2-Carboxyquinolinium-2,4,6-trinitrobenzenesulfonatequinolinium-2-carboxylate

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2-Carboxyquinolinium-2,4,6-trinitrobenzenesulfonatequinolinium-2-carboxylate"

Transcript

1 2-Carboxyquinolinium-2,4,6-trinitrobenzenesulfonatequinolinium-2-carboxylate (1/1/1) Author Smith, Graham, Wermuth, Urs, M. White, Jonathan Published 2008 Journal Title Acta Crystallographica. Section E: Structure Reports Online DOI Copyright Statement The Author(s) For information about this journal please refer to the journal's website. All articles published in Acta Crystallographica Section E are open access and distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. See creativecommons.org/licenses/by/2.0/uk/legalcode Downloaded from Link to published version Griffith Research Online

2 organic compounds Acta Crystallographica Section E Structure Reports Online ISSN Carboxyquinolinium 2,4,6-trinitro- benzenesulfonate quinolinium-2- carboxylate (1/1/1) Graham Smith, a * Urs D. Wermuth b and Jonathan M. White c a School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia, b School of Biomolecular and Physical Sciences, Griffith University, Nathan, Queensland 4111, Australia, and c BIO-21 Molecular Science and Biotechnology, University of Melbourne, Parkville, c = (12) Å = (1) = (2) = (2) V = (18) Å 3 Data collection Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.93, T max = 0.98 Refinement R[F 2 >2(F 2 )] = wr(f 2 ) = S = reflections 419 parameters Z =2 Mo K radiation = 0.21 mm 1 T = 130 (2) K mm 6761 measured reflections 4446 independent reflections 3779 reflections with I > 2(I) R int = H atoms treated by a mixture of independent and constrained refinement max = 0.26 e Å 3 min = 0.36 e Å 3 Victoria 3052, Australia Correspondence Received 20 November 2007; accepted 23 November 2007 Key indicators: single-crystal X-ray study; T = 130 K; mean (C C) = Å; R factor = 0.034; wr factor = 0.090; data-to-parameter ratio = The structure of the title adduct compound, C 10 H 8 NO C 6 H 2 N 3 O 9 S C 10 H 7 NO 2, from the reaction of 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) with quinoline-2- carboxylic acid (quinaldic acid) in 2-propanol water, has been determined at 130 (2) K. The cation and the adduct species form a twisted cyclic hydrogen-bonded R 2 2(10) pseudo-dimer which is extended into a one-dimensional chain structure through short head-to-tail carboxylic acid O HO carboxyl associations [OO = (19) Å]. The picrylsulfonate anions are attached peripherally by single N HO sulfonate hydrogen bonds [NO = (19) Å]. Related literature For other related picrylsulfonate and quinaldic acid structures, see: Russell & Ward (1997); Smith et al. (2004); Smith, Wermuth & Healy (2006); Smith, Wermuth & White (2006); Smith, Wermuth, Healy & White (2007); Smith, Wermuth & White (2007); Dobrzyńska & Jerzykiewicz (2004). For graph-set nomenclature, see: Etter et al. (1990). Table 1 Hydrogen-bond geometry (Å, ). D HA D H HA DA D HA N1A H1AO21A 0.87 (2) 2.31 (2) (2) (18) N1A H1AO21B 0.87 (2) 1.94 (2) (2) 155 (2) N1B H1BO (2) 2.23 (2) (19) 132 (2) N1B H1BO21A 0.85 (2) 2.14 (3) (2) 128 (2) N1B H1BO21B 0.85 (2) 2.30 (3) (2) 108 (2) O22A H22AO22B i 0.97 (2) 1.50 (2) (19) 179 (3) C4B H4BO41 ii (2) 152 C5B H5BO12 iii (2) 158 C8A H8AO21B (2) 134 Symmetry codes: (i) x 1; y; z; (ii) x; y; z þ 1; (iii) x þ 1; y þ 2; z þ 1. Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON. The authors acknowledge financial support from the School of Physical and Chemical Sciences, Queensland University of Technology, the School of Biomolecular and Physical Sciences, Griffith University, and the School of Chemistry, University of Melbourne. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SF2012). Experimental Crystal data C 10 H 8 NO 2 + C 6 H 2 N 3 O 9 S - C 10 H 7 NO 2 M r = Triclinic, P1 a = (6) Å b = (10) Å References Bruker (1999). SADABS (Version 2.03) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2000). SMART. Version Bruker AXS Inc., Madison, Wisconsin, USA. Dobrzyńska, D. & Jerzykiewicz, L. B. (2004). J. Chem. Crystallogr. 34, Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, Russell, V. A. & Ward, M. D. (1997). J. Mater. Chem. 7, Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany. Smith, G., Wermuth, U. D. & Healy, P. C. (2006). Acta Cryst. E62, o5510 o5512. Smith, G., Wermuth, U. D., Healy, P. C. & White, J. M. (2007). Aust. J. Chem. 60, Smith, G., Wermuth, U. D. & White, J. M. (2004). Acta Cryst. C60, o575 o581. o132 Smith et al. doi: /s Acta Cryst. (2008). E64, o132 o133

