Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων"

Transcript

1 Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα

2 Τεχνητή Νοημοσύνη (Artificial Intelligence) Ανάπτυξη μεθόδων και τεχνολογιών για την επίλυση προβλημάτων στα οποία ο άνθρωπος υπερέχει (?) του υπολογιστή Συλλογισμοί (reasoning) Αναγνώριση (recognition) Δύο επίπεδα της νοημοσύνης Αναγνώριση/υποσυμβολικό Συμβολικό

3 Τεχνητή Νοημοσύνη (Artificial Intelligence) Αναγνώριση/υποσυμβολικό επίπεδο ----> επεξεργασία σημάτων και αριθμητικών πληροφοριών που δεχόμαστε από τους σένσορες (αισθήσεις) και μετατροπή τους σε σύμβολα Αντικείμενο της Υπολογιστικής Νοημοσύνης Συμβολικό επίπεδο ----> επεξεργασία των συμβόλων για συλλογισμούς, συμπεράσματα, απόδειξη θεωρημάτων κλπ Αντικείμενο της Συμβολικής Τεχνητής Νοημοσύνης

4 Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) (Artificial Neural Networks) Μια από τις τρεις βασικές κατηγορίες μεθόδων υπολογιστικής νοημοσύνης Οι άλλες δύο: Ασαφής Λογική (Fuzzy Logic) Εξελικτικός Υπολογισμός (evolutionary computing) ΤΝΔ: προέκυψαν από την ανάγκη να φτιάξουμε τεχνητά συστήματα (μηχανές, κυκλώματα) που να μιμούνται τον τρόπο λειτουργίας του βιολογικού εγκεφάλου (βιολογικά νευρωνικά δίκτυα)

5 Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) (Artificial Neural Networks) Πρόβλημα: δεν ξέρουμε ακόμα (με ακρίβεια) πώς λειτουργεί ο ανθρώπινος εγκέφαλος! 1950: απλουστευμένα μαθηματικά μοντέλα του εγκεφάλου. Τα πρώτα ΤΝΔ: προσομοίωση αυτών των μοντέλων σε υπολογιστή (επίλυση στοιχειωδών προβλημάτων)

6 Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) (Artificial Neural Networks) Βιολογικό ανάλογο: Ο εγκέφαλος αποτελείται από ένα τεράστιο αριθμό διασυνδεδεμένων νευρώνων (neurons), δηλαδή νευρικών κυττάρων. Κάθε νευρώνας δέχεται ερεθίσματα (εισόδους) από άλλα κύτταρα μέσω συνδέσεων τα οποία επηρεάζουν την κατάστασή του και, ανάλογα με την κατάσταση στην οποία βρίσκεται στέλνει ερεθίσματα (εξόδους) για να επηρεάσει με τη σειρά του την κατάσταση άλλων νευρώνων. Κάθε σύνδεση μεταξύ δύο νευρώνων χαρακτηρίζεται από μια τιμή ισχύος η οποία υποδηλώνει πόσο ισχυρή είναι η μεταξύ τους αλληλεπίδραση.

7 Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) (Artificial Neural Networks) δενδρίτες σώμα νευροάξονας συνάψεις x 1 x 0 =1 συνάρτηση ενεργοποίησης x 2 w 2 w 1 w 0 u g(u) o (έξοδος) w d x d

8 Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) (Artificial Neural Networks) ΤΕΧΝΗΤΟ ΝΕΥΡΩΝΙΚΟ ΔΙΚΤΥΟ (ΤΝΔ) Μία αρχιτεκτονική δομή (δίκτυο) αποτελούμενη από ένα πλήθος διασυνδεδεμένων μονάδων επεξεργασίας (τεχνητοί νευρώνες). Κάθε σύνδεση μεταξύ δύο μονάδων χαρακτηρίζεται από μια τιμή βάρους. Κάθε μονάδα επεξεργασίας χαρακτηρίζεται από εισόδους και εξόδους. Υλοποιεί τοπικά έναν απλό υπολογισμό με βάση τις εισόδους που δέχεται και μεταδίδει το αποτέλεσμα (έξοδος) σε άλλες μονάδες επεξεργασίας με τις οποίες συνδέεται. Οι τιμές των βαρών των συνδέσεων αποτελούν τη γνώση που είναι αποθηκευμένη στο ΤΝΔ και καθορίζουν τη λειτουργικότητά του. Συνήθως ένα ΤΝΔ αναπτύσσει μία συνολική λειτουργικότητα μέσω μιας μορφής εκπαίδευσης (μάθησης).

9 Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) (Artificial Neural Networks) Oι μονάδες λειτουργούν παράλληλα (ταυτόχρονα) και ο αριθμός τους μπορεί να είναι πολύ μεγάλος. Tα ΤΝΔ αποτελούν χαρακτηριστικό παράδειγμα μαζικά παράλληλου υπολογισμού (massively parallel computing)

10 Δυνατότητες των ΤΝΔ Βασικές ικανότητες του ανθρώπινου εγκεφάλου Μάθηση με παραδείγματα (π.χ. προβλήματα αναγνώρισης) Ικανότητα Γενίκευσης Αποθηκεύει εμπειρίες (κατανεμημένη αποθήκευση) Αυτοοργάνωση Ανοχή σε θόρυβο και ελλειπείς πληροφορίες Ανοχή σε βλάβες Οι ικανότητες του εγκεφάλου συμπληρωματικές ως προς τους συμβατικούς υπολογιστές Τις παραπάνω δυνατότητες έχουν (σε κάποιο βαθμό) και τα Τεχνητά Νευρωνικά Δίκτυα

11 Μάθηση με Παραδείγματα (Machine Learning) Εκπαίδευση ενός ΤΝΔ: καθορισμός των βαρών των συνδέσεών του έτσι ώστε να επιτελείται μια επιθυμητή λειτουργία η οποία περιγράφεται με τη χρήση παραδειγμάτων Ικανότητα Γενίκευσης: O αντικειμενικός στόχος της διαδικασίας εκπαίδευσης: να αποκτήσει δηλαδή το ΤΝΔ κατάλληλες τιμές βαρών ώστε να δίνει σωστές απαντήσεις για παραδείγματα που μοιάζουν σε αυτά με τα οποία εκπαιδεύτηκε Τα ΤΝΔ έχουν αποδειχθεί μια επιτυχημένη τεχνολογία για την ανάπτυξη συστημάτων με καλή γενικευτική ικανότητα χρησιμοποιώντας ένα σύνολο από αντιπροσωπευτικά παραδείγματα εκπαίδευσης.

12 Κατηγορίες Προβλημάτων Μάθησης με Παραδείγματα Mάθηση με επίβλεψη ή εποπτευόμενη μάθηση (supervised learning) Mάθηση χωρίς επίβλεψη ή μη εποπτευόμενη μάθηση (unsupervised learning) Mάθηση με ενίσχυση ή ενισχυτική μάθηση (reinforcement learning) Υπάρχουν και ενδιάμεσες κατηγορίες π.χ. μάθηση με ημι-επίβλεψη (semi-supervised learning)

13 Μάθηση με Επίβλεψη (supervised learning) Τα στοιχεία του συνόλου των παραδειγμάτων είναι ζεύγη της μορφής: (είσοδος, επιθυμητή έξοδος) (Χ={x i, t i )}, i=1,,n). Ποιοτικά μπορούμε να το σκεφτόμαστε και ως ζεύγη της μορφής: (ερώτηση, σωστή απάντηση). Tο σύστημα μάθησης υλοποιεί συσχετίσεις εισόδου εξόδου Oταν κάποιο δεδομένο x εμφανίζεται ως είσοδος θέλουμε το ΤΝΔ να παρέχει στην έξοδο την αντίστοιχη επιθυμητή τιμή t.

