B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010."

Transcript

1 Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β Κεφ. 7 ο : Τριγωνοµετρία ( εν αποτελεί εξεταστέα ύλη) 7.1. Τριγωνοµετρικοί Αριθµοί Γωνίας 7.2. Βασικές Τριγωνοµετρικές Ταυτότητες 7.3. Αναγωγή στο 1o Τεταρτηµόριο B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β Κεφ. 1 ο : Τριγωνοµετρία 1.1. Οι τριγωνοµετρικές συναρτήσεις 1.2. Βασικές τριγωνοµετρικές εξισώσεις Κεφ. 2ο: Πολυώνυµα - Πολυωνυµικές εξισώσεις 2.1. Πολυώνυµα 2.2. ιαίρεση πολυωνύµων 2.3. Πολυωνυµικές εξισώσεις 2.4. Εξισώσεις που ανάγονται σε πολυωνυµικές. Κεφ. 3 ο : Πρόοδοι 3.1. Ακολουθίες 3.2. Αριθµητική πρόοδος 3.3. Γεωµετρική πρόοδος 3.4. Ανατοκισµός Ίσες καταθέσεις Χρεολυσία 3.5. Άθροισµα άπειρων όρων γεωµετρικής προόδου Κεφ. 4 ο : Εκθετική και Λογαριθµική συνάρτηση 4.1. Εκθετική συνάρτηση 4.2. Λογάριθµοι (χωρίς την απόδειξη της αλλαγής βάσης) 4.3. Λογαριθµική συνάρτηση (να διδαχθούν µόνο οι λογαριθµικές συναρτήσεις µε βάση το 10 και το e.). 12

2 II. ιαχείριση διδακτέας ύλης Κεφάλαιο 7 ο Άλγεβρας Α Λυκείου (Προτείνεται να διατεθούν 6 διδακτικές ώρες) 7.1 Να δοθεί έµφαση στην έννοια του ακτινίου, στη σύνδεσή του µε τις µοίρες και την αναπαράστασή του στον τριγωνοµετρικό κύκλο. 7.2 Προτείνεται να µη διδαχθούν οι ταυτότητες 4. Επίσης, να γίνει επιλογή από τις ασκήσεις 1-6 και από τις της Α Οµάδας. 7.3 Προτείνεται να µη δοθούν προς λύση οι ασκήσεις της Β Οµάδας. Κεφάλαιο 1 ο (Προτείνεται να διατεθούν 10 διδακτικές ώρες) 1.1 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1, 3, 4, 5, 6 και 7(i, ii) της Α Οµάδας και οι 1, 2 και 3 της Β οµάδας. 1.2 Προτείνεται να µη γίνουν η άσκηση 11(ii) της Α Οµάδας και όλες οι ασκήσεις της Β οµάδας. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 13 διδακτικές ώρες) 2.1 Προτείνεται να γίνουν κατά προτεραιότητα ασκήσεις οι 1 και 2 (i, ii, iii) της Α Οµάδας και οι 2 και 3 της Β Οµάδας. 2.2 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1 (i, iv), 2, 3 και 10 της Α Οµάδας και να µη γίνουν οι ασκήσεις της Β Οµάδας. 2.3 Α) Να µη δοθεί έµφαση στην τυπική διατύπωση του θεωρήµατος (σελ. 77), αλλά στη γεωµετρική ερµηνεία του, στο παράδειγµα που ακολουθεί και στην άσκηση 8. Β) Επιπλέον, προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1, 4, 5, 6 και 8 της Α Οµάδας και τα προβλήµατα της Β Οµάδας, τα οποία οδηγούν στην επίλυση πολυωνυµικών εξισώσεων. 2.4 Α) Να δοθεί έµφαση στο γεγονός ότι η ύψωση των µελών µιας εξίσωσης στο τετράγωνο δεν οδηγεί πάντα σε ισοδύναµη εξίσωση. Αυτό µπορεί να γίνει και µε τη βοήθεια των παρακάτω γραφικών παραστάσεων που αναφέρονται στο παράδειγµα 2, σελ. 82. Γραφική λύση της x = x 2 Γραφική λύση της x= ( x 2) 2 Β) Επιπλέον, προτείνεται να µη γίνουν οι ασκήσεις 3 και 4 της Β Οµάδας. 13

3 Κεφάλαιο 3 ο (Προτείνεται να διατεθούν 11 διδακτικές ώρες ) 3.1 Προτείνεται να µη γίνουν οι ασκήσεις της Β Οµάδας. 3.2 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1(i, ii, iii), 2(ii), 3(i, ii), 4(i), 5(i), 8(iii, iv), 9(i), 11(i), και 12 της Α Οµάδας και οι 4, 5, 11, 12, 14, και 16 της Β Οµάδας 3.3 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 1(i, ii), 2(ii), 3(i), 4(i), 5(ii), 6, 9(i, ii), 10(i, ii), 11(i), 12 και 13 της Α Οµάδας και οι 13 και 14 της Β Οµάδας. 3.4 Α) Προτείνεται οι τύποι να δίνονται στους µαθητές για την επίλυση ασκήσεων, ώστε να µην αποτελέσουν αντικείµενο αποµνηµόνευσης. Προτείνεται, επίσης, να χρησιµοποιούνται υπολογιστές τσέπης. Β) Επιπλέον, προτείνεται να µη γίνουν οι ασκήσεις Β Οµάδας. 3.5 Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις της Α Οµάδας και µόνο η 3 της Β Οµάδας Κεφάλαιο 4 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) 4.1 Προτείνεται να δοθεί έµφαση στα προβλήµατα της Β Οµάδας, µε προτεραιότητα στα 6, 7 και Προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις της Α Οµάδας µε έµφαση στα προβλήµατα και οι 2, 3, 5 της Β Οµάδας. Προτείνεται να µη γίνουν οι ασκήσεις 6, 7 και 8 της Β Οµάδας. 4.3 Α) Προτείνεται να διδαχθούν µόνο οι συναρτήσεις f ( x) = log x και f ( x) = ln x. Β) Επιπλέον, προτείνεται να γίνουν κατά προτεραιότητα οι ασκήσεις 2, 5, 6, 7 και 8 της Α Οµάδας και οι 1(i, iii), 3, 5, 7 και 8 της Β Οµάδας. Ασκήσεις Γ Οµάδας: Να µη διδάσκονται ασκήσεις Γ οµάδας. 14