3 organic compounds Smith, G., Wermuth, U. D. & White, J. M. (2006). Acta Cryst. C62, o694 o698. Smith, G., Wermuth, U. D. & White, J. M. (2007). Unpublished data. Spek, A. L. (2003). J. Appl. Cryst. 36, Acta Cryst. (2008). E64, o132 o133 Smith et al. C 10 H 8 NO 2 + C 6 H 2 N 3 O 9 S C 10 H 7 NO 2 o133

4

5 Acta Cryst. (2008). E64, o132-o133 [ doi: /s ] 2-Carboxyquinolinium-2,4,6-trinitrobenzenesulfonate-quinolinium-2-carboxylate (1/1/1) G. Smith, U. D. Wermuth and J. M. White Comment Picrylsulfonic acid (2,4,6-trinitrobenzenesulfonic acid) reacts with certain Lewis bases to form 1:1 proton-transfer salts and the structures of a small number of these are known: with guanidine (Russell & Ward, 1997) and quinoline (Smith, Wermuth & Healy, 2006). However, the 1:1 reaction with quinoline-2-carboxylic acid in 80% 2-propanol-water resulted in the adduct salt 2-carboxyquinolinium-2,4,6-trinitrobenzenesulfonate-quinolinium- 2-carboxylate (1/1/1) (I) and the structure is reported here. In (I), the asymmetric unit comprises a protonated quinaldic acid cation (A), a picrylsulfonate anion and a zwitterionic quinaldic acid adduct molecule (B) (Fig. 1). The cation and the adduct species form a pseudo-dimer through a twisted cyclic hydrogen-bonded duplex N H O association [graph set R 2 2(10) (Etter et al., 1990]. This pseudo-dimer incorporates a cyclic R 2 2(4) association and two intramolecular S(5) N H O carboxyl associations and is similar to that found in the zwitterionic parent acid (Dobrzyńska & Jerzykiewicz, 2004), the 1:2 L-tartaric acid-quinaldic acid adduct (Smith, Wermuth & White, 2006) and in the analogous (1:1:1) protonated quinaldic acid-zwitterionic adduct compounds with 5- sulfosalicylic acid (Smith et al., 2004) and 4,5-dichlorophthalic acid (Smith, Wermuth & White, 2007). However, in the 1:1 compound with 3,5-dinitrosalicylic acid (Smith, Wermuth, Healy & White, 2007), this dimer is not found. In (I), the pseudo-dimers are extended into one-dimensional chain structures through short head-to-tail carboxylic acid O H O carboxyl associations [O O, (19) Å] (Fig. 2). The picrylsulfonate anions are attached peripherally by single N H O sulfonate hydrogen bonds (Table 1). All nitro groups of the anion are rotated out of the plane of the benzene ring, particularly those which are ortho to the sulfonate group [torsion angle C1 C2 N2 O22, (17) ; C5 C6 N6 O62, (17) ], compared to the para- related group [torsion angle C3 C4 N4 O42, (16) ]. Experimental The title compound was synthesized by heating under reflux 1 mmol quantities of 2,4,6-trinitrobenzenesulfonic acid (picrylsulfonic acid) and quinoline-2-carboxylic acid (quinaldic acid) in 50 ml of 80% 2-propanol-water for 10 minutes. After concentration to ca 30 ml, partial room temperature evaporation of the hot-filtered solution gave pale yellow flat prisms of (I) [m.pt K]. Refinement Interactive hydrogen atoms were located by difference methods and their positional and isotropic displacement parameters were refined. The aromatic ring H atoms were included in the refinement in calculated positions (C H = 0.95 Å) using a riding model approximation, with U iso (H) = 1.2U eq (C). sup-1