14 Μάθηση με Επίβλεψη (supervised learning) Ο όρος μάθηση με επίβλεψη προκύπτει από το ανθρωπομορφικό ανάλογο του επιβλέποντος : εποπτεύει το σύστημα μάθησης, θέτοντας ερωτήσεις και παρέχοντας ταυτόχρονα και τις αντίστοιχες σωστές απαντήσεις. Δύο μεγάλες κατηγορίες προβλημάτων: ταξινόμησης ή κατηγοριοποίησης (classification) t: ετικέτα κατηγορίας (class label) συναρτησιακής προσέγγισης (regression ή function approximation) t: αριθμός

15 Μάθηση χωρίς Επίβλεψη (unsupervised learning) Tα παραδείγματα εκπαίδευσης δεν περιλαμβάνουν την επιθυμητή έξοδο αλλά μόνο τα δεδομένα εισόδου (Χ={x i }, i=1,,n). Στόχος είναι η εξαγωγή κάποιων βασικών δομικών ιδιοτήτων των δεδομένων εκπαίδευσης (π.χ. εύρεση ομάδων). Παράδειγμα: έστω ένα σύνολο εκπαίδευσης που περιέχει μη χαρακτηρισμένα ως προς το περιεχόμενό τους κείμενα από μια εφημερίδα και στόχος της εκπαίδευσης είναι ο διαχωρισμός τους σε ένα δεδομένο αριθμό ομάδων ανάλογα με το περιεχόμενό τους. Θέλουμε στο τέλος της εκπαίδευσης τα κείμενα με αθλητικό, πολιτικό κλπ περιεχόμενο να έχουν καταταχθεί στην αντίστοιχη ομάδα.

16 Μάθηση χωρίς Επίβλεψη (unsupervised learning) Κατηγορίες Προβλημάτων Ομαδοποίηση (clustering): χωρισμός των δεδομένων εκπαίδευσης σε ομάδες έτσι ώστε δεδομένα στην ίδια ομάδα να μοιάζουν αρκετά μεταξύ τους και να είναι αρκετά διαφορετικά από τα δεδομένα των άλλων ομάδων. Μείωση της διάστασης των δεδομένων (dimensionality reduction): προβολή των δεδομένων σε ένα χώρο μικρότερης διάστασης στον οποίο να διατηρούνται κατά το δυνατόν οι σχετικές αποστάσεις μεταξύ των δεδομένων στον αρχικό πολυδιάστατο χώρο (μέθοδος PCA) Αν η διάσταση του χώρου προβολής είναι δύο τότε είναι δυνατή η οπτικοποίηση (visualisation) των αρχικών πολυδιάστατων δεδομένων. Toπογραφικός Χάρτη Δεδομένων (topographic data map)

17 Μάθηση με Ενίσχυση (reinforcement learning) Στο σύστημα μάθησης δεν παρέχεται η επιθυμητή έξοδος για κάθε είσοδο, αλλά μόνο η τιμή μιας ποσότητας που ονομάζεται σήμα ενίσχυσης (reinforcement signal) (Χ={x i, r i )}, i=1,,n), Το σήμα ενίσχυσης r δηλώνει εάν το σύστημα παρείχε σωστή ή λάθος απόκριση χωρίς όμως να παρέχει λεπτομέρειες για το ποια είναι η σωστή απόκριση Στην περίπτωση που το σύστημα μάθησης παρέχει λάθος έξοδο, ενημερώνεται ότι απάντησε λανθασμένα, αλλά δεν πληροφορείται σχετικά με το ποια είναι η σωστή έξοδος. Εφαρμογές σε ρομποτική, games

18 Παραδείγματα εφαρμογών ΤΝΔ Εφαρμογές Αναγνώρισης: Αναγνώριση φωνής, αναγνώριση ομιλούντος, αναγνώριση αντικειμένων σε εικόνες και video, αναγνώριση χαρακτήρων χειρόγραφου κειμένου, αναγνώριση προσώπων. Επεξεργασία πολυμεσικών δεδομένων: Ανάλυση, κατάτμηση και συμπίεση κατάτμηση εικόνων και video, παρακολούθηση τροχιάς αντικειμένων, αναγνώριση γεγονότων σε video. Διαχείριση Γνώσης: Ταξινόμηση κειμένων με βάση το περιεχόμενο, αυτόματη ομαδοποίηση ιστοσελίδων, ανίχνευση spam μηνυμάτων, ταξινόμηση χρηστών με βάση κάποιο προφίλ.

19 Παραδείγματα εφαρμογών ΤΝΔ Οικονομία, Επιχειρησιακή έρευνα: Μοντελοποίηση και πρόβλεψη χρονοσειρών σχετιζόμενων με τιμές μετοχών και οικονομικών δεικτών, συστήματα υποστήριξης αποφάσεων (π.χ. για χορήγηση δανείων). Ιατρική: Ανάλυση ηλεκτροκαρδιογραφήματος και άλλων βιολογικών σημάτων, επεξεργασία και κατάτμηση ιατρικών εικόνων (π.χ. εικόνων MRI, μαστογραφιών), συστήματα υποστήριξης ιατρικής διάγνωσης Βιοπληροφορική: Συστήματα διάγνωσης του καρκίνου με βάση εξετάσεις DNA (εικόνες από μικροσυστοιχίες DNA), ταξινόμηση πρωτεϊνών.

20 Παραδείγματα εφαρμογών ΤΝΔ Ρομποτική και Διαστημική τεχνολογία: Τα αυτόνομα ρομποτικά συστήματα που εξερευνούν τους ανεξερεύνητους πλανήτες εμπεριέχουν πολλά συστήματα ΤΝΔ για διάφορες λειτουργίες. Ταυτοποίηση και έλεγχος πολύπλοκων συστημάτων: Τα ΤΝΔ για συναρτησιακή προσέγγιση έχουν πολυάριθμες εφαρμογές για την ταυτοποίηση (μοντελοποίηση) συστημάτων (π.χ. βιομηχανικών διεργασιών) με βάση μετρήσεις εισόδου εξόδου, καθώς και για την κατασκευή ελεγκτών (controllers) για τα ταυτοποιημένα συστήματα.

21 Παραδείγματα εφαρμογών ΤΝΔ Οπτική παρακολούθηση σε γραμμές παραγωγής: Ανίχνευση (συνήθως με τη βοήθεια κάμερας) και απόρριψη ελαττωματικών αντικειμένων στις γραμμές παραγωγής. Μετεωρολογία: Μοντέλα πρόβλεψης της κίνησης των αερίων μαζών. Φυσική υψηλών ενεργειών: Αναγνώριση του τύπου των φυσικών σωματιδίων που δημιουργούνται στους αντιδραστήρες με βάση την τροχιά τους.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ Ενότητα #12: Εισαγωγή στα Nευρωνικά Δίκτυα Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Άδειες Χρήσης Το

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΤΝ)

Τεχνητή Νοημοσύνη (ΤΝ) Τεχνητή Νοημοσύνη (ΤΝ) (Artificial Intelligence (AI)) Η ΤΝ είναι ένα από τα πιο νέα ερευνητικά πεδία. Τυπικά ξεκίνησε το 1956 στη συνάντηση μερικών επιφανών επιστημόνων, όπως ο John McCarthy, ο Marvin

Διαβάστε περισσότερα

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων Δρ. Ε. Χάρου Πρόγραμμα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΔΗΜΟΚΡΙΤΟΣ exarou@iit.demokritos.gr Μηχανική