4 Γεωµετρία Γενικής Παιδείας I. ιδακτέα ύλη Από το βιβλίο «Ευκλείδεια Γεωµετρία Α και Β Ενιαίου Λυκείου» των. Αργυρόπουλου Η, Βλάµου Π., Κατσούλη Γ., Μαρκάκη Σ. και Σιδέρη Π. Κεφ. 8 ο : Οµοιότητα ( εν αποτελεί εξεταστέα ύλη) 8.1. Όµοια ευθύγραµµα σχήµατα 8.2. Κριτήρια οµοιότητας (χωρίς τις αποδείξεις των θεωρηµάτων ΙΙ και ΙΙΙ και τις εφαρµογές 1 και 2) Κεφ. 9 ο : Μετρικές σχέσεις 9.1. Ορθές προβολές 9.2. Το Πυθαγόρειο θεώρηµα 9.3. Γεωµετρικές κατασκευές 9.4. Γενίκευση του Πυθαγόρειου θεωρήµατος (χωρίς την απόδειξη του θεωρήµατος ΙΙ ) 9.5. Θεωρήµατα ιαµέσων 9.7. Τέµνουσες κύκλου Κεφ. 10 ο : Εµβαδά Πολυγωνικά χωρία Εµβαδόν ευθύγραµµου σχήµατος - Ισοδύναµα ευθύγραµµα σχήµατα Εµβαδόν βασικών ευθύγραµµων σχηµάτων Άλλοι τύποι για το εµβαδόν τριγώνου (χωρίς την απόδειξη του τύπου ΙΙΙ) Λόγος εµβαδών όµοιων τριγώνων πολυγώνων Μετασχηµατισµός πολυγώνου σε ισοδύναµό του Κεφ. 11 ο : Μέτρηση Κύκλου Ορισµός κανονικού πολυγώνου Ιδιότητες και στοιχεία κανονικών πολυγώνων (χωρίς τις αποδείξεις των θεωρηµάτων) Εγγραφή βασικών κανονικών πολυγώνων σε κύκλο και στοιχεία τους (χωρίς τις εφαρµογές 2,3) Προσέγγιση του µήκους του κύκλου µε κανονικά πολύγωνα Μήκος τόξου Προσέγγιση του εµβαδού κύκλου µε κανονικά πολύγωνα Εµβαδόν κυκλικού τοµέα και κυκλικού τµήµατος Τετραγωνισµός κύκλου Κεφ. 12 ο : Ευθείες και επίπεδα στο χώρο ( ιδακτέα αλλά όχι εξεταστέα ύλη) Εισαγωγή Η έννοια του επιπέδου και ο καθορισµός του Σχετικές θέσεις ευθειών και επιπέδων Ευθείες και επίπεδα παράλληλα - Θεώρηµα του Θαλή Γωνία δύο ευθειών - ορθογώνιες ευθείες (χωρίς τις αποδείξεις των θεωρηµάτων Ι, ΙΙ, και ΙΙΙ) Απόσταση σηµείου από επίπεδο - απόσταση δύο παράλληλων επιπέδων (να δοθούν µόνο οι ορισµοί και οι εφαρµογές χωρίς αποδείξεις) ίεδρη γωνία αντίστοιχη επίπεδη µιας δίεδρης κάθετα επίπεδα (χωρίς τις αποδείξεις των θεωρηµάτων ΙΙ και ΙΙΙ) Προβολή σηµείου και ευθείας σε επίπεδο - Γωνία ευθείας και επιπέδου 15

5 II. ιαχείριση διδακτέας ύλης Κεφάλαιο 8 ο (Προτείνεται να διατεθούν 7 διδακτικές ώρες) (Προτείνεται να διατεθούν 7 διδακτικές ώρες). Επειδή είναι το 1ο κεφάλαιο της Β Λυκείου ίσως χρειασθεί, κατά την κρίση του διδάσκοντος, να γίνει µία γρήγορη επανάληψη στις αναλογίες και το Θεώρηµα του Θαλή που διδαχθήκαν στην Α Λυκείου. Η εφαρµογή 4 της παραγράφου 8.2 θα χρειασθεί στη συνέχεια για να αποδειχθεί τύπος για το εµβαδόν τριγώνου. Το κεφάλαιο προσφέρεται για τη συζήτηση εφαρµογών που ήδη θίγονται στο σχολικό βιβλίο (µέτρηση ύψους απρόσιτων σηµείων, χρήση εξάντα). Να µη γίνουν οι εφαρµογές 1 και 3 και τα σύνθετα θέµατα 1, 2 και 3, σελ Να µη γίνουν και οι γενικές ασκήσεις του κεφαλαίου. Κεφάλαιο 9 ο (Προτείνεται να διατεθούν 10 διδακτικές ώρες) (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Στις παραγράφους αυτές η άσκοπη ασκησιολογία αλγεβρικού χαρακτήρα δε συνεισφέρει στην κατανόηση της Γεωµετρίας. Προτείνεται να γίνει το σχόλιο της εφαρµογής ως σύνδεση µε την επόµενη παράγραφο. Να µη γίνουν τα σύνθετα θέµατα 4, 6, σελ (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Στην παράγραφο αυτή είναι σκόπιµο να διατεθεί χρόνος ώστε να σχολιαστεί το ιστορικό σηµείωµα για την ανακάλυψη των ασύµµετρων µεγεθών και να γίνουν και οι 3 κατασκευές (υποτείνουσα και κάθετη πλευρά ορθογωνίου τριγώνου, µέση ανάλογος, άρρητα πολλαπλάσια ευθύγραµµου τµήµατος που δίνουν και τον τρόπο κατασκευής ευθυγράµµων τµηµάτων µε µήκος τετραγωνική ρίζα φυσικού αφορµή για µία σύντοµη συζήτηση για τη δυνατότητα κατασκευής ή µη των αρρήτων) (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Στην παράγραφο 9.4 προτείνεται να µην αναλωθεί επιπλέον διδακτικός χρόνος για άσκοπη ασκησιολογία αλγεβρικού τύπου. Τα θεωρήµατα των διαµέσων (παράγραφος 9.5) µπορούν να διδαχθούν ως εφαρµογές των θεωρηµάτων της οξείας και αµβλείας γωνίας (χωρίς τις ασκήσεις τους), αφού και η παράγραφος 9.6 (γεωµετρικοί τόποι) που στηρίζονται στα θεωρήµατα των διαµέσων είναι εκτός ύλης. Επίσης, εφαρµογές των θεωρηµάτων των διαµέσων υπάρχουν σε ασκήσεις των επόµενων παραγράφων. Να µη γίνουν τα σύνθετα θέµατα της σελίδας (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Προτείνεται να δοθεί έµφαση στην 3η εφαρµογή και στο σχόλιό της (κατασκευή χρυσής τοµής, ο λόγος φ). Από τις ασκήσεις µία επιλογή θα µπορούσε να είναι η εξής: οι ερωτήσεις κατανόησης, από τις α- σκήσεις εµπέδωσης οι 1 και 4 και από τις αποδεικτικές οι 1 και 3. Τα σύνθετα θέµατα θα µπορούσαν να εξαιρεθούν από την ύλη καθώς και οι γενικές ασκήσεις. Η δραστηριότητα 2 σελ. 205 θα µπορούσε να συνεισφέρει στην κατανόηση της 1-1 αντιστοιχίας µεταξύ των σηµείων της ευθείας και των πραγµατικών αριθµών. Να µη γίνουν τα σύνθετα θέµατα 3, 4, σελ. 204 και οι γενικές ασκήσεις του κεφαλαίου. Κεφάλαιο 10 ο (Προτείνεται να διατεθούν 11 διδακτικές ώρες) (Προτείνεται να διατεθούν 4 διδακτικές ώρες). Οι διαθέσιµες ώρες αυξάνονται προκειµένου να γίνουν και οι 3 εφαρµογές (µε την παρατήρηση της 2) και οι 2 δραστηριότητες των σελ. 215 και 217. Επίσης θα µπορούσε να γίνει η απόδειξη του Πυθαγορείου θεωρήµατος µέσω εµβαδών, όπως παρατίθεται στα στοιχεία του Ευκλείδη και αναφέρεται στο ιστορικό σηµείωµα της σελ