6 Figures Fig. 1. Molecular configuration and atom naming scheme for the cation, anion and the zwitterionic adduct species in (I). Inter-species hydrogen-bonding interactions are shown as dashed lines. Non-H atom displacement ellipsoids are drawn at the 50% probability level. Fig. 2. A perspective view of the one-dimensional head-to-tail cation-adduct dimer extension and peripheral N H O sulfonate associations in (I). Non-interactive H-atoms are omitted while hydrogen bonds are shown as dashed lines. Symmetry code (iv): x + 1, y, z. For other symmetry codes see Table 1. 2-Carboxyquinolinium 2,4,6-trinitrobenzenesulfonate quinolinium-2-carboxylate (1/1/1) Crystal data C 10 H 8 NO 2+ C 6 H 2 N 3 O 9 S C 10 H 7 NO 2 Z = 2 M r = F 000 = 656 Triclinic, P1 Hall symbol: -P 1 a = (6) Å b = (10) Å D x = Mg m 3 Melting point: K Mo Kα radiation λ = Å c = (12) Å θ = º α = (1)º β = (2)º γ = (2)º V = (18) Å 3 Cell parameters from 3558 reflections µ = 0.21 mm 1 T = 130 (2) K Plate, colourless mm Data collection Bruker SMART CCD area-detector diffractometer Radiation source: sealed tube Monochromator: graphite R int = T = 130(2) K θ max = 25.0º φ and ω scans θ min = 1.6º Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.93, T max = independent reflections 3779 reflections with I > 2σ(I) h = 9 9 k = measured reflections l = sup-2

7 Refinement Refinement on F 2 Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement R[F 2 > 2σ(F 2 )] = w = 1/[σ 2 (F o 2 ) + (0.0504P) 2 ] where P = (F o 2 + 2F c 2 )/3 wr(f 2 ) = (Δ/σ) max = S = 1.00 Δρ max = 0.26 e Å reflections Δρ min = 0.36 e Å parameters Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Extinction correction: SHELXL97 (Sheldrick, 1997), Fc * =kfc[ xfc 2 λ 3 /sin(2θ)] -1/4 Extinction coefficient: (9) Special details Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles Refinement. Refinement of F 2 against ALL reflections. The weighted R-factor wr and goodness of fit S are based on F 2, conventional R-factors R are based on F, with F set to zero for negative F 2. The threshold expression of F 2 > 2sigma(F 2 ) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F 2 are statistically about twice as large as those based on F, and R factors based on ALL data will be even larger. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å 2 ) x y z U iso */U eq O21A (15) (10) (10) (4) O21B (15) (10) (10) (4) O22A (15) (10) (9) (4) O22B (15) (11) (10) (4) N1A (18) (12) (11) (4) N1B (18) (12) (11) (5) C2A (2) (14) (13) (5) C2B (2) (14) (13) (5) C3A (2) (14) (14) (5) C3B (2) (14) (13) (5) C4A (2) (15) (14) (6) C4B (2) (15) (14) (5) C5A (2) (16) (14) (6) C5B (2) (15) (14) (6) C6A (2) (16) (14) (6) C6B (2) (15) (15) (6) sup-3