Διαβάστε περισσότερα

Πληροφορική 2. Τεχνητή νοημοσύνη

Πληροφορική 2. Τεχνητή νοημοσύνη Πληροφορική 2 Τεχνητή νοημοσύνη 1 2 Τι είναι τεχνητή νοημοσύνη; Τεχνητή νοημοσύνη (AI=Artificial Intelligence) είναι η μελέτη προγραμματισμένων συστημάτων τα οποία μπορούν να προσομοιώνουν μέχρι κάποιο

Διαβάστε περισσότερα

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία

ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ. Καραγιώργου Σοφία ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΜΑΤΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Καραγιώργου Σοφία Εισαγωγή Προσομοιώνει βιολογικές διεργασίες (π.χ. λειτουργία του εγκεφάλου, διαδικασία

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα & Περιβάλλον

Πληροφοριακά Συστήματα & Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Πληροφοριακά Συστήματα & Περιβάλλον Ενότητα 8: Τεχνητά Νευρωνικά Δίκτυα Παναγιώτης Λεφάκης Δασολογίας & Φυσικού Περιβάλλοντος Άδειες Χρήσης

Διαβάστε περισσότερα

ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM Μάθηση χωρίς επίβλεψη (unsupervised learning) Σύνολο εκπαίδευσης D={(x n )}, n=1,,n. x n =(x n1,, x nd ) T, δεν υπάρχουν τιμές-στόχοι t n. Προβλήματα μάθησης χωρίς

Διαβάστε περισσότερα

Μάθημα 1: Εισαγωγή στην. Υπολογιστική Νοημοσύνη

Μάθημα 1: Εισαγωγή στην. Υπολογιστική Νοημοσύνη Υπολογιστική Νοημοσύνη Μάθημα 1: Εισαγωγή στην Υπολογιστική Νοημοσύνη Εισαγωγή Ένας δυναμικά αναπτυσσόμενος κλάδος της Πληροφορικής είναι η Υπολογιστική Νοημοσύνη. Η Υπολογιστική Νοημοσύνη αποτελεί ένα

Διαβάστε περισσότερα

Αναγνώριση Προτύπων Ι

Αναγνώριση Προτύπων Ι Αναγνώριση Προτύπων Ι Ενότητα 1: Μέθοδοι Αναγνώρισης Προτύπων Αν. Καθηγητής Δερματάς Ευάγγελος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα.

Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ. Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. Τεχνητή Νοημοσύνη. TMHMA ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ Εξάμηνο 5ο Οικονόμου Παναγιώτης & Ελπινίκη Παπαγεωργίου. Νευρωνικά Δίκτυα. 1 ΤΕΧΝΗΤΑ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ Χαρακτηριστικά Είδη εκπαίδευσης Δίκτυα

Διαβάστε περισσότερα

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Βασικές αρχές εκπαίδευσης ΤΝΔ: το perceptron Βιολογικός Νευρώνας Δενδρίτες, που αποτελούν τις γραμμές εισόδου των ερεθισμάτων (βιολογικών σημάτων) Σώμα, στο οποίο γίνεται η συσσώρευση των ερεθισμάτων και

Διαβάστε περισσότερα

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων

Ανδρέας Παπαζώης. Τμ. Διοίκησης Επιχειρήσεων Ανδρέας Παπαζώης Τμ. Διοίκησης Επιχειρήσεων Περιεχόμενα Εργ. Μαθήματος Βιολογικά Νευρωνικά Δίκτυα Η έννοια των Τεχνητών Νευρωνικών Δικτύων Η δομή ενός νευρώνα Διαδικασία εκπαίδευσης Παραδείγματα απλών

Διαβάστε περισσότερα

Βιοπληροφορική και Πολυµέσα. Ειρήνη Αυδίκου Αθήνα

Βιοπληροφορική και Πολυµέσα. Ειρήνη Αυδίκου Αθήνα Βιοπληροφορική και Πολυµέσα Αθήνα 1.2.2009 ΠΕΡΙΕΧΟΜΕΝΑ 1. Πως σχετίζεται µε τα Πολυµέσα 2. Τι είναι η Βιοπληροφορική 3. Χρήσεις 4. Συµπεράσµατα 5. Βιβλιογραφία Βιοπληροφορική και Πολυµέσα 2 1. Τι είναι

Διαβάστε περισσότερα

Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες

Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες ΑΛΕΞΑΝΔΡΕΙΟ Τ.Ε.Ι. ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. Εφαρμογές Υπολογιστικής Νοημοσύνης στις Ασύρματες Επικοινωνίες Πτυχιακή εργασία Φοιτήτρια: Ριζούλη Βικτώρια

Διαβάστε περισσότερα

Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013

Προσομοίωση Νευρωνικού Δικτύου στο MATLAB. Κυριακίδης Ιωάννης 2013 Προσομοίωση Νευρωνικού Δικτύου στο MATLAB Κυριακίδης Ιωάννης 2013 Εισαγωγή Ένα νευρωνικό δίκτυο αποτελεί μια πολύπλοκη δομή, όπου τα βασικά σημεία που περιλαμβάνει είναι τα εξής: Πίνακες με τα βάρη των

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 1. Εισαγωγή

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας. Παρουσίαση Νο. 1. Εισαγωγή Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ακαδημαϊκό Έτος 2015-16 Παρουσίαση Νο. 1 Εισαγωγή Τι είναι η εικόνα; Οτιδήποτε μπορούμε να δούμε ή να απεικονίσουμε Π.χ. Μια εικόνα τοπίου αλλά και η απεικόνιση

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 1 η : Εισαγωγή Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Βασικά στοιχεία της ψηφιακής επεξεργασίας και

Διαβάστε περισσότερα

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων

Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Σημειώσεις στα πλαίσια του μαθήματος: Βελτιστοποίηση Συστημάτων Υδατικών Πόρων Υδροπληροφορική Εισαγωγή στην υδροπληροφορική και βελτιστοποίηση συστημάτων υδατικών πόρων Ανδρέας Ευστρατιάδης, Χρήστος Μακρόπουλος

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2016-2017 Περίοδος Σεπεμβρίου 2017 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Έκδοση 05.07.2017 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 3-4ο

Διαβάστε περισσότερα

Εισαγωγή στους Νευρώνες. Κυριακίδης Ιωάννης 2013

Εισαγωγή στους Νευρώνες. Κυριακίδης Ιωάννης 2013 Εισαγωγή στους Νευρώνες Κυριακίδης Ιωάννης 2013 Τι είναι τα Τεχνητά Νευρωνικά Δίκτυα; Είναι μια προσπάθεια μαθηματικής προσομοίωσης της λειτουργίας του ανθρώπινου εγκεφάλου. Είναι ένα υπολογιστικό μοντέλο

Διαβάστε περισσότερα

ΟΡΙΣΜΟΙ. Elaine Rich «ΤΝ είναι η μελέτη του πως να κάνουμε τους Η/Υ να κάνουν πράγματα για τα οποία, προς το παρόν, οι άνθρωποι είναι καλύτεροι.