6 Προτεινόµενες ασκήσεις: οι ερωτήσεις κατανόησης, από τις ασκήσεις εµπέδωσης οι 3 και 6 και από τις αποδεικτικές ασκήσεις οι 1, 4, 7 και 8. Να µη γίνουν τα σύνθετα θέµατα 1 και 5, σελ (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Να µη γίνει ο τύπος του Ήρωνα και οι αντίστοιχες ασκήσεις (αλλά να εξηγηθεί ο συµβολισµός της ηµιπεριµέτρου). Μία επιλογή ασκήσεων θα µπορούσε να είναι: οι ερωτήσεις κατανόησης 1 και 2, από τις ασκήσεις εµπέδωσης οι 3 και,4 και από τις αποδεικτικές οι 1, 3 και 5. Να µη γίνουν τα σύνθετα θέµατα 1, 2, σελ (Προτείνεται να διατεθούν 5 διδακτικές ώρες). Η παράγραφος 10.6 προτείνεται να διδαχθεί αφού χρειάζεται στο πρόβληµα του τετραγωνισµού του κύκλου (παράγραφος 11.8). Να µη γίνουν τα σύνθετα θέµατα της σελίδας 225. Κεφάλαιο 11 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) (Προτείνεται να διατεθούν 5 διδακτικές ώρες). Στην παράγραφο 11.1 µπορεί να γίνει µία υπενθύµιση της έννοιας του κυρτού πολυγώνου και των στοιχείων του, όπως αναφέρεται στην παράγραφο 2.20 που είναι εκτός της ύλης της Α Λυκείου. Προτείνεται να γίνει η παρατήρηση και το σχόλιο της σελ.236 (που χρειάζονται για την επόµενη παράγραφο). Μπορεί επίσης να γίνει µία αναφορά στο ρόλο των κανονικών πολυγώνων στη φύση, την τέχνη και τις επιστήµες (βιβλίο καθηγητή για επέκταση της αποδεικτικής άσκησης 1 σελ. 237 και συσχέτιση µε τη διακόσµηση µε κανονικά πολύγωνα). Να µη γίνουν τα σύνθετα θέµατα της σελίδας (Προτείνεται να διατεθούν 3 διδακτικές ώρες). Βάσει του σχολίου και της παρατήρησης της σελίδας 236 της προηγούµενης παραγράφου, οι µαθητές µπορούν µόνοι τους να οδηγηθούν στην εγγραφή των βασικών κανονικών πολυγώνων σε κύκλο, όπως προτείνεται και στο βιβλίο του καθηγητή. Προτείνεται να δοθεί έµφαση στην εφαρµογή 1 και στη συνέχεια να γίνει η δραστηριότητα 1 σελ Να µη γίνουν οι εφαρµογές 2,3 της παραγράφου 11.3 και τα σύνθετα θέµατα της σελίδας (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Οι παράγραφοι αυτοί µπορούν να προετοιµάσουν τους µαθητές που θα ακολουθήσουν τη θετική κατεύθυνση για την εισαγωγή στις άπειρες διαδικασίες µε φυσιολογικό τρόπο. Θα µπορούσαν να αναφερθούν κάποια επιπλέον στοιχεία για τον αριθµό π, αλλά θα πρέπει να ξεκαθαριστεί τι είναι αλγεβρικός και τι υπερβατικός αριθµός (για την παράγραφο 11.8). Να µη γίνει το σύνθετο θέµα 2 της σελίδας (Προτείνεται να διατεθούν 2 διδακτικές ώρες). Προτείνεται να δοθεί έµφαση στις εφαρµογές (µηνίσκοι του Ιπποκράτη) και στη δραστηριότητα σελ Στην παράγραφο 11.8 (το αδύνατο του τετραγωνισµού του κύκλου) να γίνει αναφορά στα µη επιλύσιµα προβλήµατα της Γεωµετρίας µε στοιχεία από το ιστορικό σηµείωµα της σελ.254. Να µη γίνει το σύνθετο θέµα 4 της σελίδας

7 Μ α θ ή µ α τ α Κ α τ ε υ θ ύ ν σ ε ω ν Μαθηµατικά Θετικής Τεχνολογικής Κατεύθυνσης I. ιδακτέα ύλη Από το βιβλίο «Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Β Τάξης Γενικού Λυκείου» των Αδαµόπουλου Λ., Βισκαδουράκη Β., Γαβαλά., Πολύζου Γ. και Σβέρκου Α., έκδοση Ο.Ε..Β Κεφ. 1 ο : ιανύσµατα 1.1. Η Έννοια του ιανύσµατος 1.2. Πρόσθεση και Αφαίρεση ιανυσµάτων 1.3. Πολλαπλασιασµός Αριθµού µε ιάνυσµα (χωρίς τις Εφαρµογές 1 και 2 στις σελ ) 1.4. Συντεταγµένες στο Επίπεδο (χωρίς την Εφαρµογή 2 στη σελ. 35) 1.5. Εσωτερικό Γινόµενο ιανυσµάτων Κεφ. 2 ο : Η Ευθεία στο Επίπεδο 2.1. Εξίσωση Ευθείας 2.2. Γενική Μορφή Εξίσωσης Ευθείας 2.3. Εµβαδόν Τριγώνου (χωρίς τις αποδείξεις των τύπων της απόστασης σηµείου από ευθεία, του εµβαδού τριγώνου και της Εφαρµογής 1 στη σελ. 73) Κεφ. 3 ο : Κωνικές Τοµές 3.1. Ο Κύκλος (χωρίς τις παραµετρικές εξισώσεις του κύκλου) 3.2. Η Παραβολή (χωρίς την απόδειξη της εξίσωσης της παραβολής, την απόδειξη του τύπου της εφαπτοµένης και την Εφαρµογή 1 στη σελ. 96) 3.3. Η Έλλειψη (χωρίς την απόδειξη της εξίσωσης της έλλειψης, τις παραµετρικές εξισώσεις της έλλειψης, την Εφαρµογή στη σελ. 107, την Εφαρµογή 1 στη σελ. 109 και την Εφαρµογή 2 στη σελ. 110) 3.4. Η Υπερβολή (χωρίς την απόδειξη της εξίσωσης της υπερβολής και την απόδειξη του τύπου των ασυµπτώτων) 3.5. Μόνο η υποπαράγραφος «σχετική θέση ευθείας και κωνικής» και σύµφωνα µε την προτεινόµενη διαχείριση. Κεφ. 4 ο : Θεωρία Αριθµών 4.1. Η Μαθηµατική Επαγωγή II. ιαχείριση διδακτέας ύλης Κεφάλαιο 1 ο (Προτείνεται να διατεθούν 26 διδακτικές ώρες). Ειδικότερα για την 1.5 προτείνονται τα εξής: 1.5 Α) Μετά τη διδασκαλία της υποπαραγράφου «Προβολή διανύσµατος σε διάνυσµα» να δοθεί και να συζητηθεί η ερώτηση κατανόησης 13 της σελίδας 54, µε σκοπό να κατανοήσουν οι µαθητές: Το ρόλο της προβολής διανύσµατος σε διάνυσµα κατά τον υπολογισµό του εσωτερικού γινοµένου αυτών. Ότι δεν ισχύει η ιδιότητα της διαγραφής στο εσωτερικό γινόµενο. Β) Προτείνεται να µη γίνουν οι ασκήσεις 8, 9 και 10 της Α Οµάδας (σελ ), οι ασκήσεις 1, 3 και 10 της Β Οµάδας (σελ ) και οι Γενικές Ασκήσεις (σελ ). 18

8 Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 15 διδακτικές ώρες). Ειδικότερα για την 2.3 προτείνονται τα εξής: 2.3 Α) Πριν δοθούν οι τύποι της απόστασης σηµείου από ευθεία και του εµβαδού τριγώνου, προτείνεται να δοθούν στους µαθητές να επεξεργαστούν δραστηριότητες, όπως οι παρακάτω δύο: 1 η : ίνονται η ευθεία ε : x y 1 0 A 5, 2. Να βρεθούν: + = και το σηµείο ( ) i) Η εξίσωση της ευθείας ζ που διέρχεται από το A και είναι κάθετη στην ε. ii) Οι συντεταγµένες του σηµείου τοµής της ζ µε την ε. iii) Η απόσταση του A από την ε. Στη συνέχεια, να δηλωθεί στους µαθητές ότι µε ανάλογο τρόπο µπορεί να αποδειχθεί ο τύπος α- πόστασης ενός σηµείου από µία ευθεία, ο οποίος και να δοθεί. 2 η : ίνονται τα σηµεία A ( 5, 2), B ( 2, 3) και B ( 3, 4). Να βρεθούν: i) Η εξίσωση της ευθείας ΒΓ. ii) Το ύψος Α του τριγώνου ΑΒΓ και iii) Το εµβαδόν του τριγώνου ΑΒΓ. Στη συνέχεια, να δηλωθεί στους µαθητές ότι µε ανάλογο τρόπο µπορεί να αποδειχθεί ο τύπος του εµβαδού τριγώνου του οποίου είναι γνωστές οι συντεταγµένες των κορυφών. Β) Προτείνεται να µη γίνουν η άσκηση 7 της Β Οµάδας (σελ. 76)και από τις Γενικές Ασκήσεις οι 3, 4, 5, 6 και 7 (σελ ). Κεφάλαιο 3 ο (Προτείνεται να διατεθούν 30 διδακτικές ώρες). Ειδικότερα για τις 3.2, 3.3 και 3.5 προτείνουµε: 3.2 Πριν δοθεί ο τύπος της εξίσωσης της παραβολής, προτείνεται να λυθεί ένα πρόβληµα εύρεσης εξίσωσης παραβολής της οποίας δίνεται η εστία και η διευθετούσα. Για παράδειγµα της παραβολής µε εστία το σηµείο E (1,0) και διευθετούσα την ευθεία δ : x= 1. Με τον τρόπο αυτό οι µαθητές έρχονται σε επαφή µε τη βασική ιδέα της απόδειξης. Προτείνεται οι ασκήσεις 4 8 να γίνουν για συγκεκριµένη τιµή του p, π.χ. για p= Πριν δοθεί ο τύπος της εξίσωσης της έλλειψης, προτείνεται να λυθεί ένα πρόβληµα εύρεσης εξίσωσης έλλειψης της οποίας δίνονται οι εστίες και το σταθερό άθροισµα 2α. Για παράδειγµα της έλλειψης µε εστίες τα σηµεία Ε (-4,0), Ε(4,0) και 2α= 10. Προτείνεται να µη δοθεί έµφαση σε ασκήσεις που αναλώνονται σε πολλές πράξεις, όπως είναι, για παράδειγµα, οι ασκήσεις 3 και 5 της Β Οµάδας (σελ ) 3.5 Από την παράγραφο αυτή θα διδαχθεί µόνο η υποπαράγραφος «Σχετική θέση ευθείας και κωνικής» και για κωνικές της µορφής των παραγράφων Έτσι, οι µαθητές θα γνωρίσουν την αλγεβρική ερµηνεία του γεωµετρικού ορισµού της εφαπτοµένης των κωνικών τοµών και γενικότερα της σχετικής θέσης ευθείας και κωνικής τοµής. Κεφάλαιο 4 ο (Προτείνεται να διατεθούν 4 ώρες). 4.1 Η Μαθηµατική Επαγωγή αποτελεί βασική αποδεικτική µέθοδο την οποία πρέπει να γνωρίζουν οι µαθητές που στρέφονται προς τις θετικές σπουδές. 19