8 C7A (2) (16) (14) (6) C7B (2) (15) (14) (6) C8A (2) (15) (13) (5) C8B (2) (14) (14) (5) C9A (2) (14) (13) (5) C9B (2) (14) (13) (5) C10A (2) (14) (14) (6) C10B (2) (14) (13) (5) C21A (2) (14) (13) (5) C21B (2) (14) (14) (5) S (6) (4) (3) (1) O (16) (11) (10) (4) O (16) (11) (9) (4) O (16) (11) (9) (4) O (16) (11) (10) (4) O (17) (10) (10) (4) O (16) (11) (10) (4) O (17) (11) (9) (4) O (16) (11) (10) (4) O (16) (11) (10) (4) N (19) (13) (11) (5) N (18) (13) (11) (5) N (19) (12) (11) (5) C (2) (15) (13) (5) C (2) (14) (13) (5) C (2) (14) (13) (5) C (2) (15) (13) (5) C (2) (15) (13) (5) C (2) (14) (13) (5) H1A (3) (18) (16) (6)* H1B (3) (19) (18) (7)* H3A * H3B * H4A * H4B * H5A * H5B * H6A * H6B * H7A * H7B * H8A * H8B * H22A (3) (19) (18) (7)* H * H * sup-4

9 Atomic displacement parameters (Å 2 ) U 11 U 22 U 33 U 12 U 13 U 23 O21A (7) (7) (8) (5) (6) (6) O21B (7) (7) (7) (5) (6) (6) O22A (7) (7) (7) (5) (6) (6) O22B (7) (7) (7) (5) (6) (6) N1A (8) (7) (8) (6) (6) (7) N1B (8) (8) (8) (6) (6) (7) C2A (9) (8) (9) (7) (8) (7) C2B (9) (8) (9) (7) (7) (7) C3A (9) (9) (10) (7) (8) (8) C3B (9) (9) (9) (7) (8) (8) C4A (10) (9) (10) (8) (8) (8) C4B (10) (9) (9) (8) (8) (8) C5A (11) (10) (10) (8) (9) (9) C5B (11) (9) (10) (8) (8) (8) C6A (10) (10) (10) (8) (8) (9) C6B (10) (9) (11) (8) (8) (8) C7A (10) (10) (10) (8) (8) (9) C7B (10) (9) (11) (7) (8) (8) C8A (9) (9) (10) (8) (8) (8) C8B (9) (9) (10) (7) (8) (8) C9A (9) (9) (9) (7) (7) (7) C9B (9) (8) (9) (7) (7) (7) C10A (10) (9) (10) (7) (8) (8) C10B (10) (8) (9) (7) (8) (7) C21A (9) (8) (9) (7) (8) (8) C21B (9) (9) (10) (7) (8) (8) S (2) (3) (2) (2) (2) (2) O (7) (8) (7) (6) (6) (6) O (7) (8) (7) (6) (5) (6) O (7) (8) (7) (6) (6) (6) O (7) (7) (7) (6) (6) (6) O (8) (7) (7) (6) (6) (6) O (7) (8) (7) (6) (6) (6) O (8) (8) (7) (6) (6) (6) O (7) (7) (8) (6) (6) (6) O (7) (7) (8) (6) (6) (6) N (8) (8) (8) (6) (7) (7) N (8) (9) (8) (7) (6) (7) N (9) (8) (8) (7) (7) (7) C (8) (9) (9) (7) (7) (8) C (9) (8) (9) (7) (7) (7) C (9) (9) (9) (7) (7) (8) C (9) (9) (9) (7) (7) (8) C (9) (9) (10) (7) (7) (8) sup-5