ΟΡΙΣΜΟΙ. Elaine Rich «ΤΝ είναι η μελέτη του πως να κάνουμε τους Η/Υ να κάνουν πράγματα για τα οποία, προς το παρόν, οι άνθρωποι είναι καλύτεροι. Τι ειναι τελικά; ΟΡΙΣΜΟΙ Elaine Rich «ΤΝ είναι η μελέτη του πως να κάνουμε τους Η/Υ να κάνουν πράγματα για τα οποία, προς το παρόν, οι άνθρωποι είναι καλύτεροι.» Marvin Minsky «ΤΝ είναι η επιστήμη που

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Εισαγωγή Επιμέλεια: Πέτρος Π. Γρουμπός, Καθηγητής Γεώργιος Α. Βασκαντήρας, Υπ. Διδάκτορας Τμήμα Ηλεκτρολόγων Μηχανικών & Τεχνολογίας Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μεθοδολογίες Αξιοποίησης Δεδομένων

Μεθοδολογίες Αξιοποίησης Δεδομένων Μεθοδολογίες Αξιοποίησης Δεδομένων Βλάχος Σ. Ιωάννης Λέκτορας 407/80, Ιατρικής Σχολής Πανεπιστημίου Αθηνών Εργαστήριο Πειραματικής Χειρουργικής και Χειρουργικής Ερεύνης «Ν.Σ. Σ Χρηστέας» Στάδια Αξιοποίησης

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 1ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Αξιολόγηση μαθήματος Εισαγωγή στην ΥΝ Τεχνητά Νευρωνικά Δίκτυα (ΤΝΔ) Προγραμματισμός

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εργαστηριακή και Βιομηχανική Ηλεκτρονική Ηλ. Αμφ. 2, 3. Γλώσσες Προγραμματισμού Ι. Ηλ. Αμφ. 1, 2, 3, 4, 5

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εργαστηριακή και Βιομηχανική Ηλεκτρονική Ηλ. Αμφ. 2, 3. Γλώσσες Προγραμματισμού Ι. Ηλ. Αμφ. 1, 2, 3, 4, 5 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ Ακαδημαϊκό Έτος 2016-2017 Περίοδος Ιουνίου 2017 Έκδοση 08.06.2017 ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή

Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή Τεχνητή Νοημοσύνη (ΥΠ23) 6 ο εξάμηνο Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρανία Χατζή raniah@hua.gr 1 Εισαγωγή «Τεχνητή Νοημοσύνη (Artificial Intelligence) είναι ο τομέας της Επιστήμης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση

ΚΕΦΑΛΑΙΟ 18. 18 Μηχανική Μάθηση ΚΕΦΑΛΑΙΟ 18 18 Μηχανική Μάθηση Ένα φυσικό ή τεχνητό σύστηµα επεξεργασίας πληροφορίας συµπεριλαµβανοµένων εκείνων µε δυνατότητες αντίληψης, µάθησης, συλλογισµού, λήψης απόφασης, επικοινωνίας και δράσης

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. 1, 2 Ηλ. Αιθ. 001, 002. Γλώσσες Προγραμματισμού Ι Ηλ. Αμφ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. 1, 2 Ηλ. Αιθ. 001, 002. Γλώσσες Προγραμματισμού Ι Ηλ. Αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2015-2016 Περίοδος Ιουνίου 2016 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2015-2016 Περίοδος Σεπτεμβρίου 2016 ΠΡΟΓΡΑΜΜΑ ΕΠΑΝΑΛΗΠΤΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1-2o ΕΞΑΜΗΝΟ 3-4ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Ανάκτηση Πληροφορίας

Ανάκτηση Πληροφορίας Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Ανάκτηση Πληροφορίας Διδάσκων: Φοίβος Μυλωνάς fmylonas@ionio.gr Διάλεξη #02 Ιστορική αναδρομή Σχετικές επιστημονικές περιοχές 1 Άδεια χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων

Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Μέθοδοι Μηχανών Μάθησης για Ευφυή Αναγνώριση και ιάγνωση Ιατρικών εδοµένων Εισηγητής: ρ Ηλίας Ζαφειρόπουλος Εισαγωγή Ιατρικά δεδοµένα: Συλλογή Οργάνωση Αξιοποίηση Data Mining ιαχείριση εδοµένων Εκπαίδευση

Διαβάστε περισσότερα

Διδάσκουσα: Χάλκου Χαρά,

Διδάσκουσα: Χάλκου Χαρά, Διδάσκουσα: Χάλκου Χαρά, Διπλωματούχος Ηλεκτρολόγος Μηχανικός & Τεχνολογίας Η/Υ, MSc e-mail: chalkou@upatras.gr Επιβλεπόμενοι Μη Επιβλεπόμενοι Ομάδα Κατηγορία Κανονικοποίηση Δεδομένων Συμπλήρωση Ελλιπών

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ

ΠΡΟΓΡΑΜΜΑ ΤΕΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο ΕΞΑΜΗΝΟ 3ο ΕΞΑΜΗΝΟ 5ο ΕΞΑΜΗΝΟ 7ο ΕΞΑΜΗΝΟ 9ο ΕΞΑΜΗΝΟ 30/01/2017 31/01/2017 01/02/2017 02/02/2017 03/02/2017 Γραμμική Άλγεβρα Εισαγωγικό Εργαστήριο Ηλεκτρονικής και Τηλεπικοινωνιών Διαφορικές

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 10 η : Ανάλυση Εικόνας Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής Σκοποί ενότητας Εισαγωγή στη ψηφιακή ανάλυση εικόνας

Διαβάστε περισσότερα

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu.

Managing Information. Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business. e-mail: kyritsis@ist.edu. Managing Information Lecturer: N. Kyritsis, MBA, Ph.D. Candidate Athens University of Economics and Business e-mail: kyritsis@ist.edu.gr Διαχείριση Γνώσης Knowledge Management Learning Objectives Ποιοί

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση

Υπολογιστική Νοημοσύνη. Μάθημα 9: Γενίκευση Υπολογιστική Νοημοσύνη Μάθημα 9: Γενίκευση Υπερπροσαρμογή (Overfitting) Ένα από τα βασικά προβλήματα που μπορεί να εμφανιστεί κατά την εκπαίδευση νευρωνικών δικτύων είναι αυτό της υπερβολικής εκπαίδευσης.

Διαβάστε περισσότερα

Αλγόριθμος Ομαδοποίησης

Αλγόριθμος Ομαδοποίησης Αλγόριθμος Ομαδοποίησης Εμπειρίες από τη μελέτη αναλλοίωτων χαρακτηριστικών και ταξινομητών για συστήματα OCR Μορφονιός Κωνσταντίνος Αθήνα, Ιανουάριος 2002 Γενικά Ένα σύστημα OCR χρησιμοποιείται για την

Διαβάστε περισσότερα

7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ ο ΕΞΑΜΗΝΟ. Θεωρ. - Εργ.

7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ ο ΕΞΑΜΗΝΟ. Θεωρ. - Εργ. 7. ΠΡΟΓΡΑΜΜΑ ΚΟΡΜΟΥ 7.1. 1ο ΕΞΑΜΗΝΟ Υποχρεωτικά 9.2.32.1 Μαθηματική Ανάλυση (Συναρτήσεις μιας μεταβλητής) 5 0 9.2.04.1 Γραμμική Άλγεβρα 4 0 9.4.31.1 Φυσική Ι (Μηχανική) 5 0 3.4.01.1 Προγραμματισμός Ηλεκτρονικών

Διαβάστε περισσότερα

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

ΔΙΚΤΥO RBF. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων ΔΙΚΤΥO RBF Αρχιτεκτονική δικτύου RBF Δίκτυα RBF: δίκτυα συναρτήσεων πυρήνα (radial basis function networks). Πρόσθιας τροφοδότησης (feedforward) για προβλήματα μάθησης με επίβλεψη. Εναλλακτικό του MLP.

