [ β + c sin c cos 4µ λ 4µ λ 4µ λ ) λ ] 1 c 1 sin 4µ λ + c sin 4µ λ 4µ λ ) λ ]. 64) Substituting the general solutions of Eq.6) into Eq.49), we can obtain the travelling wave solutions of Eq.36) as follows: When λ 4µ > 0, u) = 7µ 3 λ 4µ [ c λ 4µ c 1 )cosh β λ 4µ c + c 1 )cosh 6µ λ 4µ [ c c 1 )cosh β When λ 4µ = 0, When λ 4µ < 0, + c + c 1 )sinh + c c 1 )sinh c + c 1 )cosh λ 4µ λ 4µ λ 4µ ) λ ] 1 + c + c 1 )sinh λ 4µ + c c 1 )sinh λ 4µ λ 4µ ) λ ]. 65) 7µ 3 c u) = β c 1 + c λ ) 1 6µ c β c 1 + c λ ). 66) u) = 7µ 3 [ c 4µ λ cos β 4µ λ 4µ λ c 1 sin ) λ 4µ λ ] 1 + c sin 6µ [ c 4µ λ cos c 1 sin β 4µ λ + c sin 4µ λ 4µ λ ) λ ]. 67) 5 Conclusions In this article, the G /G)-expansion method has been successfully implemented to find new traveling wave solutions for nonlinear wave equation in finite deformation elastic rod. We obtain some new traveling wave solutions include hyperbolic function solutions, trigonometric function solutions, rational solutions. The results show that the proposed method is reliable and effective and gives more solutions. This method can be also applied to other kinds of NLEEs. Acknowledgments This work was supported by the National Natural Science Foundation of China under Grant no. 11164013 and the Natural Science Foundation of Gansu Province of China under Grant no. 1014RJZA046. IJNS homepage: http://www.nonlinearscience.org.uk/

19 International Journal of Nonlinear Science, Vol.15013), No., pp. 18-19 References [1] Z.T. Fu, S.K. Liu, S.D. Liu, Q. Zhao, New Jacobi elliptic function expansion and new periodic solutions of nonlinear wave equations, Phys. Lett. A, 90001):7-76. [] J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30006):700-708. [3] D.J. Huang, H.Q. Zhang, Extended hyperbolic function method and new exact solitary wave solutions of Zakharov equations, Acta Phys. Sin, 53004):434-438. [4] A.M. Wazwaz, The extended tanh method for new soliton solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput, 148007):100-1014. [5] E.G. Fan, H.H. Dai, A direct approach with computerized symbolic computation for finding a series of traveling waves to nonlinear equations, Comput. Phys. Commun, 153003):17-30. [6] J.B. Li, J.H. Wu, H.P. Zhu, Travelling waves for an integrable higher order KdV type wave equations, Int. J. Bifurc. Chaos, 16006):35-60. [7] Y.D. Shang, Y. Huang, W.J. Yuan, The extended hyperbolic functions method and new exact solutions to the Zakharov equations, Appl. Math. Comput, 00008):110-1. [8] Y.R. Shi, P. Guo, K.P. Lü, W.S. Duan, Expansion method for modified Jacobi elliptic function and its application, Acta Phys. Sin, 53004):365-369. [9] M.L. Wang, X.Z. Li, J.L. Zhang, The G /G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A, 37008):417-43. [10] S. Zhang, W. Wang, J.L. Tong, A generalized G /G)-expansion method and its application to the +1)-dimensional Broer-Kaup equations. Appl. Math. Comput, 09009):399-404. [11] J. Pang, C.Q. Bian, L. Chao, A new auxiliary equation method for finding travelling wave solutions to KdV equation, Appl. Math. Mech, 31010):99-936. [1] Z.F. Liu, S.Y. Zhang, Solitary waves in finite deform ation elastic circular rod, Appl. Math. Mech, 7006):1431-1437. [13] Z.F. Liu, S.Y. Zhang, Nonlinear waves and periodic solution in finite deformation elastic rod, Acta Mech. Solida Sin, 19006):1-8. [14] Z.F. Liu, S.Y. Zhang, A nonlinear wave equation and exact periodic solutions in circular rod waveguide, Acta Phys. Sin, 55006): 68-633. [15] Z.F. Liu, T.F. Wang, S.Y. Zhang, Study on propagation of nonlinear flexural waves in the beams, Chin. J. Theor. Appl. Mech, 3007):38-44. [16] S.Y. Zhang, Z.F. Liu, Three kinds of nonlinear-dispersive waves in finite deformation elastic rods, Appl. Math. Mech, 9008): 909-917. IJNS email for contribution: editor@nonlinearscience.org.uk