9 Α Τάξη Εσπερινού Γενικού Λυκείου Άλγεβρα ιδακτέα ύλη Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β Εισαγωγικό κεφάλαιο ( εν αποτελεί εξεταστέα ύλη) E.1. E.2. Το Λεξιλόγιο της Λογικής Σύνολα Κεφ. 1ο: Οι Πραγµατικοί Αριθµοί 1.1 Οι Πράξεις και οι Ιδιότητές τους (Συνοπτική παρουσίαση) 1.2 ιάταξη Πραγµατικών Αριθµών (Συνοπτική παρουσίαση) 1.3 Απόλυτη Τιµή Πραγµατικού Αριθµού Να µη διδαχθεί η Ιχ-χ 0 Ι<ρ χ (χ 0 -ρ, χ 0 +ρ) χ 0 -ρ<χ< χ 0 +ρ. Να διδαχθεί η ΙχΙ < θ -θ<χ<-θ. Να διδαχθεί µόνο ο ορισµός της απόστασης. Για καλύτερη εµπέδωση των ιδιοτήτων των απολύτων η επίλυση απλών εξισώσεων και α- νισώσεων (κεφάλαια 2 και 3). 1.4 Ρίζες Πραγµατικών Αριθµών Κεφ. 2ο: Εξισώσεις 2.1 Εξισώσεις 1 ου Βαθµού 2.2 ν Η Εξίσωση x = α 2.3 Εξισώσεις 2 ου Βαθµού Κεφ. 3ο: Ανισώσεις 3.1 Ανισώσεις 2 ου Βαθµού 3.2 Ανισώσεις Γινόµενο & Ανισώσεις Πηλίκο ιδακτέα ύλη Γεωµετρία Από το βιβλίο «Ευκλείδεια Γεωµετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάµου Π., Κατσούλη Γ., Μαρκάκη Σ. και Σιδέρη Π., έκδοση Ο.Ε..Β Κεφ. 1ο: Εισαγωγή στην Ευκλείδεια Γεωµετρία 1.1 Το αντικείµενο της Ευκλείδειας Γεωµετρίας 1.2 Ιστορική αναδροµή στη γένεση και ανάπτυξη της Γεωµετρίας 20

10 Κεφ. 3ο: Τρίγωνα 3.1 Είδη και στοιχεία τριγώνων 3.2 1o Κριτήριο ισότητας τριγώνων (χωρίς την απόδειξη του θεωρήµατος) 3.3 2o Κριτήριο ισότητας τριγώνων 3.4 3o Κριτήριο ισότητας τριγώνων 3.5 Ύπαρξη και µοναδικότητα καθέτου (χωρίς την απόδειξη του θεωρήµατος) 3.6 Κριτήρια ισότητας ορθογώνιων τριγώνων (χωρίς τις αποδείξεις των θεωρηµάτων I και II ) 3.7 Κύκλος - Μεσοκάθετος ιχοτόµος 3.8 Κεντρική συµµετρία 3.9 Αξονική συµµετρία 3.10 Σχέση εξωτερικής και απέναντι γωνίας (χωρίς την απόδειξη του θεωρήµατος) 3.11 Ανισοτικές σχέσεις πλευρών και γωνιών 3.12 Τριγωνική ανισότητα (χωρίς την απόδειξη του θεωρήµατος και την εφαρµογή 4) 3.13 Κάθετες και πλάγιες (χωρίς την απόδειξη του θεωρήµατος II ) 3.14 Σχετικές θέσεις ευθείας και κύκλου (χωρίς την απόδειξη του θεωρήµατος) 3.15 Εφαπτόµενα τµήµατα 3.16 Σχετικές θέσεις δύο κύκλων 3.17 Απλές γεωµετρικές κατασκευές 3.18 Βασικές κατασκευές τριγώνων Κεφ. 4o: Παράλληλες ευθείες 4.1 Εισαγωγή 4.2 Τέµνουσα δύο ευθειών - Ευκλείδειο αίτηµα (χωρίς την απόδειξη της πρότασης iv) 4.3 Κατασκευή παράλληλης ευθείας 4.4 Γωνίες µε πλευρές παράλληλες 4.5 Αξιοσηµείωτοι κύκλοι τριγώνου (χωρίς την εφαρµογή) 4.6 Άθροισµα γωνιών τριγώνου 4.7 Γωνίες µε πλευρές κάθετες 4.8 Άθροισµα γωνιών κυρτού ν-γώνου Η διδασκαλία θα γίνει σύµφωνα µε τις οδηγίες και την προτεινόµενη διδακτική διαχείριση για το ηµερήσιο Γενικό Λύκειο ( ) 21

11 Β Τάξη Εσπερινού Γενικού Λυκείου ιδακτέα ύλη Άλγεβρα Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β Κεφ. 4 ο : Βασικές Έννοιες των Συναρτήσεων 1.1 Η Έννοια της Συνάρτησης 4.2 Γραφική Παράσταση Συνάρτησης (Αφαιρούνται απόσταση σηµείων και συµµετρία ως προς τη διχοτόµο) f x = αx+ β (Αφαιρούνται κλίση µε το λόγο µεταβολής, σχετικές θέσεις δύο 4.3 Η Συνάρτηση ( ) ευθειών) 4.4 Κατακόρυφη Οριζόντια Μετατόπιση Καµπύλης 4.5 Μονοτονία Ακρότατα Συµµετρίες Συνάρτησης Κεφ. 5 ο : Μελέτη Βασικών Συναρτήσεων Μελέτη της Συνάρτησης : f ( x) = αx 5.2 Μελέτη της Συνάρτησης : f ( x) α = x f x = αx + βx+ γ 5.3 Μελέτη της Συνάρτησης : ( ) 2 Κεφ. 6 ο : Γραµµικά Συστήµατα 6.1 Γραµµικά Συστήµατα (αφαιρούνται τα γραµµικά συστήµατα 2x2) 6.2 Μη Γραµµικά Συστήµατα Κεφ. 7 ο : Τριγωνοµετρία 7.1 Τριγωνοµετρικοί Αριθµοί Γωνίας 7.2 Βασικές Τριγωνοµετρικές Ταυτότητες 7.3 Αναγωγή στο 1o Τεταρτηµόριο ιδακτέα ύλη Γεωµετρία Από το βιβλίο «Ευκλείδεια Γεωµετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάµου Π., Κατσούλη Γ., Μαρκάκη Σ. και Σιδέρη Π., έκδοση Ο.Ε..Β Κεφ. 5 o : Παραλληλόγραµµα Τραπέζια 5.1 Εισαγωγή 5.2 Παραλληλόγραµµα 5.3 Ορθογώνιο 5.4 Ρόµβος 22