Διαβάστε περισσότερα

Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις

Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις Σχεδίαση μαθησιακών δραστηριοτήτων λογιστικά φύλλα υπερμεσικά περιβάλλοντα προσομοιώσεις Καθηγητής Τ. Α. Μικρόπουλος Προδιαγραφές Βασικό και αφετηριακό σημείο για τη σχεδίαση μαθησιακών δραστηριοτήτων

Διαβάστε περισσότερα

Τεχνολογίες Πληροφορικής και Επικοινωνιών (ΤΠΕ) για την υποστήριξη ιατρικών πράξεων σε νησιωτικές περιοχές στο Αιγαίο

Τεχνολογίες Πληροφορικής και Επικοινωνιών (ΤΠΕ) για την υποστήριξη ιατρικών πράξεων σε νησιωτικές περιοχές στο Αιγαίο Τεχνολογίες Πληροφορικής και Επικοινωνιών (ΤΠΕ) για την υποστήριξη ιατρικών πράξεων σε νησιωτικές περιοχές στο Αιγαίο ρ. Η. Μαγκλογιάννης Πανεπιστήµιο Αιγαίου Τµήµα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

Υπολογιστική Ευφυΐα και Εφαρµογές

Υπολογιστική Ευφυΐα και Εφαρµογές Υπολογιστική Ευφυΐα και Εφαρµογές ρ. Σταύρος Ι. Περαντώνης sper@iit.demokritos.gr Εργαστήριο Υπολογιστικής Ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΗΜΟΚΡΙΤΟΣ http://www.iit.demokritos.gr/cil

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (ΠΜΣ) «ΔΙΑΔΙΚΤΥΟ ΚΑΙ ΠΑΓΚΟΣΜΙΟΣ ΙΣΤΟΣ» ΤΟΥ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ Α.Π.Θ.

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (ΠΜΣ) «ΔΙΑΔΙΚΤΥΟ ΚΑΙ ΠΑΓΚΟΣΜΙΟΣ ΙΣΤΟΣ» ΤΟΥ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ Α.Π.Θ. ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ (ΠΜΣ) «ΔΙΑΔΙΚΤΥΟ ΚΑΙ ΠΑΓΚΟΣΜΙΟΣ ΙΣΤΟΣ» ΤΟΥ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ Α.Π.Θ. ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΠΟΤΙΜΗΣΗΣ ΣΠΟΥΔΩΝ Ακαδημαϊκό Έτος Εγγραφής

Διαβάστε περισσότερα

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη

Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη 6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Η Μηχανική Μάθηση στο Σχολείο: Μια Προσέγγιση για την Εισαγωγή της Ενισχυτικής Μάθησης στην Τάξη Σάββας Νικολαΐδης 1 ο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Στοχαστικά Συστήματα & Επικοινωνίες Ηλ. Αμφ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Ιουνίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Εργαστήριο Ψηφιακών Συστημάτων Ηλ. Εργ.

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Εφαρμοσμένος & Υπολογιστικός Ηλεκτρομαγνητισμός Ηλ. Αιθ. 012, 013. Εργαστήριο Ψηφιακών Συστημάτων Ηλ. Εργ. ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Ιουνίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο ΕΞΑΜΗΝΟ

Διαβάστε περισσότερα

Ισχύει μόνο για φοιτητές που εισήχθησαν στο Τμήμα από το ακαδ. έτος και πριν

Ισχύει μόνο για φοιτητές που εισήχθησαν στο Τμήμα από το ακαδ. έτος και πριν Ισχύει μόνο για φοιτητές που εισήχθησαν στο Τμήμα από το ακαδ. έτος 2003-04 και πριν Βασικός Κύκλος ΕΞΑΜΗΝΟ 1 Λογισμός Ι 11 4 Φυσική Ι 13 5 Γραμμική Αλγεβρα 15 4 Προγραμματισμός 17 4+2 Τεχνικό Σχέδιο 19

Διαβάστε περισσότερα

Τεχνολογίες Πληροφορικής και Επικοινωνιών (ΤΠΕ) για την υποστήριξη ιατρικών πράξεων σε νησιωτικές περιοχές στο Αιγαίο

Τεχνολογίες Πληροφορικής και Επικοινωνιών (ΤΠΕ) για την υποστήριξη ιατρικών πράξεων σε νησιωτικές περιοχές στο Αιγαίο Τεχνολογίες Πληροφορικής και Επικοινωνιών (ΤΠΕ) για την υποστήριξη ιατρικών πράξεων σε νησιωτικές περιοχές στο Αιγαίο Δρ. Η. Μαγκλογιάννης Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00)

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00) ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΥΧΟΛΟΓΙΑ (ΨΧ 00) Πέτρος Ρούσσος ΔΙΑΛΕΞΗ 4 Γνωστική ψυχολογία Οι πληροφορίες του περιβάλλοντος γίνονται αντικείμενο επεξεργασίας από τον εγκέφαλο μέσω γνωστικών διαδικασιών (αντίληψη, μνήμη,

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ. Διατάξεις Ημιαγωγών. Ηλ. Αιθ. 013. Αριθμητικές Μέθοδοι Διαφορικών Εξισώσεων Ηλ. Αιθ. 013 ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Ακαδημαϊκό Έτος 2014-2015 Περίοδος Φεβρουαρίου 2015 ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΩΡΑ 1ο-2ο ΕΞΑΜΗΝΟ 3ο-4ο ΕΞΑΜΗΝΟ 5ο-6ο

Διαβάστε περισσότερα

ΕΜΠΕΙΡΑ ΣΥΣΤΗΜΑΤΑ Χρυσόστομος Στύλιος

ΕΜΠΕΙΡΑ ΣΥΣΤΗΜΑΤΑ Χρυσόστομος Στύλιος ΕΜΠΕΙΡΑ ΣΥΣΤΗΜΑΤΑ Χρυσόστομος Στύλιος Email: stylios@teiep.gr Ιστοσελίδα: Ανακοινώσεις, διαφάνειες, εργασίες, χρήσιμοι σύνδεσμοι, κλπ. Ύλη του μαθήματος Εισαγωγή-Έμπειρα συστήματα. Αναπαράσταση γνώσης

Διαβάστε περισσότερα

Β Εξάµηνο Τίτλος Μαθήµατος Θ Φ Α.Π Ε Φ.E. Π.Μ Προαπαιτούµενα

Β Εξάµηνο Τίτλος Μαθήµατος Θ Φ Α.Π Ε Φ.E. Π.Μ Προαπαιτούµενα ΤΕΙ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε. ΣΥΝΟΠΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥ ΩΝ ΑΝΑ ΕΞΑΜΗΝΟ Α Εξάµηνο Τίτλος Μαθήµατος Θ Φ Α.Π Ε Φ.Ε Π.Μ Προαπαιτούµενα Κ10 ΜΑΘΗΜΑΤΙΚΗ ΑΝΑΛΥΣΗ

Διαβάστε περισσότερα

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 1 - Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos

ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Γλώσσες & Τεχνικές 4 ο Εξάμηνο. - Ενότητα 1 - Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos Γλώσσες & Τεχνικές 4 ο Εξάμηνο - Ενότητα 1 - Εισαγωγή στην Τεχνητή Νοημοσύνη Δημοσθένης Σταμάτης http://www.it.teithe.gr/~demos Τμήμα Πληροφορικής A.T.E.I. ΘΕΣΣΑΛΟΝΙΚΗΣ Rethinking University Teaching!!!