10 C (9) (9) (10) (7) (8) (8) Geometric parameters (Å, ) S1 C (18) C5A C10A (3) S1 O (15) C5A C6A (2) S1 O (15) C5B C6B (2) S1 O (14) C5B C10B (3) O21A C21A (2) C6A C7A (3) O21B C21B (2) C6B C7B (3) O22A C21A (2) C7A C8A (3) O22B C21B (2) C7B C8B (3) O22A H22A 0.97 (2) C8A C9A (2) O21 N (2) C8B C9B (2) O22 N (2) C9A C10A (3) O41 N (2) C9B C10B (2) O42 N (2) C3A H3A O61 N (2) C3B H3B O62 N (2) C4A H4A N1A C2A (2) C4B H4B N1A C9A (2) C5A H5A N1B C9B (2) C5B H5B N1B C2B (2) C6A H6A N1A H1A 0.87 (2) C6B H6B N1B H1B 0.85 (2) C7A H7A N2 C (2) C7B H7B N4 C (2) C8A H8A N6 C (2) C8B H8B C2A C3A (3) C1 C (3) C2A C21A (3) C1 C (3) C2B C21B (3) C2 C (2) C2B C3B (2) C3 C (3) C3A C4A (3) C4 C (3) C3B C4B (3) C5 C (2) C4A C10A (2) C3 H C4B C10B (2) C5 H O12 S1 O (8) C5B C10B C9B (15) O12 S1 C (8) C4B C10B C5B (16) O13 S1 C (8) O21A C21A C2A (15) O11 S1 C (8) O22A C21A C2A (15) O11 S1 O (9) O21A C21A O22A (17) O11 S1 O (8) O21B C21B C2B (15) C21A O22A H22A (15) O22B C21B C2B (16) C2A N1A C9A (16) O21B C21B O22B (17) C2B N1B C9B (15) C2A C3A H3A C9A N1A H1A (16) C4A C3A H3A C2A N1A H1A (16) C2B C3B H3B C9B N1B H1B (17) C4B C3B H3B C2B N1B H1B (17) C10A C4A H4A sup-6

11 O21 N2 C (16) C3A C4A H4A O22 N2 C (14) C10B C4B H4B O21 N2 O (16) C3B C4B H4B O41 N4 C (15) C6A C5A H5A O41 N4 O (15) C10A C5A H5A O42 N4 C (16) C6B C5B H5B O61 N6 C (15) C10B C5B H5B O62 N6 C (15) C5A C6A H6A O61 N6 O (16) C7A C6A H6A C3A C2A C21A (15) C5B C6B H6B N1A C2A C21A (16) C7B C6B H6B N1A C2A C3A (16) C6A C7A H7A N1B C2B C3B (16) C8A C7A H7A C3B C2B C21B (15) C6B C7B H7B N1B C2B C21B (15) C8B C7B H7B C2A C3A C4A (16) C7A C8A H8A C2B C3B C4B (16) C9A C8A H8A C3A C4A C10A (17) C7B C8B H8B C3B C4B C10B (17) C9B C8B H8B C6A C5A C10A (18) S1 C1 C (14) C6B C5B C10B (17) S1 C1 C (14) C5A C6A C7A (17) C2 C1 C (16) C5B C6B C7B (17) N2 C2 C (15) C6A C7A C8A (16) N2 C2 C (16) C6B C7B C8B (16) C1 C2 C (16) C7A C8A C9A (17) C2 C3 C (17) C7B C8B C9B (17) N4 C4 C (17) C8A C9A C10A (16) N4 C4 C (16) N1A C9A C8A (16) C3 C4 C (16) N1A C9A C10A (15) C4 C5 C (16) N1B C9B C8B (16) N6 C6 C (15) N1B C9B C10B (15) N6 C6 C (15) C8B C9B C10B (16) C1 C6 C (17) C4A C10A C5A (17) C2 C3 H C5A C10A C9A (16) C4 C3 H C4A C10A C9A (16) C4 C5 H C4B C10B C9B (16) C6 C5 H O13 S1 C1 C (15) C3A C4A C10A C9A 2.5 (3) O12 S1 C1 C (16) C3B C4B C10B C5B (18) O11 S1 C1 C (15) C3B C4B C10B C9B 0.4 (3) O11 S1 C1 C (17) C6A C5A C10A C4A (18) O12 S1 C1 C (15) C6A C5A C10A C9A 0.9 (3) O13 S1 C1 C (16) C10A C5A C6A C7A 0.4 (3) C9A N1A C2A C21A (16) C6B C5B C10B C9B 0.2 (3) C9A N1A C2A C3A 2.3 (3) C10B C5B C6B C7B 0.3 (3) C2A N1A C9A C10A 0.5 (3) C6B C5B C10B C4B (18) C2A N1A C9A C8A (17) C5A C6A C7A C8A 0.3 (3) C9B N1B C2B C3B 2.1 (3) C5B C6B C7B C8B 0.7 (3) C2B N1B C9B C10B 2.9 (3) C6A C7A C8A C9A 0.6 (3) sup-7

12 C9B N1B C2B C21B (16) C6B C7B C8B C9B 0.9 (3) C2B N1B C9B C8B (17) C7A C8A C9A C10A 1.1 (3) O21 N2 C2 C (17) C7A C8A C9A N1A (17) O21 N2 C2 C (2) C7B C8B C9B N1B (17) O22 N2 C2 C (17) C7B C8B C9B C10B 0.8 (3) O22 N2 C2 C (2) N1A C9A C10A C4A 1.9 (3) O41 N4 C4 C (2) C8A C9A C10A C5A 1.3 (3) O42 N4 C4 C (2) N1A C9A C10A C5A (16) O41 N4 C4 C (16) C8A C9A C10A C4A (17) O42 N4 C4 C (16) N1B C9B C10B C4B 1.6 (3) O61 N6 C6 C (18) N1B C9B C10B C5B (16) O62 N6 C6 C (2) C8B C9B C10B C4B (17) O62 N6 C6 C (17) C8B C9B C10B C5B 0.4 (3) O61 N6 C6 C (2) S1 C1 C2 N (2) N1A C2A C3A C4A 1.6 (3) S1 C1 C2 C (14) C21A C2A C3A C4A (17) C6 C1 C2 N (15) C3A C2A C21A O22A 0.4 (2) C6 C1 C2 C3 1.5 (3) N1A C2A C21A O21A 1.6 (2) S1 C1 C6 N (2) N1A C2A C21A O22A (15) S1 C1 C6 C (14) C3A C2A C21A O21A (17) C2 C1 C6 N (15) N1B C2B C3B C4B 0.2 (3) C2 C1 C6 C5 3.2 (3) C21B C2B C3B C4B (17) N2 C2 C3 C (15) N1B C2B C21B O21B 6.2 (2) C1 C2 C3 C4 0.8 (3) C3B C2B C21B O22B 6.6 (3) C2 C3 C4 N (15) C3B C2B C21B O21B (17) C2 C3 C4 C5 1.8 (3) N1B C2B C21B O22B (16) N4 C4 C5 C (15) C2A C3A C4A C10A 0.8 (3) C3 C4 C5 C6 0.3 (3) C2B C3B C4B C10B 1.3 (3) C4 C5 C6 N (15) C3A C4A C10A C5A (18) C4 C5 C6 C1 2.4 (3) Hydrogen-bond geometry (Å, ) D H A D H H A D A D H A N1A H1A O21A 0.87 (2) 2.31 (2) (2) (18) N1A H1A O21B 0.87 (2) 1.94 (2) (2) 155 (2) N1B H1B O (2) 2.23 (2) (19) 132 (2) N1B H1B O21A 0.85 (2) 2.14 (3) (2) 128 (2) N1B H1B O21B 0.85 (2) 2.30 (3) (2) 108 (2) O22A H22A O22B i 0.97 (2) 1.50 (2) (19) 179 (3) C4B H4B O41 ii (2) 152 C5B H5B O12 iii (2) 158 C8A H8A O21B (2) 134 Symmetry codes: (i) x 1, y, z; (ii) x, y, z+1; (iii) x+1, y+2, z+1. sup-8

13 Fig. 1 sup-9

14 Fig. 2 sup-10