12 5.5 Τετράγωνο 5.6 Εφαρµογές στα τρίγωνα 5.7 Βαρύκεντρο τριγώνου 5.8 Το ορθόκεντρο τριγώνου (χωρίς την απόδειξη του θεωρήµατος) 5.9 Μια ιδιότητα του ορθογώνιου τριγώνου 5.10 Τραπέζιο 5.11 Ισοσκελές τραπέζιο 5.12 Αξιοσηµείωτες ευθείες και κύκλοι τριγώνου Κεφ. 6 o : Εγγεγραµµένα σχήµατα 6.1 Εισαγωγικά Ορισµοί 6.2 Σχέση εγγεγραµµένης και αντίστοιχης επίκεντρης (χωρίς την περίπτωση ii στην απόδειξη του θεωρήµατος) 6.3 Γωνία χορδής και εφαπτοµένης (χωρίς την εφαρµογή 1, σελ. 125) Κεφ. 7 o : Αναλογίες 7.1 Εισαγωγή 7.2 ιαίρεση ευθύγραµµου τµήµατος σε ν ίσα µέρη 7.3 Γινόµενο ευθύγραµµου τµήµατος µε αριθµό Λόγος ευθύγραµµων τµηµάτων 7.4 Ανάλογα ευθύγραµµα τµήµατα Αναλογίες 7.5 Μήκος ευθύγραµµου τµήµατος 7.6 ιαίρεση τµηµάτων εσωτερικά και εξωτερικά ως προς δοσµένο λόγο 7.7 Θεώρηµα του Θαλή (χωρίς την απόδειξη του θεωρήµατος) 7.8 Θεωρήµατα των διχοτόµων τριγώνου Η διδασκαλία θα γίνει σύµφωνα µε τις οδηγίες και την προτεινόµενη διδακτική διαχείριση για το ηµερήσιο Γενικό Λύκειο ( ). 23

13 Γ Τάξη Εσπερινού Γενικού Λυκείου Μαθήµατα Γενικής Παιδείας Άλγεβρα ιδακτέα ύλη Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β Κεφ. 1 ο : Τριγωνοµετρία 1.1 Οι τριγωνοµετρικές συναρτήσεις 1.2 Βασικές τριγωνοµετρικές εξισώσεις Κεφ. 2ο: Πολυώνυµα - Πολυωνυµικές εξισώσεις 2.1 Πολυώνυµα 2.2 ιαίρεση πολυωνύµων 2.3 Πολυωνυµικές εξισώσεις 2.4 Εξισώσεις που ανάγονται σε πολυωνυµικές. Κεφ. 3 ο : Πρόοδοι 3.1 Ακολουθίες 3.2 Αριθµητική πρόοδος 3.3 Γεωµετρική πρόοδος 3.4 Ανατοκισµός Ίσες καταθέσεις Χρεολυσία 3.5 Άθροισµα άπειρων όρων γεωµετρικής προόδου Κεφ. 4 ο : Εκθετική και Λογαριθµική συνάρτηση 4.1 Εκθετική συνάρτηση 4.2 Λογάριθµοι (χωρίς την απόδειξη της αλλαγής βάσης) 4.3 Λογαριθµική συνάρτηση (να διδαχθούν µόνο οι λογαριθµικές συναρτήσεις µε βάση το 10 και το e.). ιδακτέα ύλη Γεωµετρία Από το βιβλίο «Ευκλείδεια Γεωµετρία Α και Β Ενιαίου Λυκείου» των. Αργυρόπουλου Η, Βλάµου Π., Κατσούλη Γ., Μαρκάκη Σ. και Σιδέρη Π., έκδοση Ο.Ε..Β Κεφ. 8 ο : Οµοιότητα 8.1 Όµοια ευθύγραµµα σχήµατα 8.2 Κριτήρια οµοιότητας (χωρίς τις αποδείξεις των θεωρηµάτων ΙΙ και ΙΙΙ και τις εφαρµογές 1 και 2) Κεφ. 9 ο : Μετρικές σχέσεις 24

14 9.1 Ορθές προβολές 9.2 Το Πυθαγόρειο θεώρηµα 9.3 Γεωµετρικές κατασκευές 9.4 Γενίκευση του Πυθαγόρειου θεωρήµατος (χωρίς την απόδειξη του θεωρήµατος ΙΙ ) 9.5 Θεωρήµατα ιαµέσων 9.7 Τέµνουσες κύκλου Κεφ. 10 ο : Εµβαδά 10.1 Πολυγωνικά χωρία 10.2 Εµβαδόν ευθύγραµµου σχήµατος - Ισοδύναµα ευθύγραµµα σχήµατα 10.3 Εµβαδόν βασικών ευθύγραµµων σχηµάτων 10.4 Άλλοι τύποι για το εµβαδόν τριγώνου ( χωρίς την απόδειξη του τύπου ΙΙΙ) 10.5 Λόγος εµβαδών όµοιων τριγώνων πολυγώνων 10.6 Μετασχηµατισµός πολυγώνου σε ισοδύναµό του Κεφ. 11 ο : Μέτρηση Κύκλου 11.1 Ορισµός κανονικού πολυγώνου 11.2 Ιδιότητες και στοιχεία κανονικών πολυγώνων (χωρίς τις αποδείξεις των θεωρηµάτων) 11.3 Εγγραφή βασικών κανονικών πολυγώνων σε κύκλο και στοιχεία τους (χωρίς τις εφαρµογές 2,3) 11.4 Προσέγγιση του µήκους του κύκλου µε κανονικά πολύγωνα 11.5 Μήκος τόξου 11.6 Προσέγγιση του εµβαδού κύκλου µε κανονικά πολύγωνα 11.7 Εµβαδόν κυκλικού τοµέα και κυκλικού τµήµατος 11.8 Τετραγωνισµός κύκλου Κεφ. 12 ο : Ευθείες και επίπεδα στο χώρο ( ιδακτέα αλλά όχι εξεταστέα ύλη) 12.1 Εισαγωγή 12.2 Η έννοια του επιπέδου και ο καθορισµός του 12.3 Σχετικές θέσεις ευθειών και επιπέδων 12.4 Ευθείες και επίπεδα παράλληλα - Θεώρηµα του Θαλή 12.5 Γωνία δύο ευθειών - ορθογώνιες ευθείες (χωρίς τις αποδείξεις των θεωρηµάτων Ι, ΙΙ, και ΙΙΙ) 12.6 Απόσταση σηµείου από επίπεδο - απόσταση δύο παράλληλων επιπέδων (να δοθούν µόνο οι ορισµοί και οι εφαρµογές χωρίς αποδείξεις) 12.7 ίεδρη γωνία αντίστοιχη επίπεδη µιας δίεδρης κάθετα επίπεδα (χωρίς τις αποδείξεις των θεωρηµάτων ΙΙ και ΙΙΙ) 12.8 Προβολή σηµείου και ευθείας σε επίπεδο - Γωνία ευθείας και επιπέδου 25

15 ιδακτέα ύλη Μαθήµατα Κατεύθυνσης Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Από το βιβλίο «Μαθηµατικά Θετικής και Τεχνολογικής Κατεύθυνσης Β Τάξης Γενικού Λυκείου» των Αδαµόπουλου Λ., Βισκαδουράκη Β., Γαβαλά., Πολύζου Γ. και Σβέρκου Α., έκδοση Ο.Ε..Β Κεφ. 1 ο : ιανύσµατα 1.1 Η Έννοια του ιανύσµατος 1.2 Πρόσθεση και Αφαίρεση ιανυσµάτων 1.3 Πολλαπλασιασµός Αριθµού µε ιάνυσµα (χωρίς τις Εφαρµογές 1 και 2 στις σελ ) 1.4 Συντεταγµένες στο Επίπεδο (χωρίς την Εφαρµογή 2 στη σελ. 35) 1.5 Εσωτερικό Γινόµενο ιανυσµάτων Κεφ. 2 ο : Η Ευθεία στο Επίπεδο 2.1 Εξίσωση Ευθείας 2.2 Γενική Μορφή Εξίσωσης Ευθείας 2.3 Εµβαδόν Τριγώνου (χωρίς τις αποδείξεις των τύπων της απόστασης σηµείου από ευθεία, του εµβαδού τριγώνου και της Εφαρµογής 1 στη σελ. 73) Κεφ. 3 ο : Κωνικές Τοµές 3.1 Ο Κύκλος (χωρίς τις παραµετρικές εξισώσεις του κύκλου) 3.2 Η Παραβολή (χωρίς την απόδειξη της εξίσωσης της παραβολής, την απόδειξη του τύπου της εφαπτοµένης και την Εφαρµογή 1 στη σελ. 96) 3.3 Η Έλλειψη (χωρίς την απόδειξη της εξίσωσης της έλλειψης, τις παραµετρικές εξισώσεις της έλλειψης, την Εφαρµογή στη σελ. 107, την Εφαρµογή 1 στη σελ. 109 και την Εφαρµογή 2 στη σελ. 110) 3.4 Η Υπερβολή (χωρίς την απόδειξη της εξίσωσης της υπερβολής και την απόδειξη του τύπου των ασυµπτώτων) 3.5 Μόνο η υποπαράγραφος «σχετική θέση ευθείας και κωνικής» και σύµφωνα µε την προτεινόµενη διαχείριση. Κεφ. 4 ο : Θεωρία Αριθµών 4.1 Η Μαθηµατική Επαγωγή Η διδασκαλία θα γίνει σύµφωνα µε τις οδηγίες και την προτεινόµενη διδακτική διαχείριση για το ηµερήσιο Γενικό Λύκειο ( ). Οι διδάσκοντες να ενηµερωθούν ενυπόγραφα Εσωτ. ιανοµή Γραφείο Υφυπουργού Γραφείο Γενικού Γραµµατέα Γραφείο Ειδικού Γραµµατέα /νση Σπουδών.Ε., Τµήµα Α /νση Εκκλησιαστικής Εκπ/σης /νση Ιδιωτικής Εκπ/σης /νση Π.Ο..Ε. /νση Ξένων και Μειονοτικών Σχολείων /νση Ειδικής Αγωγής /νση Οργάνωσης και ιεξαγωγής Εξετάσεων ΣΕΠΕ Η ΥΦΥΠΟΥΡΓΟΣ ΠΑΡΑΣΚΕΥΗ ΧΡΙΣΤΟΦΙΛΟΠΟΥΛΟΥ 26

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη ΘΕΜΑ : Καθορισµός και διαχείριση διδακτέας ύλης Θετικών Μαθηµάτων των Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2011 12. Μετά από σχετική εισήγηση του Τµήµατος ευτεροβάθµιας

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδακτέα - εξεταστέα ύλη των µαθηµάτων Β τάξης Ηµερησίου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.:

/νσεων /θµιας Εκπ/σης) ΠΡΟΣ: ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Α ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Α, Β ΤΑΞΕΩΝ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΣΧΟΛΙΚΟ ΕΤΟΣ 2014-2015 Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα -εξεταστέα

Διαβάστε περισσότερα

210-344 3306 E-mail: t09tee07@minedu.gov.gr

210-344 3306 E-mail: t09tee07@minedu.gov.gr ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β' Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ.-Πόλη: 15180 Μαρούσι ΠΡΟΣ:

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου

1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β --- ΠΡΟΣ: Ταχ. /νση: Ανδρέα

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ: 1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου

ΠΡΟΣ: ΚΟΙΝ: 1. Άλγεβρα. Α τάξης Ηµερησίου Επαγγελµατικού Λυκείου ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β Μαρούσι, 6-- Αρ. πρωτ. : 3837/Γ

Διαβάστε περισσότερα

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου

1. Άλγεβρα Α τάξης Ημερησίου Επαγγελματικού Λυκείου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Β Μαρούσι, 6-11-01 Αρ.

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Δημήτρης Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών. Λαμία, 19 Απριλίου 2013 Αριθ. Πρωτ.: 317. Προς: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΓΡΑΦΕΙΟ ΣΧΟΛΙΚΩΝ ΣΥΜΒΟΥΛΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΝΟΜΟΥ ΦΘΙΩΤΙΔΑΣ

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 01. Κεφ. 1 ο : Οι φυσικοί αριθμοί 1. Πρόσθεση, αφαίρεση και

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ηµερήσιου Γενικού Λυκείου. Άλγεβρα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ηµερήσιου Γενικού Λυκείου. Άλγεβρα ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. /νση: Ανδρέα Παπανδρέου

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14

ΠΡΟΣ: ΚΟΙΝ.: ΘΕΜΑ: Καθορισμός και διαχείριση διδακτέας ύλης των Μαθηματικών των Επαγγελματικών Λυκείων, για το σχολικό έτος 2013-14 Βαθμός Ασφαλείας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ημερήσιου Γενικού Λυκείου. Άλγεβρα

ΠΡΟΣ : ΚΟΙΝ: Α Τάξη Ημερήσιου Γενικού Λυκείου. Άλγεβρα ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ Δ/ΥΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΕΦ.1,1.1, 1.1.1, 1.1.2, 1.1.3, 1.2, 1.3 ΚΕΦ.2.Α.2.1, 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3, 2.5 ΚΕΦ.2.Β. 2.1, 2.2, 2.3, 2.4 ΚΕΦ.3. 3.1, 3.5, 3.5.1, 3.5.2, 3.5.3

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Να διατηρηθεί μέχρι Βαθμός ασφαλείας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Μαρούσι, 8-9 -11 Αριθ. Πρωτ. :11837 /Γ Βαθμός Προτερ.: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ ΠΡΩΤΟΒΑΘΜΙΑΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας: ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ. Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθμός Προτεραιότητας: ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

2. Γεωμετρία Β Τάξης Ημερήσιου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου

2. Γεωμετρία Β Τάξης Ημερήσιου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου 2. Γεωμετρία Β Τάξης Ημερήσιου Γενικού Λυκείου και Γ τάξης Εσπερινού Γενικού Λυκείου I. Διδακτέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των. Αργυρόπουλου Η, Βλάμου Π., Κατσούλη

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου

Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Βασικές Γνώσεις Μαθηματικών Α - Β Λυκείου Αριθμοί 1. ΑΡΙΘΜΟΙ Σύνολο Φυσικών αριθμών: Σύνολο Ακέραιων αριθμών: Σύνολο Ρητών αριθμών: ακέραιοι με Άρρητοι αριθμοί: είναι οι μη ρητοί π.χ. Το σύνολο Πραγματικών

Διαβάστε περισσότερα

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Α. Προτεινόμενες θεματικές ενότητες Τίτλοι από το Ι.Ε.Π. ΑΛΓΕΒΡΑ 5ο 5.1: Ακολουθίες Η ακολουθία Fibonacci στην Φύση και

Διαβάστε περισσότερα

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ

Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Επιμέλεια Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ Γ ΓΥΜΝΑΣΙΟΥ Σχολικό Έτος: 2014-2015 Μαθηματικός Περιηγητής 1 Διδακτέα ύλη και οδηγίες διδασκαλίας

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΕΡΙΦΕΡΕΙΑΚΗ ΔΙΕΥΘΥΝΣΗ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΣΧΟΛΙΚΟΣ ΣΥΜΒΟΥΛΟΣ ΜΑΘΗΜΑΤΙΚΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΠΕΡΙΦ. ΣΤΕΡΕΑΣ ΕΛΛΑΔΑΣ ΜΕ ΕΔΡΑ

Διαβάστε περισσότερα

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Β Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 7

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµάτων του Γενικού Λυκείου.

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµάτων του Γενικού Λυκείου. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ Βαθµός Ασφαλείας... ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο : 210-34.42.238

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Βαθµός Ασφαλείας: Να διατηρηθεί

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις : ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ. Να λυθούν οι εξισώσεις και οι ανισώσεις : α) γ) x x 3x 7x 9 4 5 0 x x x 3 6 3 4 β) δ) 3x x 3 x 4 3 5 x x. 4 4 3 5 x 4x 3 x 6x 7. Να λυθεί στο Q, η ανίσωση :. 5 8 8 3. Να λυθούν

Διαβάστε περισσότερα

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων

II ΔΙΔΑΚΤΕΑ ΥΛΗ. Κεφ.3ο: Τρίγωνα 3.1. Είδη και στοιχεία τριγώνων ΔΙΔΑΚΤΕΑ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΥΛΗΣ (version 22-10-2016) Τα παρακάτω προέρχονται (με δικές μου αλλαγές μορφοποίησης προσθήκες και σχολιασμό) από το έγγραφο (σελ.15 και μετά) με Αριθμό Πρωτοκόλλου 150652/Δ2, που

Διαβάστε περισσότερα

2. Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου

2. Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου 2. Γεωμετρία Α Τάξης Ημερήσιου Γενικού Λυκείου I. Εισαγωγή Η διδασκαλία της Γεωμετρίας στην Α Λυκείου εστιάζει στο πέρασμα από τον εμπειρικό στο θεωρητικό τρόπο σκέψης, με ιδιαίτερη έμφαση στη μαθηματική

Διαβάστε περισσότερα

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία Μαθηματικά Β Γυμνασίου Επανάληψη στη Θεωρία Α.1.1: Η έννοια της μεταβλητής - Αλγεβρικές παραστάσεις Α.1.2: Εξισώσεις α βαθμού Α.1.4: Επίλυση προβλημάτων με τη χρήση εξισώσεων Α.1.5: Ανισώσεις α βαθμού

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ. 1 ο δείγμα ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ 1 ο δείγμα Α1 Αν α> με α 1 τότε για οποιουσδήποτε θ1, θ> να αποδείξετε ότι ισχύει: logα(θ1θ) = logαθ1 + logαθ Α Πότε ένα πολυώνυμο

Διαβάστε περισσότερα

ΤΑΞΗ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

ΤΑΞΗ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟ ΟΣ ΜΑΙΟΥ ΙΟΥΝΙΟΥ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΜΑΘΗΜΑΤΙΚΩΝ Α ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ο - Οι φυσικοί αριθµοί 1.1. Φυσικοί αριθµοί - ιάταξη Φυσικών - Στρογγυλοποίηση 1.2. Πρόσθεση, αφαίρεση και πολλαπλασιασµός

Διαβάστε περισσότερα

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος

ΘΕΜΑ: Διαχείριση διδακτέας - εξεταστέας ύλης των Μαθηματικών Γ τάξης Ημερήσιου. και Δ τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ, ΠΟΛΙΤΙΣΜΟΥ ΚΑΙ ΑΘΛΗΤΙΣΜΟΥ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ

Διαβάστε περισσότερα

Β Τάξη Γυμνασίου. Ι. Διδακτέα ύλη

Β Τάξη Γυμνασίου. Ι. Διδακτέα ύλη ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ.

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 2015-2016 1 ΠΕΡΙΕΧΟΜΕΝΑ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων

Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: Αθήνα, 01-10-2013 Αρ. Πρωτ. 139606/Γ2 Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ ----- Α Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου

ΑΛΓΕΒΡΑ. Α' τάξης Γενικού Λυκείου ΑΛΓΕΒΡΑ Α' τάξης Γενικού Λυκείου ΣΥΓΓΡΑΦΕΙΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος Παπασταυρίδης Σταύρος Πολύζος Γεώργιος Σβέρκος Ανδρέας ΟΜΑΔΑ ΑΝΑΜΟΡΦΩΣΗΣ Ανδρεαδάκης Στυλιανός Κατσαργύρης Βασίλειος

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ

ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ. ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΟΙ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ ΤΥΠΟΥ ΑΠΟΤΕΛΟΥΝ ΜΕΡΟΣ ΤΟΥ ΘΕΜΑΤΟΣ Α ΤΩΝ ΕΞΕΤΑΣΕΩΝ (ΘΕΜΑ ΘΕΩΡΙΑΣ) Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ ΚΕΦΑΚΑΙΟ 3 ο -ΤΡΙΓΩΝΑ 1. Ένα τρίγωνο είναι οξυγώνιο όταν έχει

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ Τετραγωνική ρίζα θετικού αριθμού Τετραγωνική ρίζα ενός θετικού αριθμού α, λέγεται ο θετικός αριθμός, ο οποίος, όταν υψωθεί στο τετράγωνο, δίνει τον αριθμό α. Η τετραγωνική ρίζα του

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β : Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΑΠΟΦΑΣΗ

ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΑΠΟΦΑΣΗ ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ----- Ταχ. /νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι

Διαβάστε περισσότερα

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα:

ΜΕΡΟΣ Β : Ανάλυση Κεφάλαιο 1ο (Προτείνεται να διατεθούν 33 διδακτικές ώρες) Ειδικότερα: ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΙΕΥΘΥΝΣΗ ΣΠΟΥ ΩΝ Π/ΘΜΙΑΣ ΚΑΙ /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ ΙΕΘΥΝΣΗ ΣΠΟΥ ΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ ΕΥΤΕΡΟΒΑΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ.

Διαβάστε περισσότερα

ΠΡΟΣ: ΚΟΙΝ: ΓΕΩΜΕΤΡΙΑ Α ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΛΥΚΕΙΟΥ

ΠΡΟΣ: ΚΟΙΝ: ΓΕΩΜΕΤΡΙΑ Α ΗΜΕΡΗΣΙΟΥ ΚΑΙ ΕΣΠΕΡΙΝΟΥ ΕΠΑΓΓΕΛΜΑΤΙΚΟΥ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΕΠΑΓΓΕΛΜΑΤΙΚΗΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ------- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος

Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος Καθορισµός και διαχείριση διδακτέας ύλης των θετικών µαθηµάτων της Α Ηµερησίου Γενικού Λυκείου για το σχολικό έτος 2013-14 Μετά από σχετική εισήγηση του Ινστιτούτου Εκπαιδευτικής Πολιτικής (πράξη 32/2013

Διαβάστε περισσότερα

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ

ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ ΑΘΗΝΑ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ Σ. ΑΝΔΡΕΑΔΑΚΗΣ Β. ΚΑΤΣΑΡΓΥΡΗΣ Σ. ΠΑΠΑΣΤΑΥΡΙΔΗΣ Γ. ΠΟΛΥΖΟΣ Α. ΣΒΕΡΚΟΣ ΑΛΓΕΒΡΑ Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΟΡΓΑΝΙΣΜΟΣ ΕΚΔΟΣΕΩΣ ΔΙΔΑΚΤΙΚΩΝ ΒΙΒΛΙΩΝ

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΕΚΠΑΙΔΕΥΤΗΡΙΑ ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ Επαναληπτικές Ασκήσεις (από σχολικό βιβλίο) (από βοήθημα Γ Γυμνασίου Πετσιά-Κάτσιου) Κεφάλαιο 1ο 17,

Διαβάστε περισσότερα

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011.

ΘΕΜΑ: ιαχείριση διδακτέας - εξεταστέας ύλης των Μαθηµατικών Γ τάξης Ηµερήσιου και τάξης Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2010 2011. ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠΑΙ ΕΥΣΗΣ /ΥΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί µέχρι... Βαθµός Ασφαλείας...

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας:

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΠΡΟΣ : ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

Αρχαία Ελληνικά A. Εισαγωγή Β. Κείμενα Γ. Γραμματική Συντακτικό Ετυμολογικά

Αρχαία Ελληνικά A. Εισαγωγή Β. Κείμενα Γ. Γραμματική Συντακτικό Ετυμολογικά Αρχαία Ελληνικά A. Εισαγωγή Σελ 18 20 (1. Η ΖΩΗ ΤΟΥ 2. ΤΟ ΕΡΓΟ ΤΟΥ ΕΝΔΙΑΦΕΡΟΝΤΑ ΚΑΙ ΙΔΕΕΣ (Ως : «Η «αθηναϊκή συμμαχία» είχε μετατραπεί σε αθηναϊκή ηγεμονία («ἀρχή»)» στο μέσον της σελίδας 20). Σελ. 21-22

Διαβάστε περισσότερα

ΠΡΟΣ : ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος

ΠΡΟΣ : ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηματικών της Α τάξης Γενικού Λυκείου για το σχ. έτος ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α Να διατηρηθεί μέχρι... Βαθμός Ασφαλείας...

Διαβάστε περισσότερα

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ

3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ. ΖΟΥΖΙΑΣ ΠΑΝΑΓΙΩΤΗΣ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 3 o ΓΕ.Λ. ΚΕΡΑΤΣΙΝΙΟΥ Μαθηματικός 2013 2014 EΠΑΝΑΛΗΨΗ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Α ΛΥΚΕΙΟΥ ΠΕΡΙΕΧΟΜΕΝΑ 1) ΘΕΩΡΙΑ... 2 2) ΕΡΩΤΗΣΕΙΣ... 5 2.1. ΤΡΙΓΩΝΑ... 5 2.1.1. ΕΡΩΤΗΣΕΙΣ Σωστού - Λάθους στα τρίγωνα... 5 2.1.2.

Διαβάστε περισσότερα

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου Φερεντίνου, έκδοση 2012. ΜΕΡΟΣ Α Κεφ. 1

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο

Διαβάστε περισσότερα

Μαθηματικά A Γυμνασίου

Μαθηματικά A Γυμνασίου Μαθηματικά A Γυμνασίου ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ Μέρος Α - Άλγεβρα 1. Ποιες είναι οι ιδιότητες της πρόσθεσης των φυσικών; (σελ. 15) 2. Πως ορίζεται η πράξη της αφαίρεσης στους φυσικούς και πότε αυτή μπορεί να

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ

ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ ΘΕΩΡΙΑ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΓΙΑ ΤΗΝ Α ΓΥΜΝΑΣΙΟΥ Α. ΓΩΝΙΕΣ - ΚΥΚΛΟΣ 1. Απόσταση δύο σηµείων Α και Β είναι το µήκος του ευθύγραµµου τµήµατος που τα ενώνει. 2. Γωνία είναι το µέρος του επιπέδου που βρίσκεται µεταξύ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν. ΑΛΓΕΒΡΑ 1 ο ΚΕΦΑΛΑΙΟ ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ 1. Τι είναι αριθμητική παράσταση; Με ποια σειρά εκτελούμε τις πράξεις σε μια αριθμητική παράσταση ώστε να βρούμε την τιμή της; Αριθμητική παράσταση λέγεται κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Web page: Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία

Web page:    Συνοπτική Θεωρία Μαθηματικών Γ Γυμνασίου Γεωμετρία-Τριγωνομετρία Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Άλγεβρα Κανόνας των πρόσημων: (+) (+) = + ( ) ( ) = + (+) ( ) = ( ) (+) = Συνοπτική

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΑΛΓΕΒΡΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΠΙΘΑΝΟΤΗΤΩΝ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ -ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου»

Διαβάστε περισσότερα

Άλγεβρα και Στοιχεία Πιθανοτήτων

Άλγεβρα και Στοιχεία Πιθανοτήτων Άλγεβρα και Στοιχεία Πιθανοτήτων I. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων, της συνάρτησης

Διαβάστε περισσότερα

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ Ι.

Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ Ι. Άλγεβρα και Στοιχεία Πιθανοτήτων Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΛ Ι. Εισαγωγή Το μάθημα «Άλγεβρα και Στοιχεία Πιθανοτήτων» περιέχει σημαντικές μαθηματικές έννοιες, όπως της πιθανότητας, της απόλυτης τιμής, των προόδων,

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Web page: www.ma8eno.gr e-mail: vrentzou@ma8eno.gr Η αποτελεσματική μάθηση δεν θέλει κόπο αλλά τρόπο, δηλαδή ma8eno.gr Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου Αριθμητική - Άλγεβρα Γεωμετρία Άρτιος λέγεται

Διαβάστε περισσότερα

ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες διδασκαλίας των μαθημάτων Α και Β τάξεων Ημερησίου ΓΕΛ και Α, Β και Γ τάξεων Εσπερινού ΓΕΛ

ΚΟΙΝ.: ΘΕΜΑ: Οδηγίες διδασκαλίας των μαθημάτων Α και Β τάξεων Ημερησίου ΓΕΛ και Α, Β και Γ τάξεων Εσπερινού ΓΕΛ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο. ΣΥΛΛΟΓΟΣ «Η ΕΛΛΗΝΙΚΗ ΠΑΙΔΕΙΑ» ΓΥΜΝΑΣΙΟ ΑΜΑΡΟΥΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΘΕΜΑ 1 Δίνονται τα πολυώνυμα (3x ) (5 x)(3x ) και 5x 9 i). Να κάνετε τις πράξεις στο πολυώνυμο. ii). Να βρείτε την τιμή του

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ ΚΥΠΡΙΑΝΟΣ ΕΥΑΓΓΕΛΟΣ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΤΑ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Το τετράγωνο μιας κάθετης πλευράς είναι ίσο με την υποτείνουσα επί την προβολή της πλευράς στην υποτείνουσα. ΑΒ 2 = ΒΓ ΑΔ ή ΑΓ 2 = ΒΓ ΓΔ Σε κάθε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΕΦ.1,1.1, 1.1.1, 1.1.2, 1.1.3, 1.2, 1.3 ΚΕΦ.2.Α.2.1, 2.2, 2.2.1, 2.2.2, 2.2.3, 2.2.4, 2.2.5, 2.3, 2.5 ΚΕΦ.2.Β. 2.1, 2.2, 2.3, 2.4 ΚΕΦ.3. 3.1, 3.5, 3.5.1, 3.5.2, 3.5.3

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ & ΔΙΑΧΕΙΡΗΣΗ ΤΗΣ ΓΙΑ ΤΟ Σ.Ε Α ΓΥΜΝΑΣΙΟΥ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ & ΔΙΑΧΕΙΡΗΣΗ ΤΗΣ ΓΙΑ ΤΟ Σ.Ε Α ΓΥΜΝΑΣΙΟΥ ΔΙΔΑΚΤΕΑ ΥΛΗ ΜΑΘΗΜΑΤΙΚΩΝ ΓΥΜΝΑΣΙΟΥ & ΔΙΑΧΕΙΡΗΣΗ ΤΗΣ ΓΙΑ ΤΟ Σ.Ε 01-13 Α ΓΥΜΝΑΣΙΟΥ Ι. Διδακτέα ύλη Από το βιβλίο «Μαθηματικά Α Γυμνασίου» των Ιωάννη Βανδουλάκη, Χαράλαμπου Καλλιγά, Νικηφόρου Μαρκάκη, Σπύρου

Διαβάστε περισσότερα

1,y 1) είναι η C : xx yy 0.

1,y 1) είναι η C : xx yy 0. ΘΕΜΑ Α ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ ο δείγμα Α. Αν α, β δύο διανύσματα του επιπέδου με συντελεστές διεύθυνσης λ και λ αντίστοιχα, να αποδείξετε ότι α β λ λ.

Διαβάστε περισσότερα

Επαναληπτικές Ασκήσεις

Επαναληπτικές Ασκήσεις Β' Γυμν. - Επαναληπτικές Ασκήσεις 1 Άσκηση 1 Απλοποίησε τις αλγεβρικές παραστάσεις (α) 2y 2z 8ω 8ω 2y 2z (β) 1x 2y 3z 3 3 z 2z z 2 x y Επαναληπτικές Ασκήσεις Άλγεβρα - Γεωμετρία Άσκηση 2 Υπολόγισε την

Διαβάστε περισσότερα