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ ΠΑΡΑ ΟΣΕΙΣ ΑΣΚΗΣΕΙΣ ΚΑΘΗΓΗΤΕΣ/ΤΡΙΕΣ

ΜΑΘΗΜΑΤΑ ΤΜΗΜΑΤΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ ΠΑΡΑ ΟΣΕΙΣ ΑΣΚΗΣΕΙΣ ΚΑΘΗΓΗΤΕΣ/ΤΡΙΕΣ Τεχνικές Προγραµµατισµού Εισαγωγή στον Προγραµµατισµό Γλώσσες Προγραµµατισµού, Θεωρία Γλωσσών Προγραµµατισµού 1999-2002 Θεωρία Γλωσσών 1996-2000, 2000-2002 Αρχές Γλωσσών Προγραµµατισµού 2002-2005 Τυπικές

Διαβάστε περισσότερα

Επιμέλεια παρουσίασης: Αριστείδης Παλιούρας ΤΙ ΕΊΝΑΙ ΈΝΑ ΡΟΜΠΟΤ (ROBOT)?

Επιμέλεια παρουσίασης: Αριστείδης Παλιούρας   ΤΙ ΕΊΝΑΙ ΈΝΑ ΡΟΜΠΟΤ (ROBOT)? 1 ΤΙ ΕΊΝΑΙ ΈΝΑ ΡΟΜΠΟΤ (ROBOT)? Τι είναι το ρομπότ (robot)? 1. Περιγράψτε με μια πρόταση την έννοια της λέξης ρομπότ (robot) Το ρομπότ είναι μια μηχανή που συλλέγει δεδομένα από το περιβάλλον του (αισθάνεται),

Διαβάστε περισσότερα

Τεχνητή νοηµοσύνη - 1 -

Τεχνητή νοηµοσύνη - 1 - Τεχνητή νοηµοσύνη Ο όρος τεχνητή νοηµοσύνη (ΤΝ, εκ του Artificial Intelligence) αναφέρεται στον κλάδο της επιστήµης υπολογιστών ο οποίος ασχολείται µε τη σχεδίαση και την υλοποίηση υπολογιστικών συστηµάτων

Διαβάστε περισσότερα

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ)

Πανεπιστήμιο Κύπρου. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) Πανεπιστήμιο Κύπρου Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών (ΗΜΜΥ) 26/01/2014 Συνεισφορά του κλάδους ΗΜΜΥ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Ευρύ φάσμα γνώσεων και επιστημονικών

Διαβάστε περισσότερα

219 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεσσαλονίκης

219 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεσσαλονίκης 219 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεσσαλονίκης Το Τμήμα Ηλεκτρολόγων Μηχανικών ιδρύθηκε με το ΒΔ.400/72 και άρχισε να λειτουργεί το 1972-73. Το ΑΠΘ είχε τότε ήδη 28.000 φοιτητές. Η ακριβής

Διαβάστε περισσότερα

Διδάσκων: Καθ. Αλέξανδρος Ρήγας Εξάμηνο: 9 ο

Διδάσκων: Καθ. Αλέξανδρος Ρήγας Εξάμηνο: 9 ο Δημοκρίτειο Πανεπιστήμιο Θράκης Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Τομέας Τηλεπικοινωνιών και Διαστημικής Εργαστήριο Ηλεκτρομαγνητικής Θεωρίας Διδάσκων: Καθ. Αλέξανδρος Ρήγας Εξάμηνο:

Διαβάστε περισσότερα

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Μάθηση και Γενίκευση. Τεχνητά Νευρωνικά Δίκτυα (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων Μάθηση και Γενίκευση Το Πολυεπίπεδο Perceptron (MultiLayer Perceptron (MLP)) Έστω σύνολο εκπαίδευσης D={(x n,t n )}, n=1,,n. x n =(x n1,, x nd ) T, t n =(t n1,, t np ) T Θα πρέπει το MLP να έχει d νευρώνες

Διαβάστε περισσότερα

Οικονόμου Παναγιώτης.

Οικονόμου Παναγιώτης. Οικονόμου Παναγιώτης panawths@gmail.com poikonomou@teilam.gr Οικονόμου Παναγιώτης 1 Ορισμός Συμπεράσματα Οικονόμου Παναγιώτης 2 Marvin Minsky «ΤΝ είναι η επιστήμη που κάνει τις μηχανές να κάνουν πράγματα

Διαβάστε περισσότερα

Ζωντανό Εργαστήριο Thessaloniki Active and Healthy Ageing Living Lab Παρακολούθηση ατόμων στο σπίτι σε πραγματικό χρόνο

Ζωντανό Εργαστήριο Thessaloniki Active and Healthy Ageing Living Lab Παρακολούθηση ατόμων στο σπίτι σε πραγματικό χρόνο 1 Ζωντανό Εργαστήριο Thessaloniki Active and Healthy Ageing Living Lab Παρακολούθηση ατόμων στο σπίτι σε πραγματικό χρόνο Συλλογή δεδομένων Μελέτη κινησιολογικών και συμπεριφορικών συνηθειών Πρόβλεψη ψυχικών

Διαβάστε περισσότερα

Συστήματα Αυτόματου Ελέγχου

Συστήματα Αυτόματου Ελέγχου ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Συστήματα Αυτόματου Ελέγχου Ενότητα : Ψηφιακός Έλεγχος Συστημάτων Aναστασία Βελώνη Τμήμα Η.Υ.Σ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Τμήμα Πληροφορικής και Τηλεπικοινωνιών Πρόγραμμα Μεταπτυχιακών Σπουδών Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων» Αργυροπούλου Αιμιλία

Διαβάστε περισσότερα

Εισαγωγή στα Πληροφοριακά Συστήματα

Εισαγωγή στα Πληροφοριακά Συστήματα Εισαγωγή στα Πληροφοριακά Συστήματα Ενότητα 3: Η έννοια της ΠΛΗΡΟΦΟΡΙΑΣ - INFORMATION Κωνσταντίνος Ταραμπάνης Τμήμα Οργάνωσης & Διοίκησης Επιχειρήσεων ΕΙΣΑΓΩΓΗ ΣΤΑ ΠΛΗΡΟΦΟΡΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κωνσταντίνος Ταραμπάνης

Διαβάστε περισσότερα

Κεφάλαιο 2.3: Προγραμματισμός. Επιστήμη ΗΥ Κεφ. 2.3 Καραμαούνας Πολύκαρπος

Κεφάλαιο 2.3: Προγραμματισμός. Επιστήμη ΗΥ Κεφ. 2.3 Καραμαούνας Πολύκαρπος Κεφάλαιο 2.3: Προγραμματισμός 1 2.3.1 Αναφορά σε γλώσσες προγραμματισμού και «Προγραμματιστικά Υποδείγματα» 2.3.1.1 Πρόγραμμα και Γλώσσες Προγραμματισμού Πρόγραμμα: σύνολο εντολών που χρειάζεται να δοθούν

Διαβάστε περισσότερα

Σκοπός του μαθήματος είναι ο συνδυασμός των θεωρητικών και ποσοτικών τεχνικών με τις αντίστοιχες περιγραφικές. Κεφάλαιο 1: περιγράφονται οι βασικές

Σκοπός του μαθήματος είναι ο συνδυασμός των θεωρητικών και ποσοτικών τεχνικών με τις αντίστοιχες περιγραφικές. Κεφάλαιο 1: περιγράφονται οι βασικές Εισαγωγή Ασχολείται με τη μελέτη των ηλεκτρικών, η λ ε κ τ ρ ο μ α γ ν η τ ι κ ώ ν κ α ι μ α γ ν η τ ι κ ώ ν φαινομένων που εμφανίζονται στους βιολογικούς ιστούς. Το αντικείμενο του εμβιοηλεκτρομαγνητισμού

Διαβάστε περισσότερα

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS

ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΘΕΜΑ : ΨΗΦΙΑΚΑ ΗΛΕΚΤΡΟΝΙΚΑ DIGITAL ELECTRONICS ΔΙΑΡΚΕΙΑ: 1 περιόδους 16/11/2011 10:31 (31) καθ. Τεχνολογίας ΚΑΤΗΓΟΡΙΕΣ ΜΕΓΕΘΩΝ ΑΝΑΛΟΓΙΚΟ (ANALOGUE) ΨΗΦΙΑΚΟ (DIGITAL) 16/11/2011 10:38 (38) ΕΙΣΑΓΩΓΗ ΣΤΑ

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Αυτόματος Έλεγχος Συστημάτων Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το

Διαβάστε περισσότερα

Βιοϊατρική τεχνολογία

Βιοϊατρική τεχνολογία Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Βιοϊατρική τεχνολογία Ενότητα 1: Εισαγωγή στη Βιοϊατρική Τεχνολογία Αν. καθηγητής Αγγελίδης Παντελής e-mail: paggelidis@uowm.gr ΕΕΔΙΠ Μπέλλου Σοφία e-mail:

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Λογική. Ενότητα 1: Εισαγωγή. Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Λογική Ενότητα 1: Εισαγωγή Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται στην άδεια χρήσης Creative Commons

Διαβάστε περισσότερα

Data Mining: Στοχεύοντας στους σωστούς πελάτες. Αριστομένης Μακρής

Data Mining: Στοχεύοντας στους σωστούς πελάτες. Αριστομένης Μακρής Data Mining: Στοχεύοντας στους σωστούς πελάτες To CRM front-office πελατών Οι Προμηθευτές Οι Πελάτες ΟΟργανισμός Τροφοδότηση ενεργειών Μάρκετινγκ ΒΙ Απόταδεδομέναστηγνώση Επιχειρηματική Γνώση Επιχειρηματικοί

Διαβάστε περισσότερα

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης Μάθημα 4 ο Δρ. Ανέστης Γ. Χατζημιχαηλίδης Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΤΕΙ Ανατολικής Μακεδονίας και Θράκης 2016-2017 Διευρυμένη Υπολογιστική Νοημοσύνη (ΥΝ) Επεκτάσεις της Κλασικής ΥΝ. Μεθοδολογίες

Διαβάστε περισσότερα

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ

ΚΥΡΙΑ ΣΤΟΙΧΕΙΑ ΜΑΘΗΜΑΤΟΣ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΑΥΤΟΜΑΤΙΣΜΟΥ ΣΥΣΤΗΜΑΤΑ ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ Ι Καθηγητής: Δ. ΔΗΜΟΓΙΑΝΝΟΠΟΥΛΟΣ Εργαστηριακοί Συνεργάτες: Σ. ΒΑΣΙΛΕΙΑΔΟΥ, Α. ΟΙΚΟΝΟΜΙΔΗΣ,

Διαβάστε περισσότερα

Μαθήματα Διατμηματικού Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσε

Μαθήματα Διατμηματικού Π.Μ.Σ. Μαθηματικά των Υπολογιστών και των Αποφάσε Διατμηματικού Π.Μ.Σ. "Μαθηματικά των Υπολογιστών και των Αποφάσε - «Μαθηματικές Θεμελιώσεις της Επιστήμης των Υπολογιστών» - «Στατιστική, Επιχειρησιακή Έρευνα» - «Θεωρία Αριθμητικών Υπολογισμών» Μεταπτυχιακά

Διαβάστε περισσότερα

Εισαγωγή Φώτης Πλέσσας

Εισαγωγή Φώτης Πλέσσας Ανάλυση Κυκλωμάτων Εισαγωγή Φώτης Πλέσσας fplessas@inf.uth.gr Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Δομή Παρουσίασης Εισαγωγικές Κυκλωμάτων Έννοιες Ανάλυσης Φυσικά και μαθηματικά μοντέλα

Διαβάστε περισσότερα

Ραγδαία τεχνολογική εξέλιξη

Ραγδαία τεχνολογική εξέλιξη ΣΦΑΙΡΕΣ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΔΡΑΣΤΗΡΙΟΤΗΤΩΝ Αχιλλέας Καμέας Ελληνικό Ανοικτό Πανεπιστήμιο & Ινστιτούτο Τεχνολογίας Υπολογιστών Ραγδαία τεχνολογική εξέλιξη 2 1 Mobile devices / tablets 3 Μικρές, φορητές συσκευές

Διαβάστε περισσότερα

Υπολογιστική Νοημοσύνη. Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen

Υπολογιστική Νοημοσύνη. Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen Υπολογιστική Νοημοσύνη Μάθημα 10: Ομαδοποίηση με Ανταγωνιστική Μάθηση - Δίκτυα Kohonen Ανταγωνιστικοί Νευρώνες Ένα στρώμα με ανταγωνιστικούς νευρώνες λειτουργεί ως εξής: Όλοι οι νευρώνες δέχονται το σήμα

Διαβάστε περισσότερα

Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές

Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Σχεδιάζοντας τη διδασκαλία των Μαθηματικών: Βασικές αρχές Φοιτητής: Σκαρπέντζος Γεώργιος Καθηγήτρια: Κολέζα Ευγενία ΠΕΡΙΕΧΟΜΕΝΑ Βασικές θεωρίες σχεδιασμού της διδασκαλίας Δραστηριότητες και κατανόηση εννοιών

Διαβάστε περισσότερα

Περιβαλλοντική πληροφορική - Ευφυείς εφαρµογές

Περιβαλλοντική πληροφορική - Ευφυείς εφαρµογές Περιβαλλοντική πληροφορική - Ευφυείς εφαρµογές ρ. Ε. Χάρου Πρόγραµµα υπολογιστικής ευφυίας Ινστιτούτο Πληροφορικής & Τηλεπικοινωνιών ΕΚΕΦΕ ΗΜΟΚΡΙΤΟΣ http://www.iit.demokritos.gr/neural Περιβαλλοντικά προβλήµατα

Διαβάστε περισσότερα

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η.

Κεφάλαιο 20. Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων. Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Κεφάλαιο 20 Ανακάλυψη Γνώσης σε Βάσεις δεδοµένων Τεχνητή Νοηµοσύνη - Β' Έκδοση Ι. Βλαχάβας, Π. Κεφαλάς, Ν. Βασιλειάδης, Φ. Κόκκορας, Η. Σακελλαρίου Τεχνητή Νοηµοσύνη, B' Έκδοση - 1 - Ανακάλυψη Γνώσης σε

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ

ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΗ ΚΑΙ ΑΥΤΟΜΑΤΙΣΜΟΣ ΡΟΜΠΟΤΙΚΗ Η Ρομποτική είναι ο κλάδος της επιστήμης που κατασκευάζει και μελετά μηχανές που μπορούν να αντικαταστήσουν τον άνθρωπο στην εκτέλεση μιας εργασίας. Tι είναι το ΡΟΜΠΟΤ

Διαβάστε περισσότερα

Εισαγωγή στη Γνωστική Ψυχολογία. επ. Κωνσταντίνος Π. Χρήστου

Εισαγωγή στη Γνωστική Ψυχολογία. επ. Κωνσταντίνος Π. Χρήστου Εισαγωγή στη Γνωστική Ψυχολογία Inside the black box για µια επιστήµη του Νου Επιστροφή στο Νου Γνωστική Ψυχολογία / Γνωσιακή Επιστήµη Inside the black box για µια επιστήµη του Νου Επιστροφή στο Νου Γνωστική

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Εισαγωγή στην Πληροφορική Λογισμικό Συστήματος & Εφαρμογών ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Συντήρησης Πολιτισμικής Κληρονομιάς Γενική Δομή Υπολογιστών Λειτουργικό σύστημα Υπολογιστής

Διαβάστε περισσότερα

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων Περίληψη ιδακτορικής ιατριβής Τριχακης Ιωάννης Εργαστήριο

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ ΙΑΝΟΥΑΡΙΟΥ ΦΕΒΡΟΥΑΡΙΟΥ (23/01/ /02/2017)

ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΤΙΚΗΣ ΠΕΡΙΟΔΟΥ ΙΑΝΟΥΑΡΙΟΥ ΦΕΒΡΟΥΑΡΙΟΥ (23/01/ /02/2017) Ελιά ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ Ι Δ Ρ Υ Μ Α ΓραμμικήΓραφήΒ' ΠΕΛΟΠΟΝΝΗΣΟΥ Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Ακαδ. Έτος 2016 2017 ΥΠΟΜΝΗΜΑ

Διαβάστε περισσότερα

ΡΟΜΠΟΤΙΚΗ ΟΡΑΣΗ. Όταν ένα ρομπότ κινείται σε άγνωστο χώρο ή σε χώρο που μπορεί να αλλάξει η διάταξή του τότε εμφανίζεται η ανάγκη της όρασης μηχανής.

ΡΟΜΠΟΤΙΚΗ ΟΡΑΣΗ. Όταν ένα ρομπότ κινείται σε άγνωστο χώρο ή σε χώρο που μπορεί να αλλάξει η διάταξή του τότε εμφανίζεται η ανάγκη της όρασης μηχανής. ΡΟΜΠΟΤΙΚΗ ΟΡΑΣΗ Όταν ένα ρομπότ κινείται σε άγνωστο χώρο ή σε χώρο που μπορεί να αλλάξει η διάταξή του τότε εμφανίζεται η ανάγκη της όρασης μηχανής. Αισθητήρες που χρησιμοποιούνται για να αντιλαμβάνεται

Διαβάστε περισσότερα

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ

ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ ΚΑΤΑΝΟΜΗ ΜΑΘΗΜΑΤΩΝ ΣΤΑ ΕΞΑΜΗΝΑ Θ = ΘΕΩΡΙΑ Ε = ΕΡΓΑΣΤΗΡΙΟ Σ = ΣΥΝΟΛΟ ΔΜ = ΔΙΔΑΚΤΙΚΕΣ ΜΟΝΑΔΕΣ ECTS = ΠΙΣΤΩΤΙΚΕΣ ΜΟΝΑΔΕΣ 1 ο ΕΞΑΜΗΝΟ Α ΕΤΟΣ 1ΚΠ01 Μαθηματική Ανάλυση Ι 4 1 5 5 5 1ΚΠ02 Γραμμική Άλγεβρα 4 5

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΠΡΟΓΡΑΜΜΑ ΠΡΟΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΩΡΟΛΟΓΙΟ ΠΡΟΓΡΑΜΜΑ ΔΙΔΑΣΚΑΛΙΑΣ ΜΑΘΗΜΑΤΩΝ Β ΕΞΑΜΗΝΟΥ - ΜΑΘΗΜΑΤΑ ΚΟΡΜΟΥ ΩΡΕΣ ΜΑΘΗΜΑ ΧΩΡΟΣ ΜΑΘΗΜΑ ΧΩΡΟΣ ΜΑΘΗΜΑ ΧΩΡΟΣ ΜΑΘΗΜΑ ΧΩΡΟΣ ΜΑΘΗΜΑ ΧΩΡΟΣ Εισαγωγή στην Ανάλυση Αλγορίθμων Εισαγωγή στην Ανάλυση Αλγορίθμων

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος.

Τεχνητή Νοημοσύνη. 19η διάλεξη ( ) Ίων Ανδρουτσόπουλος. Τεχνητή Νοημοσύνη 19η διάλεξη (2016-17) Ίων Ανδρουτσόπουλος http://www.aueb.gr/users/ion/ 1 Οι διαφάνειες αυτές βασίζονται σε ύλη των βιβλίων: Artificia Inteigence A Modern Approach των S. Russe και P.

Διαβάστε περισσότερα

Οικονόμου Παναγιώτης.

Οικονόμου Παναγιώτης. Οικονόμου Παναγιώτης panawths@gmail.com poikonomou@teilam.gr Οικονόμου Παναγιώτης 1 Παπαγεωργίου. 2 Αθήνα-Ελλάδα χρόνου 460 π.χ.? Ένας νεαρός άνδρας σκεπτόμενος το ενδεχόμενο γάμου, ζητά από τον Σωκράτη

Διαβάστε περισσότερα

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να:

Α.2 Μαθησιακά Αποτελέσματα Έχοντας ολοκληρώσει επιτυχώς το μάθημα οι εκπαιδευόμενοι θα είναι σε θέση να: ΒΑΣΙΚΕΣ ΠΛΗΡΟΦΟΡΙΕΣ Τίτλος Μαθήματος Μεθοδολογίες και Συστήματα Βιομηχανικής Αυτοματοποίησης Κωδικός Μαθήματος Μ3 Θεωρία / Εργαστήριο Θεωρία + Εργαστήριο Πιστωτικές μονάδες 4 Ώρες Διδασκαλίας 2Θ+1Ε Τρόπος/Μέθοδοι

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Γενετικός Αλγόριθμος Ταξινόμησης Genetic AIRS Ονοματεπώνυμο Φοιτητή Πατρώνυμο

Διαβάστε περισσότερα

Πιθανότητες & Στατιστική (ΜΥΥ 304)

Πιθανότητες & Στατιστική (ΜΥΥ 304) Πιθανότητες & Στατιστική (ΜΥΥ 304) Διδάσκων Κ. Μπλέκας, Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Σεπτέμβριος 2016 Πιθανότητες & Στατιστική Ώρες διδασκαλίας: Θεωρία Τρίτη 9-11 (Αμφιθέατρο

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 9: Τεχνητή νοημοσύνη Δημοσθένης Πασχαλίδης Τμήμα Ιερατικών Σπουδών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Τεχνολογία στην Εκπαίδευση Εισαγωγή. Χαρίκλεια Τσαλαπάτα 24/9/2012

Τεχνολογία στην Εκπαίδευση Εισαγωγή. Χαρίκλεια Τσαλαπάτα 24/9/2012 Τεχνολογία στην Εκπαίδευση Εισαγωγή Χαρίκλεια Τσαλαπάτα 24/9/2012 Μάθηση Γενικότερος όρος από την «εκπαίδευση» Την εκπαίδευση την αντιλαμβανόμαστε σαν διαδικασία μέσα στην τάξη «Μάθηση» παντού και συνεχώς

Διαβάστε περισσότερα

Εργαστήριο Ιατρικής Φυσικής

Εργαστήριο Ιατρικής Φυσικής Γενικές Πληροφορίες για Μέλη ΔΕΠ Ονοματεπώνυμο Αδάμ Αδαμόπουλος Βαθμίδα Επίκουρος Καθηγητής Γνωστικό Αντικείμενο Ιατρική Φυσική Εργαστήριο/Κλινική Εργαστήριο Ιατρικής Φυσικής Γραφείο Τηλέφωνο 25510 30501

Διαβάστε περισσότερα

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Σχολή Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών ίδα, 7 Ιουνίο ου 2012 Ημερ ΣχολήΗλεκτρολόγων Μηχ. & Μηχ. Υπολογιστών Προπτυχιακά μαθήματα ανά θεματική περιοχή: Ενεργειακή Διαχείριση Περιβάλλον Ποιότητα

Διαβάστε περισσότερα

Έλεγχος Κίνησης

Έλεγχος Κίνησης ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα 1501 - Έλεγχος Κίνησης Ενότητα: Συστήματα Ελέγχου Κίνησης Μιχαήλ Παπουτσιδάκης Τμήμα Αυτοματισμού Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα