Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ"

Transcript

1 Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1

2 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα ύλη Α Ημερησίου ΓΕ.Λ. Άλγεβρα και στοιχεία Πιθανοτήτων...4 Γεωμετρία Διδακτέα-εξεταστέα ύλη Α Εσπερινού ΓΕ.Λ. Άλγεβρα...9 Γεωμετρία Διδακτέα-εξεταστέα ύλη Β Εσπερινού ΓΕ.Λ. Άλγεβρα...13 Γεωμετρία Διδακτέα-εξεταστέα ύλη Β Ημερήσιου ΓΕ.Λ. Άλγεβρα...16 Γεωμετρία...17 Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών Διδακτέα-εξεταστέα ύλη Γ Εσπερινού ΓΕ.Λ. Άλγεβρα...22 Γεωμετρία...23 Μαθηματικά Ομάδας Προσανατολισμού Θετικών Σπουδών Διδακτέα-εξεταστέα ύλη Γ Ημερησίου ΓΕ.Λ. Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης...27 Μαθηματικά και Στοιχεία Στατιστικής Γενικής Παιδείας Διδακτέα-εξεταστέα ύλη Δ Εσπερινού ΓΕ.Λ Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης...32 Μαθηματικά και Στοιχεία Στατιστικής Γενικής Παιδείας...34 Μαθηματικός Περιηγητής 2

3 1. Διδακτέα-εξεταστέα ύλη Α Η μ ε ρ η σ ί ο υ ΓΕ.Λ. Μαθηματικός Περιηγητής 3

4 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Διδακτέα -εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1 ο : Πιθανότητες 1.1 Δειγματικός Χώρος-Ενδεχόμενα 1.2 Έννοια της Πιθανότητας (εκτός της υποπαραγράφου «Αξιωματικός Ορισμός Πιθανότητας») Σημείωση: Να μην διδαχθεί η εφαρμογή 3 στη σελίδα 36, καθώς και ασκήσεις με ανισότητες Να μην γίνουν οι ασκήσεις 4,5 και 6 της Β ομάδας της παραγράφου 1.2. Κεφ.2 ο : Οι Πραγματικοί Αριθμοί 2.1 Οι Πράξεις και οι Ιδιότητές τους 2.2 Διάταξη Πραγματικών Αριθμών (εκτός της απόδειξης της ιδιότητας 4) 2.3 Απόλυτη Τιμή Πραγματικού Αριθμού 2.4 Ρίζες Πραγματικών Αριθμών (εκτός των αποδείξεων των ιδιοτήτων 3 και 4) Κεφ.3 ο : Εξισώσεις 3.1 Εξισώσεις 1 ου Βαθμού 3.2 Η Εξίσωση ν x α 3.3 Εξισώσεις 2 ου Βαθμού Κεφ.4 ο : Ανισώσεις 4.1 Ανισώσεις 1 ου Βαθμού 4.2 Ανισώσεις 2 ου Βαθμού Κεφ.5 ο : Πρόοδοι 5.1 Ακολουθίες 5.2 Αριθμητική πρόοδος (εκτός της απόδειξης για το S ν ) 5.3 Γεωμετρική πρόοδος (εκτός της απόδειξης για το S ν ) Μαθηματικός Περιηγητής 4

5 Κεφ.6 ο : Βασικές Έννοιες των Συναρτήσεων 6.1 Η Έννοια της Συνάρτησης 6.2 Γραφική Παράσταση Συνάρτησης (εκτός της υποπαραγράφου «Απόσταση σημείων») 6.3 Η Συνάρτηση f(x)= αx+β (εκτός της κλίσης ευθείας ως λόγος μεταβολής) Κεφ.7 ο : Μελέτη Βασικών Συναρτήσεων 7.1 Μελέτη της Συνάρτησης : f(x)= αx Μελέτη της Συνάρτησης : f(x)= αx 2 +βx+γ Μαθηματικός Περιηγητής 5

6 ΓΕΩΜΕΤΡΙΑ Διδακτέα εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου Π., Κατσούλη Γ., Μαρκάτη Σ., Σίδερη Π. Κεφ.3 ο : Τρίγωνα 3.1 Είδη και στοιχεία τριγώνων ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.5 Ύπαρξη και μοναδικότητα καθέτου (εκτός της απόδειξης του θεωρήματος) 3.6 Κριτήρια ισότητας ορθογώνιων τριγώνων (εκτός της απόδειξης των θεωρημάτων Ι και ΙΙ). 3.7 Κύκλος - Μεσοκάθετος Διχοτόμος 3.8 Κεντρική συμμετρία 3.9 Αξονική συμμετρία 3.10 Σχέση εξωτερικής και απέναντι γωνίας (εκτός της απόδειξης του θεωρήματος) 3.11 Ανισοτικές σχέσεις πλευρών και γωνιών (εκτός της απόδειξης του θεωρήματος) 3.12 Tριγωνική ανισότητα (εκτός της απόδειξης του θεωρήματος) 3.13 Κάθετες και πλάγιες (εκτός της απόδειξης του θεωρήματος ΙΙ) 3.14 Σχετικές θέσεις ευθείας και κύκλου (εκτός της απόδειξης του θεωρήματος Ι) 3.15 Εφαπτόμενα τμήματα 3.16 Σχετικές θέσεις δύο κύκλων 3.17 Απλές γεωμετρικές κατασκευές 3.18 Βασικές κατασκευές τριγώνων Κεφ.4 ο : Παράλληλες ευθείες 4.1. Εισαγωγή 4.2. Τέμνουσα δύο ευθειών - Ευκλείδειο αίτημα (εκτός της απόδειξης του Πορίσματος ΙΙ και των προτάσεων Ι, ΙΙ, ΙΙΙ και ΙV) 4.3. Κατασκευή παράλληλης ευθείας 4.4. Γωνίες με πλευρές παράλληλες 4.5. Αξιοσημείωτοι κύκλοι τριγώνου (εκτός της απόδειξης του θεωρήματος που αναφέρεται στον εγγεγραμμένο κύκλο τριγώνου) Άθροισμα γωνιών τριγώνου Μαθηματικός Περιηγητής 6

7 4.7. Γωνίες με πλευρές κάθετες (εκτός της απόδειξης του θεωρήματος και του πορίσματος) 4.8. Άθροισμα γωνιών κυρτού ν-γώνου (Εκτός της απόδειξης του Πορίσματος) Κεφ.5 ο : Παραλληλόγραμμα Τραπέζια 5.1. Εισαγωγή 5.2. Παραλληλόγραμμα 5.3. Ορθογώνιο 5.4. Ρόμβος 5.5. Τετράγωνο 5.6. Εφαρμογές στα τρίγωνα (εκτός της απόδειξης του Θεωρήματος ΙΙΙ) 5.7. Βαρύκεντρο τριγώνου (εκτός της απόδειξης του θεωρήματος) 5.8. Το ορθόκεντρο τριγώνου (Χωρίς το πόρισμα) Μια ιδιότητα του ορθογώνιου τριγώνου Τραπέζιο Ισοσκελές τραπέζιο Αξιοσημείωτες ευθείες και κύκλοι τριγώνου Κεφ.6 ο : Εγγεγραμμένα σχήματα 6.1. Εισαγωγικά Ορισμοί 6.2. Σχέση εγγεγραμμένης και αντίστοιχης επίκεντρης (Εκτός της απόδειξης του θεωρήματος) 6.3. Γωνία χορδής και εφαπτομένης (Εκτός της απόδειξης του θεωρήματος) 6.4 Βασικοί γεωμετρικοί τόποι στον κύκλο Τόξο κύκλου που δέχεται γνωστή γωνία 6.5 Το εγγεγραμμένο τετράπλευρο 6.6 Το εγγράψιμο τετράπλευρο (εκτός της απόδειξης του θεωρήματος) Μαθηματικός Περιηγητής 7

8 2. Διδακτέα-εξεταστέα ύλη Α Ε σ π ε ρ ι ν ο ύ ΓΕ.Λ. Μαθηματικός Περιηγητής 8

9 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Διδακτέα - εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1 ο : Πιθανότητες 1.1 Δειγματικός Χώρος-Ενδεχόμενα 1.2 Έννοια της Πιθανότητας (εκτός της υποπαραγράφου «Αξιωματικός Ορισμός Πιθανότητας») Κεφ.2 ο : Οι Πραγματικοί Αριθμοί 2.1 Οι Πράξεις και οι Ιδιότητές τους 2.2 Διάταξη Πραγματικών Αριθμών (εκτός της απόδειξης της ιδιότητας 4) 2.3 Απόλυτη Τιμή Πραγματικού Αριθμού 2.4 Ρίζες Πραγματικών Αριθμών (εκτός των αποδείξεων των ιδιοτήτων 3 και 4) Κεφ.3 ο : Εξισώσεις 3.1 Εξισώσεις 1 ου Βαθμού 3.2 Η Εξίσωση ν x α 3.3 Εξισώσεις 2 ου Βαθμού Κεφ.4 ο : Ανισώσεις 4.1 Ανισώσεις 1 ου Βαθμού 4.2 Ανισώσεις 2 ου Βαθμού Μαθηματικός Περιηγητής 9

10 ΓΕΩΜΕΤΡΙΑ Διδακτέα εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου Π., Κατσούλη Γ., Μαρκάτη Σ., Σίδερη Π. Κεφ.3 ο : Τρίγωνα 3.1 Είδη και στοιχεία τριγώνων ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) ο Κριτήριο ισότητας τριγώνων (εκτός της απόδειξης του θεωρήματος) 3.5 Ύπαρξη και μοναδικότητα καθέτου (εκτός της απόδειξης του θεωρήματος) 3.6 Κριτήρια ισότητας ορθογώνιων τριγώνων (εκτός της απόδειξης των θεωρημάτων Ι και ΙΙ). 3.7 Κύκλος - Μεσοκάθετος Διχοτόμος 3.8 Κεντρική συμμετρία 3.9 Αξονική συμμετρία 3.10 Σχέση εξωτερικής και απέναντι γωνίας (εκτός της απόδειξης του θεωρήματος) 3.11 Ανισοτικές σχέσεις πλευρών και γωνιών (εκτός της απόδειξης του θεωρήματος) 3.12 Tριγωνική ανισότητα (εκτός της απόδειξης του θεωρήματος) 3.13 Κάθετες και πλάγιες (εκτός της απόδειξης του θεωρήματος ΙΙ) 3.14 Σχετικές θέσεις ευθείας και κύκλου (εκτός της απόδειξης του θεωρήματος Ι) 3.15 Εφαπτόμενα τμήματα 3.16 Σχετικές θέσεις δύο κύκλων 3.17 Απλές γεωμετρικές κατασκευές 3.18 Βασικές κατασκευές τριγώνων Κεφ.4 ο : Παράλληλες ευθείες 4.1 Εισαγωγή 4.2 Τέμνουσα δύο ευθειών - Ευκλείδειο αίτημα (εκτός της απόδειξης του Πορίσματος ΙΙ και των προτάσεων Ι, ΙΙ, ΙΙΙ και ΙV) 4.3 Κατασκευή παράλληλης ευθείας 4.4 Γωνίες με πλευρές παράλληλες 4.5 Αξιοσημείωτοι κύκλοι τριγώνου (Εκτός της απόδειξης του θεωρήματος που αναφέρεται στον εγγεγραμμένο κύκλο τριγώνου). 4.6 Άθροισμα γωνιών τριγώνου Μαθηματικός Περιηγητής 10

11 4.7 Γωνίες με πλευρές κάθετες (εκτός της απόδειξης του θεωρήματος και του πορίσματος) 4.8 Άθροισμα γωνιών κυρτού ν-γώνου (Εκτός της απόδειξης του Πορίσματος) Μαθηματικός Περιηγητής 11

12 3. Διδακτέα-εξεταστέα ύλη Β Ε σ π ε ρ ι ν ο ύ ΓΕ.Λ. Μαθηματικός Περιηγητής 12

13 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Διδακτέα- εξεταστέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» Κεφ.5 ο : Πρόοδοι 5.1 Ακολουθίες 5.2 Αριθμητική πρόοδος (εκτός της απόδειξης για το S ν ) 5.3 Γεωμετρική πρόοδος (εκτός της απόδειξης για το S ν ) Κεφ.6 ο : Βασικές Έννοιες των Συναρτήσεων 6.1 Η Έννοια της Συνάρτησης 6.2 Γραφική Παράσταση Συνάρτησης (εκτός της υποπαραγράφου «Απόσταση σημείων») 6.3 Η Συνάρτηση f(x)= αx+β (εκτός της κλίσης ευθείας ως λόγος μεταβολής) Κεφ.7 ο : Μελέτη Βασικών Συναρτήσεων 7.1 Μελέτη της Συνάρτησης : f(x)= αx Μελέτη της Συνάρτησης : f(x)= αx 2 +βx+γ Μαθηματικός Περιηγητής 13

14 ΓΕΩΜΕΤΡΙΑ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου Π., Κατσούλη Γ., Μαρκάτη Σ., Σίδερη Π. Διδακτέα - εξεταστέα ύλη Κεφ.5 ο : Παραλληλόγραμμα Τραπέζια 5.1 Εισαγωγή 5.2 Παραλληλόγραμμα 5.3 Ορθογώνιο 5.4 Ρόμβος 5.5 Τετράγωνο 5.6 Εφαρμογές στα τρίγωνα (εκτός της απόδειξης του Θεωρήματος ΙΙΙ) 5.7 Βαρύκεντρο τριγώνου (εκτός της απόδειξης του θεωρήματος) 5.8 Το ορθόκεντρο τριγώνου (Χωρίς το πόρισμα). 5.9 Μια ιδιότητα του ορθογώνιου τριγώνου 5.10 Τραπέζιο 5.11 Ισοσκελές τραπέζιο 5.12 Αξιοσημείωτες ευθείες και κύκλοι τριγώνου Κεφ.6 ο : Εγγεγραμμένα σχήματα 6.1 Εισαγωγικά Ορισμοί 6.2 Σχέση εγγεγραμμένης και αντίστοιχης επίκεντρης (Εκτός της απόδειξης του θεωρήματος) 6.3 Γωνία χορδής και εφαπτομένης (Εκτός της απόδειξης του θεωρήματος) 6.4 Βασικοί γεωμετρικοί τόποι στον κύκλο. Τόξο κύκλου που δέχεται γνωστή γωνία 6.5 Το εγγεγραμμένο τετράπλευρο 6.6 Το εγγράψιμο τετράπλευρο (εκτός της απόδειξης του θεωρήματος) Μαθηματικός Περιηγητής 14

15 4. Διδακτέα-εξεταστέα ύλη Β Η μ ε ρ ή σ ι ο υ ΓΕ.Λ. Μαθηματικός Περιηγητής 15

16 ΑΛΓΕΒΡΑ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Ανδρεαδάκη Σ. κ.ά. Κεφ. 1ο: Συστήματα 1.1 Γραμμικά Συστήματα ( χωρίς τις αποδείξεις των συμπερασμάτων της υποπαραγράφου «Λύση- Διερεύνηση γραμμικού συστήματος 2x2) 1.2 Μη Γραμμικά Συστήματα Κεφ.2ο: Ιδιότητες Συναρτήσεων 2.1 Μονοτονία-Ακρότατα-Συμμετρίες Συνάρτησης 2.2 Κατακόρυφη-Οριζόντια Μετατόπιση Καμπύλης Κεφ. 3ο: Τριγωνομετρία 3.1. Τριγωνομετρικοί Αριθμοί Γωνίας 3.2. Βασικές Τριγωνομετρικές Ταυτότητες (χωρίς την απόδειξη της ταυτότητας 4 ) 3.3. Αναγωγή στο 1o Τεταρτημόριο 3.4 Οι τριγωνομετρικές συναρτήσεις 3.5 Βασικές τριγωνομετρικές εξισώσεις 3.6 Τριγωνομετρικοί αριθμοί αθροίσματος γωνιών (χωρίς τις αποδείξεις των τύπων) 3.7 Τριγωνομετρικοί αριθμοί της γωνίας 2α (χωρίς τις αποδείξεις των τύπων) Κεφ. 4ο: Πολυώνυμα - Πολυωνυµικές εξισώσεις 4.1. Πολυώνυμα 4.2. Διαίρεση πολυωνύμων 4.3. Πολυωνυµικές εξισώσεις και ανισώσεις ( χωρίς την υποπαράγραφο «Προσδιορισμός ρίζας με προσέγγιση») 4.4. Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές Κεφ. 5ο: Εκθετική και Λογαριθμική συνάρτηση 5.1. Εκθετική συνάρτηση 5.2. Λογάριθμοι (χωρίς την απόδειξη της αλλαγής βάσης) 5.3. Λογαριθμική συνάρτηση (να διδαχθούν μόνο οι λογαριθμικές συναρτήσεις με βάση το 10 και το e) Μαθηματικός Περιηγητής 16

17 ΓΕΩΜΕΤΡΙΑ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη Σ. και Σιδέρη Π. Κεφ. 7 o : Αναλογίες 7.1. Εισαγωγή 7.2. Διαίρεση ευθύγραμμου τµήµατος σε ν ίσα μέρη 7.3. Γινόμενο ευθύγραμμου τµήµατος µε αριθμό Λόγος ευθύγραμμων τµηµάτων 7.4. Ανάλογα ευθύγραμμα τµήµατα Αναλογίες 7.5. Μήκος ευθύγραμμου τµήµατος 7.6. Διαίρεση τµηµάτων εσωτερικά και εξωτερικά ως προς δοσμένο λόγο (Μόνο οι ορισμοί της διαίρεσης ευθυγράμμου τμήματος ΑΒ από σημείο Μ, εσωτερικά ή εξωτερικά) 7.7. Θεώρημα του Θαλή { (χωρίς τις αποδείξεις των θεωρημάτων και του Πορίσματος, το πρόβλημα 2 (Διαίρεση ευθύγραμμου τμήματος σε δοσμένο λόγο ) και χωρίς τους ορισμούς «συζυγή αρμονικά» και «αρμονική τετράδα» ) } Θεωρήματα των διχοτόμων τριγώνου (χωρίς τις αποδείξεις των θεωρημάτων και χωρίς τον υπολογισμό των ευθυγράμμων τμημάτων στα οποία η διχοτόμος εσωτερική ή εξωτερική διαιρεί την απέναντι πλευρά) Σημείωση: Να μην διδαχθούν οι αποδεικτικές ασκήσεις, τα σύνθετα θέματα και οι γενικές ασκήσεις από τα κεφάλαια 7ο και 8ο. Κεφ. 8 ο : Ομοιότητα 8.1. Όμοια ευθύγραμμα σχήματα 8.2. Κριτήρια ομοιότητας (χωρίς τις αποδείξεις των θεωρημάτων I, ΙΙ και ΙΙΙ και τις εφαρμογές 1, 2 και 3) Σημείωση: Να μην διδαχθούν οι αποδεικτικές ασκήσεις, τα σύνθετα θέματα και οι γενικές ασκήσεις από τα κεφάλαια 7ο και 8ο. Κεφ. 9 ο : Μετρικές σχέσεις Μαθηματικός Περιηγητής 17

18 9.1. Ορθές προβολές 9.2. Το Πυθαγόρειο θεώρημα 9.3. Γεωμετρικές κατασκευές 9.4. Γενίκευση του Πυθαγόρειου θεωρήματος (χωρίς την εφαρμογή ΙΙ) 9.5. Θεωρήματα Διαμέσων 9.7. Τέμνουσες κύκλου Κεφ. 10 ο : Εμβαδά Πολυγωνικά χωρία Εμβαδόν ευθύγραμμου σχήματος - Ισοδύναμα ευθύγραµµα σχήματα Εμβαδόν βασικών ευθύγραμμων σχημάτων Άλλοι τύποι για το εμβαδόν τριγώνου (χωρίς την απόδειξη των τύπων Ι και ΙΙΙ) Λόγος εμβαδών όμοιων τριγώνων πολυγώνων (χωρίς την απόδειξη του Θεωρήματος ΙΙ) Μετασχηματισμός πολυγώνου σε ισοδύναμό του. Κεφ. 11 ο : Μέτρηση Κύκλου Ορισμός κανονικού πολυγώνου Ιδιότητες και στοιχεία κανονικών πολυγώνων (χωρίς τις αποδείξεις των θεωρημάτων και του Πορίσματος ) Εγγραφή βασικών κανονικών πολυγώνων σε κύκλο και στοιχεία τους (χωρίς τις εφαρμογές 2,3) Προσέγγιση του μήκους του κύκλου µε κανονικά πολύγωνα Μήκος τόξου Προσέγγιση του εμβαδού κύκλου µε κανονικά πολύγωνα Εμβαδόν κυκλικού τοµέα και κυκλικού τµήµατος Τετραγωνισμός κύκλου Μαθηματικός Περιηγητής 18

19 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διδακτέα Εξεταστέα ύλη Από το βιβλίο «Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Β Τάξης Γενικού Λυκείου» των Αδαμόπουλου Λ., Βισκαδουράκη Β., Γαβαλά Δ., Πολύζου Γ. και Σβέρκου Α. Κεφ. 1 ο : Διανύσματα 1.1. Η Έννοια του Διανύσματος 1.2. Πρόσθεση και Αφαίρεση Διανυσμάτων 1.3. Πολλαπλασιασμός Αριθμού με Διάνυσμα (χωρίς τις Εφαρμογές 1 και 2) 1.4. Συντεταγμένες στο Επίπεδο {(Χωρίς την απόδειξη που περιλαμβάνεται στην υποπαράγραφο «Συντεταγμένες διανύσματος», χωρίς την Εφαρμογή 2 και χωρίς την απόδειξη που περιλαμβάνεται στην υποπαράγραφο «Συνθήκη Παραλληλίας Διανυσμάτων»)} Εσωτερικό Γινόμενο Διανυσμάτων (χωρίς την απόδειξη του τύπου της αναλυτικής έκφρασης Εσωτερικού Γινομένου). Κεφ. 2 ο : Η Ευθεία στο Επίπεδο 2.1. Εξίσωση Ευθείας 2.2. Γενική Μορφή Εξίσωσης Ευθείας (χωρίς την εφαρμογή 2) 2.3. Εμβαδόν Τριγώνου (χωρίς τις αποδείξεις των τύπων της απόστασης σημείου από ευθεία, του εμβαδού τριγώνου και χωρίς την Εφαρμογή 1). Κεφ. 3 ο : Κωνικές Τομές 3.1. Ο Κύκλος (χωρίς την υποπαράγραφο «Παραμετρικές Εξισώσεις Κύκλου») Η Παραβολή (χωρίς την απόδειξη της εξίσωσης της παραβολής, την απόδειξη του τύπου της εφαπτομένης και την Εφαρμογή 1) 3.3. Η Έλλειψη (χωρίς την απόδειξη της εξίσωσης της έλλειψης, την υποπαράγραφο «Παραμετρικές Εξισώσεις Έλλειψης» και χωρίς τις εφαρμογές αυτής της παραγράφου) 3.4. Η Υπερβολή (χωρίς την απόδειξη της εξίσωσης της υπερβολής και την απόδειξη του τύπου των ασύμπτωτων) 3.5. Μόνο η υποπαράγραφος «σχετική θέση ευθείας και κωνικής». Μαθηματικός Περιηγητής 19

20 Σημείωση: Α) Δεν θα διδαχθούν οι ασκήσεις Β ομάδας των παραγράφων 3.2, 3.3 και 3.4. Β) Από τις γενικές ασκήσεις του 3 ου Κεφαλαίου δεν θα διδαχθούν ασκήσεις που αναφέρονται στις παραπάνω παραγράφους (Παραβολή, Έλλειψη και Υπερβολή). Μαθηματικός Περιηγητής 20

21 5. Διδακτέα-εξεταστέα ύλη Γ Ε σ π ε ρ ι ν ο ύ ΓΕ.Λ. Μαθηματικός Περιηγητής 21

22 ΑΛΓΕΒΡΑ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Ανδρεαδάκη Σ. κ.ά. Κεφ. 1ο: Συστήματα 1.1 Γραμμικά Συστήματα ( χωρίς τις αποδείξεις των συμπερασμάτων της υποπαραγράφου «Λύση- Διερευνηση γραμμικού συστήματος 2χ2) 1.2 Μη Γραμμικά Συστήματα Κεφ.2ο: Ιδιότητες Συναρτήσεων 2.1 Μονοτονία-Ακρότατα-Συμμετρίες Συνάρτησης 2.2 Κατακόρυφη-Οριζόντια Μετατόπιση Καμπύλης Κεφ. 3ο: Τριγωνομετρία 3.1. Τριγωνομετρικοί Αριθμοί Γωνίας 3.2. Βασικές Τριγωνομετρικές Ταυτότητες (χωρίς την απόδειξη της ταυτότητας 4 ) 3.3. Αναγωγή στο 1o Τεταρτημόριο 3.4 Οι τριγωνομετρικές συναρτήσεις 3.5 Βασικές τριγωνομετρικές εξισώσεις 3.6 Τριγωνομετρικοί αριθμοί αθροίσματος γωνιών (χωρίς τις αποδείξεις των τύπων) 3. 7 Τριγωνομετρικοί αριθμοί της γωνίας 2α ( χωρίς τις αποδείξεις των τύπων) Κεφ. 4ο:Πολυώνυμα - Πολυωνυµικές εξισώσεις 4.1. Πολυώνυμα 4.2. Διαίρεση πολυωνύμων 4.3. Πολυωνυµικές εξισώσεις και ανισώσεις ( χωρίς την υποπαράγραφο «Προσδιορισμός ρίζας με προσέγγιση» ) Εξισώσεις και ανισώσεις που ανάγονται σε πολυωνυμικές. Κεφ. 5ο: Εκθετική και Λογαριθμική συνάρτηση 5.1. Εκθετική συνάρτηση 5.2. Λογάριθμοι (χωρίς την απόδειξη της αλλαγής βάσης) 5.3. Λογαριθμική συνάρτηση (να διδαχθούν μόνο οι λογαριθμικές συναρτήσεις με βάση το 10 και το e). Μαθηματικός Περιηγητής 22

23 ΓΕΩΜΕΤΡΙΑ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη Σ. και Σιδέρη Π. Κεφ. 7 o : Αναλογίες 7.1. Εισαγωγή 7.2. Διαίρεση ευθύγραμμου τµήµατος σε ν ίσα μέρη 7.3. Γινόμενο ευθύγραμμου τµήµατος µε αριθμό Λόγος ευθύγραμμων τµηµάτων 7.4. Ανάλογα ευθύγραμμα τµήµατα Αναλογίες 7.5. Μήκος ευθύγραμμου τµήµατος 7.6. Διαίρεση τµηµάτων εσωτερικά και εξωτερικά ως προς δοσμένο λόγο (Μόνο οι ορισμοί της διαίρεσης ευθυγράμμου τμήματος ΑΒ από σημείο Μ, εσωτερικά ή εξωτερικά) 7.7. Θεώρημα του Θαλή { (χωρίς τις αποδείξεις των θεωρημάτων και του Πορίσματος, το πρόβλημα 2 (διαίρεση ευθύγραμμου τμήματος σε δοσμένο λόγο) και χωρίς τους ορισμούς «συζυγή αρμονικά» και «αρμονική τετράδα» } Θεωρήματα των διχοτόμων τριγώνου ( χωρίς τις αποδείξεις των θεωρημάτων και χωρίς τον υπολογισμό των ευθυγράμμων τμημάτων στα οποία η διχοτόμος εσωτερική ή εξωτερική διαιρεί την απέναντι πλευρά) Σημείωση: Να μην διδαχθούν οι αποδεικτικές ασκήσεις, τα σύνθετα θέματα και οι γενικές ασκήσεις από τα κεφάλαια 7ο και 8ο. Κεφ. 8 ο : Ομοιότητα 8.1. Όμοια ευθύγραμμα σχήματα 8.2. Κριτήρια ομοιότητας (χωρίς τις αποδείξεις των θεωρημάτων I, ΙΙ και ΙΙΙ και τις εφαρμογές 1, 2 και 3) Σημείωση: Να μην διδαχθούν οι αποδεικτικές ασκήσεις, τα σύνθετα θέματα και οι γενικές ασκήσεις από τα κεφάλαια 7ο και 8ο. Κεφ. 9 ο : Μετρικές σχέσεις 9.1. Ορθές προβολές 9.2. Το Πυθαγόρειο θεώρημα (χωρίς τις αποδείξεις των θεωρημάτων ΙΙΙ και ΙV) Μαθηματικός Περιηγητής 23

24 9.4 Γενίκευση του Πυθαγόρειου θεωρήματος (χωρίς τις αποδείξεις των θεωρημάτων και χωρίς την εφαρμογή ΙΙ) 9.7. Τέμνουσες κύκλου (χωρίς τις αποδείξεις των θεωρημάτων) Κεφ. 10 ο : Εμβαδά Πολυγωνικά χωρία Εμβαδόν ευθύγραμμου σχήματος - Ισοδύναμα ευθύγραμμα σχήματα Εμβαδόν βασικών ευθύγραμμων σχημάτων (χωρίς τις αποδείξεις των θεωρημάτων Ι και ΙΙ) Άλλοι τύποι για το εμβαδόν τριγώνου (Μόνο ο τύπος του Ήρωνα και χωρίς την απόδειξή του) Λόγος εμβαδών όμοιων τριγώνων πολυγώνων (χωρίς τις αποδείξεις των θεωρημάτων) Κεφ. 11 ο : Μέτρηση Κύκλου Ορισμός κανονικού πολυγώνου Ιδιότητες και στοιχεία κανονικών πολυγώνων (χωρίς τις αποδείξεις των θεωρημάτων και του Πορίσματος) Εγγραφή βασικών κανονικών πολυγώνων σε κύκλο και στοιχεία τους (χωρίς τις εφαρμογές 2,3) 11.4 Προσέγγιση του μήκους του κύκλου µε κανονικά πολύγωνα 11.5 Μήκος τόξου 11.6 Προσέγγιση του εμβαδού κύκλου µε κανονικά πολύγωνα 11.7 Εμβαδόν κυκλικού τοµέα και κυκλικού τµήµατος 11.8 Τετραγωνισμός κύκλου Μαθηματικός Περιηγητής 24

25 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΤΩΝ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διδακτέα Εξεταστέα ύλη Από το βιβλίο «Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Β Τάξης Γενικού Λυκείου» των Αδαμόπουλου Λ., Βισκαδουράκη Β., Γαβαλά Δ., Πολύζου Γ. και Σβέρκου Α. Κεφ. 1 ο : Διανύσματα 1.6. Η Έννοια του Διανύσματος 1.7. Πρόσθεση και Αφαίρεση Διανυσμάτων 1.8. Πολλαπλασιασμός Αριθμού με Διάνυσμα (χωρίς τις Εφαρμογές 1 και 2) 1.9. Συντεταγμένες στο Επίπεδο {(Χωρίς την απόδειξη που περιλαμβάνεται στην υποπαράγραφο «Συντεταγμένες διανύσματος», χωρίς την Εφαρμογή 2 και χωρίς την απόδειξη που περιλαμβάνεται στην υποπαράγραφο «Συνθήκη Παραλληλίας Διανυσμάτων»)} Εσωτερικό Γινόμενο Διανυσμάτων (χωρίς την απόδειξη του τύπου της αναλυτικής έκφρασης Εσωτερικού Γινομένου). Κεφ. 2 ο : Η Ευθεία στο Επίπεδο 2.4. Εξίσωση Ευθείας 2.5. Γενική Μορφή Εξίσωσης Ευθείας (χωρίς την εφαρμογή 2) 2.6. Εμβαδόν Τριγώνου (χωρίς τις αποδείξεις των τύπων της απόστασης σημείου από ευθεία, του εμβαδού τριγώνου και χωρίς την Εφαρμογή 1). Κεφ. 3 ο : Κωνικές Τομές 3.6. Ο Κύκλος (χωρίς την υποπαράγραφο «Παραμετρικές Εξισώσεις Κύκλου») Η Παραβολή (χωρίς την απόδειξη της εξίσωσης της παραβολής, την απόδειξη του τύπου της εφαπτομένης και την Εφαρμογή 1) 3.8. Η Έλλειψη (χωρίς την απόδειξη της εξίσωσης της έλλειψης, την υποπαράγραφο «Παραμετρικές Εξισώσεις Έλλειψης» και χωρίς τις εφαρμογές αυτής της παραγράφου) 3.9. Η Υπερβολή (χωρίς την απόδειξη της εξίσωσης της υπερβολής και την απόδειξη του τύπου των ασύμπτωτων) Μόνο η υποπαράγραφος «σχετική θέση ευθείας και κωνικής». Μαθηματικός Περιηγητής 25

26 6. Διδακτέα-εξεταστέα ύλη Γ Η μ ε ρ η σ ί ο υ ΓΕ.Λ. Μαθηματικός Περιηγητής 26

27 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση ΜΕΡΟΣ Α Κεφάλαιο 2: Μιγαδικοί αριθμοί Παρ. 2.1 Η έννοια του Μιγαδικού Αριθμού. Παρ. 2.2 Πράξεις στο σύνολο C των Μιγαδικών. Παρ. 2.3 Μέτρο Μιγαδικού Αριθμού. ΜΕΡΟΣ Β Κεφάλαιο 1: Όριο - Συνέχεια συνάρτησης Παρ. 1.1 Πραγματικοί αριθμοί. Παρ. 1.2 Συναρτήσεις. Παρ. 1.3 Μονότονες συναρτήσεις- Αντίστροφη συνάρτηση. Παρ. 1.4 Όριο συνάρτησης στο x0 Παρ. 1.5 Ιδιότητες των ορίων, χωρίς τις αποδείξεις της υποπαραγράφου "Τριγωνομετρικά όρια" Παρ. 1.6 Μη πεπερασμένο όριο στο x0 Παρ. 1.7 Όρια συνάρτησης στο άπειρο. Παρ. 1.8 Συνέχεια συνάρτησης. Κεφάλαιο 2: Διαφορικός Λογισμός Παρ. 2.1 Η έννοια της παραγώγου, χωρίς την υποπαράγραφο "Κατακόρυφη εφαπτομένη" Παρ. 2.2 Παραγωγίσιμες συναρτήσεις- Παράγωγος συνάρτηση. Παρ. 2.3 Κανόνες παραγώγισης, χωρίς την απόδειξη του θεωρήματος που αναφέρεται στην παράγωγο γινομένου συναρτήσεων. Παρ. 2.4 Ρυθμός μεταβολής. Παρ. 2.5 Θεώρημα Μέσης Τιμής Διαφορικού Λογισμού. Παρ. 2.6 Συνέπειες του Θεωρήματος Μέσης Τιμής. Παρ. 2.7 Τοπικά ακρότατα συνάρτησης, χωρίς την απόδειξη του θεωρήματος στη σελίδα 262 και χωρίς το θεώρημα της σελίδας 264 (κριτήριο της 2ης παραγώγου). Παρ. 2.8 Κυρτότητα - Σημεία καμπής συνάρτησης. (Θα μελετηθούν μόνο οι συναρτήσεις που είναι δύο, τουλάχιστον, φορές παραγωγίσιμες στο εσωτερικό του πεδίου ορισμού τους). Μαθηματικός Περιηγητής 27

28 Παρ. 2.9 Ασύμπτωτες - Κανόνες De l Hospital. Παρ Μελέτη και χάραξη της γραφικής παράστασης μιας συνάρτησης. Κεφάλαιο 3: Ολοκληρωτικός Λογισμός Παρ. 3.1 Αόριστο ολοκλήρωμα. (Μόνο η υποπαράγραφος "Αρχική συνάρτηση" που θα συνοδεύτεται από πίνακα παραγουσών συναρτήσεων η οποίος θα περιλαμβάνεται στις διδακτικές οδηγίες) Παρ. 3.4 Ορισμένο ολοκλήρωμα x Παρ Η συνάρτηση F( x) f ( t) dt a Παρ. 3.7 Εμβαδόν επιπέδου χωρίου, χωρίς την εφαρμογή 3 της σελίδας 348. Παρατηρήσεις - Η διδακτέα - εξεταστέα ύλη θα διδαχτεί σύμφωνα με τις οδηγίες του Π.Ι. - Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν αστερίσκο δε διδάσκονται και δεν εξετάζονται. - Οι εφαρμογές και τα παραδείγματα των βιβλίων δεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις. Μπορούν, όμως, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων ή την απόδειξη άλλων προτάσεων. - Εξαιρούνται από την εξεταστέα-διδακτέα ύλη οι εφαρμογές και οι ασκήσεις που αναφέρονται σε λογαρίθμους με βάση διαφορετική του e και του 10. Επισήμανση 1. Οι τύποι x x (σελ. 224) και x x (σελ. 225) να δοθούν χωρίς απόδειξη καθώς και 2. Η Άσκηση 8α της Β Ομάδας (σελ ) να διδαχθεί ως εφαρμογή για να μπορεί να χρησιμοποιείται στην επίλυση ασκήσεων, χωρίς απόδειξη. 3. Στο εισαγωγικό κείμενο (σελ. 233) της παρουσίασης της έννοιας της παραγώγου σύνθετης συνάρτησης, η συνάρτηση y 2x να αντικατασταθεί από μια άλλη, για παράδειγμα την y ln 2x 1 1 ln 2x ln 2 ln x ln 2 ln x 0 x x. Μαθηματικός Περιηγητής 28

29 4. Από τη διδακτέα-εξεταστέα ύλη εξαιρούνται οι Ασκήσεις του σχολικού βιβλίου που αναφέρονται σε τύπους τριγωνομετρικών αριθμών αθροίσματος γωνιών, διαφοράς γωνιών και διπλάσιας γωνίας. Μαθηματικός Περιηγητής 29

30 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Από το βιβλίο «Μαθηματικά και Στοιχεία Στατιστικής» της Γ τάξης Γενικού Λυκείου των Λ. Αδαμόπουλου κ.ά., έκδοση Κεφάλαιο 1: Διαφορικός Λογισμός Παρ Συναρτήσεις. Παρ Η έννοια της παραγώγου. Παρ Παράγωγος συνάρτησης Παρ. 1.4 Εφαρμογές των Παραγώγων, χωρίς το κριτήριο της 2ης παραγώγου. Κεφάλαιο 2 Στατιστική Παρ. 2.1 Βασικές έννοιες Παρ. 2.2 Παρουσίαση Στατιστικών Δεδομένων, χωρίς την υποπαράγραφο "Κλάσεις άνισου πλάτους". Παρ. 2.3 Μέτρα Θέσης και Διασποράς, χωρίς τις υποπαραγράφους "Εκατοστημόρια", Επικρατούσα τιμή και "Ενδοτεταρτημοριακό εύρος". Κεφάλαιο 3 Πιθανότητες Παρ. 3.1 Δειγματικός Χώρος-Ενδεχόμενα. Παρ. 3.2 Έννοια της Πιθανότητας. Παρατηρήσεις Η διδακτέα-εξεταστέα ύλη θα διδαχτεί σύμφωνα με τις οδηγίες του Υπουργείου Παιδείας. Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν αστερίσκο δε διδάσκονται και δεν εξετάζονται. Οι τύποι 2 και 4 των σελίδων 93 και 94 του βιβλίου «Μαθηματικά και Στοιχεία Στατιστικής» θα δίνονται στους μαθητές τόσο κατά τη διδασκαλία όσο και κατά την εξέταση θεμάτων, των οποίων η αντιμετώπιση απαιτεί τη χρήση τους. Μαθηματικός Περιηγητής 30

31 7. Διδακτέα-εξεταστέα ύλη Δ Ε σ π ε ρ ι ν ο ύ ΓΕ.Λ Μαθηματικός Περιηγητής 31

32 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Από το βιβλίο «Μαθηματικά»τηςΓ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση ΜΕΡΟΣ Α Κεφάλαιο 2 Μιγαδικοί αριθμοί Παρ. 2.1 Η έννοια του Μιγαδικού Αριθμού. Παρ. 2.2 Πράξεις στο σύνολο Cτων Μιγαδικών. Παρ. 2.3 Μέτρο Μιγαδικού Αριθμού. ΜΕΡΟΣ Β Κεφάλαιο 1 Όριο -Συνέχεια συνάρτησης Παρ. 1.1 Πραγματικοί αριθμοί. Παρ. 1.2 Συναρτήσεις. Παρ. 1.3 Μονότονες συναρτήσεις-αντίστροφη συνάρτηση. Παρ. 1.4 Όριο συνάρτησης στο x0 Παρ. 1.5 Ιδιότητες των ορίων, χωρίς τις αποδείξεις της υποπαραγράφου "Τριγωνομετρικά όρια" Παρ. 1.6 Μη πεπερασμένο όριο στο x0 Παρ. 1.7 Όριο συνάρτησης στο άπειρο. Παρ. 1.8 Συνέχεια συνάρτησης. Κεφάλαιο 2 Διαφορικός Λογισμός Παρ. 2.1 Η έννοια της παραγώγου, χωρίς την υποπαράγραφο"κατακόρυφη εφαπτομένη" Παρ. 2.2 Παραγωγίσιμες συναρτήσεις-παράγωγος συνάρτηση. (Χωρίς τις αποδείξεις των τύπων στη σελίδα 224 και στη σελίδα 225) Παρ. 2.3 Κανόνες παραγώγισης, χωρίς την απόδειξη του θεωρήματος που αναφέρεται την παράγωγο γινομένου υναρτήσεων. Παρ. 2.4 Ρυθμός μεταβολής. Παρ. 2.5 Θεώρημα Μέσης ιμής ΔιαφορικούΛογισμού. Παρ. 2.6 Συνέπειες του Θεωρήματος Μέσης Τιμής. Μαθηματικός Περιηγητής 32

33 Παρ. 2.7 Τοπικά ακρότατα συνάρτησης, χωρίς την απόδειξη του θεωρήματος της σελίδας 262 και χωρίς το θεώρημα της σελίδας 264 (κριτήριο της 2ηςπαραγώγου). Παρ. 2.9 Ασύμπτωτες -Κανόνες De l Hospital. Παρατηρήσεις Η διδακτέα-εξεταστέα ύλη θα διδαχτεί σύμφωνα με τις οδηγίες του Υπουργείου Παιδείας. Τα θεωρήματα, οι προτάσεις,οι αποδείξεις και οιασκήσεις που φέρουν αστερίσκο δε διδάσκονται και δεν εξετάζονται. Οι εφαρμογές και τα παραδείγματα των βιβλίων δεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις, μπορούν, όμως, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων ή την απόδειξη άλλων προτάσεων. Δεν αποτελούν εξεταστέα-διδακτέα ύλη όσα θέματα αναφέρονται στην εκθετική και λογαριθμική συνάρτηση Επισήμανση 5. Οι τύποι x x (σελ. 224) και x x (σελ. 225) να δοθούν χωρίς απόδειξη καθώς και 6. Η Άσκηση 8α της Β Ομάδας (σελ ) να διδαχθεί ως εφαρμογή για να μπορεί να χρησιμοποιείται στην επίλυση ασκήσεων, χωρίς απόδειξη. 7. Στο εισαγωγικό κείμενο (σελ. 233) της παρουσίασης της έννοιας της παραγώγου σύνθετης συνάρτησης, η συνάρτηση y 2x να αντικατασταθεί από μια άλλη, για παράδειγμα την y ln 2x 1 1 ln 2x ln 2 ln x ln 2 ln x 0 x x. 8. Από τη διδακτέα-εξεταστέα ύλη εξαιρούνται οι Ασκήσεις του σχολικού βιβλίου που αναφέρονται σε τύπους τριγωνομετρικών αριθμών αθροίσματος γωνιών, διαφοράς γωνιών και διπλάσιας γωνίας. Μαθηματικός Περιηγητής 33

34 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Από το βιβλίο «Μαθηματικά και Στοιχεία Στατιστικής» της Γ τάξης Γενικού υκείου των Λ. Αδαμόπουλου κ.α., έκδοση Κεφάλαιο 1 Διαφορικός Λογισμός Παρ Συναρτήσεις. Παρ Η έννοια της παραγώγου. Παρ Παράγωγος συνάρτησης Παρ. 1.4 Εφαρμογές των Παραγώγων, χωρίς το κριτήριο της 2ης αραγώγου. Κεφάλαιο 2 Στατιστική Παρ. 2.1 Βασικές έννοιες Παρ. 2.2 Παρουσίαση Στατιστικών Δεδομένων, χωρίς την υποπαράγραφο "Κλάσεις άνισου πλάτους". Παρ. 2.3 Μέτρα Θέσης και Διασποράς, χωρίς τις υποπαραγράφους:"εκατοστημόρια", Επικρατούσα τιμή και "Ενδοτεταρτημοριακό εύρος". Παρατηρήσεις Η διδακτέα-εξεταστέα ύλη θα διδαχτεί σύμφωνα με τις οδηγίες του Υουργείου Παιδείας. Τα θεωρήματα, οι προτάσεις, οι αποδείξεις και οι ασκήσεις που φέρουν στερίσκο δε διδάσκονταικαι δεν εξετάζονται. Οι εφαρμογές και τα παραδείγματα των βιβλίωνδεν εξετάζονται ούτε ως θεωρία ούτε ως ασκήσεις, μπορούν, όμως, να χρησιμοποιηθούν ως προτάσεις για τη λύση ασκήσεων, ή την απόδειξη άλλων προτάσεων. Δεν αποτελούν εξεταστέα-διδακτέα ύλη όσα θέματα αναφέρονται στην εκθετική και λογαριθμική συνάρτηση. Οι τύποι 2 και 4των σελίδων 93 και 94 του βιβλίου «Μαθηματικά και Στοιχεία Στατιστικής» θα δίνονται στους μαθητές τόσο κατά τη διδασκαλία όσο και κατά την εξέταση θεμάτων,των οποίων η αντιμετώπιση απαιτεί τη χρήση τους. Μαθηματικός Περιηγητής 34

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα -εξεταστέα

Διαβάστε περισσότερα

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.:

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011

ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΜΑΘΗΜΑΤΙΚΑ I ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΠΑΛ 2010-2011 ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ ΚΑΙ ΔΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΤΜΗΜΑ Β Τηλ: 210 344 2478 FAX:

Διαβάστε περισσότερα

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη ΘΕΜΑ : Καθορισµός και διαχείριση διδακτέας ύλης Θετικών Μαθηµάτων των Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2011 12. Μετά από σχετική εισήγηση του Τµήµατος ευτεροβάθµιας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β Μαρούσι, 6-11-01 Αρ.

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14 Βαθμός Ασφαλείας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΕΦ.1,1.1, 1.1.1, 1.1.2, 1.1.3, 1.2, 1.3 ΚΕΦ.2.Α.2.1, 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3, 2.5 ΚΕΦ.2.Β. 2.1, 2.2, 2.3, 2.4 ΚΕΦ.3. 3.1, 3.5, 3.5.1, 3.5.2, 3.5.3

Διαβάστε περισσότερα

Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β

Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β Από το βιβλίο «Μαθηματικά» της Γ τάξης Γενικού Λυκείου Θετικής και Τεχνολογικής Κατεύθυνσης των Ανδρεαδάκη Στ., κ.ά., έκδοση Ο.Ε.Δ.Β. 2011. σελ. 15 σελ. 16 σελ. 17 έως 21 σελ. 23 σελ. 24 Όλα ορισμός έντονα

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας: ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας: ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β --- ΠΡΟΣ: Ταχ. /νση: Ανδρέα

Διαβάστε περισσότερα

Αρχαία Ελληνικά A. Εισαγωγή Β. Κείμενα Γ. Γραμματική Συντακτικό Ετυμολογικά

Αρχαία Ελληνικά A. Εισαγωγή Β. Κείμενα Γ. Γραμματική Συντακτικό Ετυμολογικά Αρχαία Ελληνικά A. Εισαγωγή Σελ 18 20 (1. Η ΖΩΗ ΤΟΥ 2. ΤΟ ΕΡΓΟ ΤΟΥ ΕΝΔΙΑΦΕΡΟΝΤΑ ΚΑΙ ΙΔΕΕΣ (Ως : «Η «αθηναϊκή συμμαχία» είχε μετατραπεί σε αθηναϊκή ηγεμονία («ἀρχή»)» στο μέσον της σελίδας 20). Σελ. 21-22

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση

ΜΑΘΗΜΑΤΙΚΑ. Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΜΑΘΗΜΑΤΙΚΑ Γ' Τάξης Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Μέτης Στέφανος Μπρουχούτας Κων/νος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Καθηγητής

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι Βαθμός ασφαλείας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Μαρούσι, 8-9 -11 Αριθ. Πρωτ. :11837 /Γ Βαθμός Προτερ.: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ: 1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ: 1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β Μαρούσι, 6-- Αρ. πρωτ. : 3837/Γ

Διαβάστε περισσότερα

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 2015-2016 1 ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ ----- Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων ΔΙΔΑΚΤΕΑ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ (version 22-10-2016) Τα παρακάτω προέρχονται (με δικές μου αλλαγές μορφοποίησης προσθήκες και σχολιασμό) από το έγγραφο (σελ.15 και μετά) με Αριθμό Πρωτοκόλλου 150652/Δ2, που

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

2. Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου

2. Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου 2. Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική

Διαβάστε περισσότερα

ΠΡΟΣ : ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΠΡΟΣ : ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ. Μαθηματικά. Β μέρος ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ 2 5 +32 17 2= 1156 Μαθηματικά Β μέρος 8 9 15 Δ=2 δ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Ομάδας Προσανατολισμού Θετικών Σπουδών και Σπουδών Οικονομίας

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

Άλγεβρα και Στοιχεία Πιθανοτήτων Διδακτέα ύλη Εισαγωγικό κεφάλαιο Κεφ.1ο: Πιθανότητες Κεφ.2ο: Οι Πραγματικοί Αριθμοί Κεφ.

Άλγεβρα και Στοιχεία Πιθανοτήτων Διδακτέα ύλη Εισαγωγικό κεφάλαιο Κεφ.1ο: Πιθανότητες Κεφ.2ο: Οι Πραγματικοί Αριθμοί Κεφ. Άλγεβρα και Στοιχεία Πιθανοτήτων Διδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 0) Εισαγωγικό κεφάλαιο E.. Σύνολα Κεφ. ο : Πιθανότητες. Δειγματικός Χώρος-Ενδεχόμενα.

Διαβάστε περισσότερα

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα:

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.

Διαβάστε περισσότερα

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Α. Προτεινόμενες θεματικές ενότητες Τίτλοι από το Ι.Ε.Π. ΑΛΓΕΒΡΑ 5ο 5.1: Ακολουθίες Η ακολουθία Fibonacci στην Φύση και

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Σ. ΑΝΔΡΕΑΔΑΚΗΣ Β. ΚΑΤΣΑΡΓΥΡΗΣ Σ. ΠΑΠΑΣΤΑΥΡΙΔΗΣ Γ. ΠΟΛΥΖΟΣ Α. ΣΒΕΡΚΟΣ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΕΦ.1,1.1, 1.1.1, 1.1.2, 1.1.3, 1.2, 1.3 ΚΕΦ.2.Α.2.1, 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3, 2.5 ΚΕΦ.2.Β. 2.1, 2.2, 2.3, 2.4 ΚΕΦ.3. 3.1, 3.5, 3.5.1, 3.5.2, 3.5.3

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

210-344 3306 E-mail: t09tee07@minedu.gov.gr

210-344 3306 E-mail: t09tee07@minedu.gov.gr ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β' Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ.-Πόλη: 15180 Μαρούσι ΠΡΟΣ:

Διαβάστε περισσότερα

ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες διδασκαλίας των μαθημάτων Α και Β τάξεων Ημερησίου ΓΕΛ και Α, Β και Γ τάξεων Εσπερινού ΓΕΛ

ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες διδασκαλίας των μαθημάτων Α και Β τάξεων Ημερησίου ΓΕΛ και Α, Β και Γ τάξεων Εσπερινού ΓΕΛ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ημερήσιου Γενικού Λυκείου. Άλγεβρα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ημερήσιου Γενικού Λυκείου. Άλγεβρα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δ/ΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ

ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί µέχρι: Βαθ. Προτεραιότητας:

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµάτων του Γενικού Λυκείου.

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµάτων του Γενικού Λυκείου. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο : 210-34.42.238

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7

Διαβάστε περισσότερα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΥΝΟΠΤΙΚΗ ΘΕΩΡΕΙΑ ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ Φροντιστήριο Μ.Ε. «ΑΙΧΜΗ» Κ.Καρτάλη 8 Βόλος Τηλ. 43598 ΠΊΝΑΚΑΣ ΠΕΡΙΕΧΟΜΈΝΩΝ 3. Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ... 5 ΜΕΘΟΔΟΛΟΓΙΑ ΛΥΜΕΝΑ ΠΑΡΑΔΕΙΓΜΑΤΑ...

Διαβάστε περισσότερα

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ

Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ Η ΠΑΡΟΥΣΙΑ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ ΣΤΑ ΘΕΜΑΤΑ ΤΩΝ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ 4 Η Ευκλείδεια Γεωμετρία στην εκπαίδευση και στην κοινωνία. Κώστας Μαλλιάκας, Καθηγητής Δ.Ε., 1 ο ΓΕΛ Ρόδου, kmath@otenet.gr

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

3 Ο ΓΕΛ ΑΛΕΞ/ΠΟΛΗΣ ΣΧ. ΕΤΟΣ: ΥΛΗ AΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ Α ΛΥΚΕΙΟΥ

3 Ο ΓΕΛ ΑΛΕΞ/ΠΟΛΗΣ ΣΧ. ΕΤΟΣ: ΥΛΗ AΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ Α ΛΥΚΕΙΟΥ ΥΛΗ AΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ Α ΛΥΚΕΙΟΥ TAKE OFF Β2 Unit 1 Pages: 8-19 Unit 2 Pages: 21-33 Unit 3 Pages: 34-47 Unit 4 Pages: 50-55 ΥΛΗ ΑΡΧΑΙΑΣ ΕΛΛΗΝΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΓΡΑΜΜΑΤΕΙΑΣ Α ΛΥΚΕΙΟΥ: Α. Από το εγχειρίδιο της

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

ΤΑΞΗ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

ΤΑΞΗ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ο - Οι φυσικοί αριθµοί 1.1. Φυσικοί αριθµοί - ιάταξη Φυσικών - Στρογγυλοποίηση 1.2. Πρόσθεση, αφαίρεση και πολλαπλασιασµός

Διαβάστε περισσότερα

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: :

Για να εκφράσουμε τη διαδικασία αυτή, γράφουμε: : Η θεωρία στα μαθηματικά προσανατολισμού Γ υκείου Τι λέμε συνάρτηση με πεδίο ορισμού το σύνολο ; Έστω ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το μία διαδικασία (κανόνα), με την

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε

Διαβάστε περισσότερα

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί

Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης ΚΕΦΑΛΑΙΟ. 1 ο :Μιγαδικοί Αριθµοί ΚΕΦΑΛΑΙΟ ο :Μιγαδικοί Αριθµοί. Ποιο σύνολο ονοµάζεται σύνολο των µιγαδικών αριθµών ;. Tι ονοµάζεται µιγαδικός αριθµός; Ποιο είναι το πραγµατικό και ποιο το φανταστικό του µέρος ; 3. Tι ονοµάζεται εικόνα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2008 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 8 ΘΕΜΑ ο Έστω, α,β, α β και ν α + + i = βi () β + αi α) Να αποδείξετε ότι ο δεν είναι πραγµατικός αριθµός. β) Να αποδείξετε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 00 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Α A. Έστω μια συνάρτηση ορισμένη σε ένα διάστημα. Αν F είναι μια παράγουσα της στο, τότε να αποδείξετε ότι:

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών στις Α, Β τάξεις Ημερήσιου ΓΕΛ και Α, Β, Γ τάξεις Εσπερινού ΓΕΛ για το σχολ. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ηµερήσιου Γενικού Λυκείου. Άλγεβρα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ηµερήσιου Γενικού Λυκείου. Άλγεβρα ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΕΝΔΟΣΧΟΛΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΡΙΟΔΟΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2012-13 Α Λυκείου

ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΕΝΔΟΣΧΟΛΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΡΙΟΔΟΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2012-13 Α Λυκείου 1 ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΕΝΔΟΣΧΟΛΙΚΩΝ ΜΑΘΗΜΑΤΩΝ ΠΕΡΙΟΔΟΣ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2012-13 Α Λυκείου 1. Θρησκευτικά ΒΙΒΛΙΟ: Ορθόδοξη πίστη και λατρεία. Διδακτικές ενότητες: 2,3,5,6,7,8,14,16,17,19,21,22,23,24,25,26,27,28,35,41.

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 2016 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ 6 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Γ ΛΥΚΕΙΟΥ 6 ΜΑΘΗΜΑΤΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑ ο

Διαβάστε περισσότερα

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr

ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. didefth.gr . ΔΗΜΗΤΡΙΟΣ ΣΠΑΘΑΡΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ www.pe03.gr. Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών, Φθιώτιδας και Ευρυτανίας www.pe03.gr ΠΡΟΛΟΓΟΣ Ο οδηγός αυτός απευθύνεται στους εκπαιδευτικούς

Διαβάστε περισσότερα

V. Διαφορικός Λογισμός. math-gr

V. Διαφορικός Λογισμός. math-gr V Διαφορικός Λογισμός Παντελής Μπουμπούλης, MSc, PhD σελ blospotcom, bouboulismyschr ΜΕΡΟΣ Η έννοια της Παραγώγου Α Ορισμός Εφαπτομένη καμπύλης συνάρτησης: Έστω μια συνάρτηση και A, ένα σημείο της C Αν

Διαβάστε περισσότερα

Β Τάξη Γυμνασίου. Ι. Διδακτέα ύλη

Β Τάξη Γυμνασίου. Ι. Διδακτέα ύλη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα