Διακριτά Μαθηματικά. Ενότητα 2: Λογική και απόδειξη, Σύνολα, Συναρτήσεις

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Διακριτά Μαθηματικά. Ενότητα 2: Λογική και απόδειξη, Σύνολα, Συναρτήσεις"

Transcript

1 Διακριτά Μαθηματικά Ενότητα 2: Λογική και απόδειξη, Σύνολα, Συναρτήσεις Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

2 Σκοποί ενότητας Παρουσίαση βασικών εννοιών από: Λογική Αποδείξεις Σύνολα Συναρτήσεις Εξοικείωση, κατανόηση, εφαρμογή

3 Περιεχόμενα ενότητας Λογική και απόδειξη Σύνολα Συναρτήσεις

4 Διακριτά Μαθηματικά Λογική και απόδειξη, Σύνολα, Συναρτήσεις

5 Διακριτά Μαθηματικά: πυλώνες Image source: 5

6 Διακριτά Μαθηματικά: λογική 6

7 Διακριτά Μαθηματικά: αποδείξεις 7

8 Διακριτά Μαθηματικά: σύνολα 8

9 Διακριτά Μαθηματικά: συναρτήσεις 9

10 Λογική δήλωση σημασία κανόνες λογικής: διαχωρίζουν τα επιχειρήματα σε έγκυρα και άκυρα Η λογική έχει καθοριστική σημασία στην κατανόηση της (μαθηματικής) σκέψης 10

11 Πρόταση (Ι) Μια φράση που δηλώνει κάτι Μπορεί να είναι είτε αληθής είτε ψευδής αλλά όχι και τα δύο μαζί Αποτελεί βασικό κατασκευαστικό στοιχείο της λογικής 11

12 Πρόταση (ΙΙ) Μια φράση που δηλώνει κάτι Μπορεί να είναι είτε αληθής είτε ψευδής αλλά όχι και τα δύο μαζί Αποτελεί βασικό κατασκευαστικό στοιχείο της λογικής Η Αθήνα είναι πρωτεύουσα της Ελλάδας ΑΛΗΘΗΣ (TRUE T) Η Πάτρα είναι πρωτεύουσα της Ελλάδας ΨΕΥΔΗΣ (FALSE F) 1+1=2 ΑΛΗΘΗΣ (TRUE T) 2+2=3 ΨΕΥΔΗΣ (FALSE F) 12

13 Πρόταση (ΙΙΙ) Μια φράση που δηλώνει κάτι Μπορεί να είναι είτε αληθής είτε ψευδής αλλά όχι και τα δύο μαζί Αποτελεί βασικό κατασκευαστικό στοιχείο της λογικής Η Αθήνα είναι πρωτεύουσα της Ελλάδας ΑΛΗΘΗΣ (TRUE T) Η Πάτρα είναι πρωτεύουσα της Ελλάδας ΨΕΥΔΗΣ (FALSE F) 1+1=2 ΑΛΗΘΗΣ (TRUE T) 2+2=3 ΨΕΥΔΗΣ (FALSE F) Τι ώρα είναι; Διάβασέ το με προσοχή. x+1=2 x+y=z Οι φράσεις αυτές ΔΕΝ είναι προτάσεις γιατί είτε δε δηλώνουν κάτι είτε αυτό που δηλώνουν δεν είναι αληθές ή ψευδές 13

14 Προτασιακή λογική Προτασιακός λογισμός Τομέας της λογικής που ασχολείται με προτάσεις Αναπτύχθηκε συστηματικά από τον Αριστοτέλη Μαθηματικές φράσεις ή σύνθετες προτάσεις κατασκευάζονται από συνδυασμό μιας ή περισσότερων προτάσεων με χρήση λογικών τελεστών George Boole [1854]: Οι νόμοι της σκέψης Image source: 14

15 Λογικοί τελεστές: άρνηση Έστω p πρόταση. Άρνηση της p: η δήλωση «Δεν πρόκειται για την περίπτωση ότι η p» Συμβολίζεται p: όχι p Π.χ., p: Σήμερα είναι Παρασκευή p: Σήμερα ΔΕΝ είναι Παρασκευή 15

16 Λογικοί τελεστές: σύζευξη Έστω p και q προτάσεις. Σύζευξη των p και q: πρόταση που είναι αληθής όταν και η p και η q είναι αληθείς, διαφορετικά είναι ψευδής Συμβολίζεται p Λ q: p και q Π.χ., p: Σήμερα είναι Παρασκευή q: Σήμερα βρέχει pλq: Σήμερα είναι Παρασκευή ΚΑΙ σήμερα βρέχει 16

17 Λογικοί τελεστές: διάζευξη Έστω p και q προτάσεις. Διάζευξη των p και q: πρόταση που είναι ψευδής όταν και η p και η q είναι ψευδείς, διαφορετικά είναι αληθής Συμβολίζεται pvq: p ή q Π.χ., p: Όσοι δήλωσαν μαθηματικά μπορούν να παρακολουθήσουν το μάθημα q: Όσοι δήλωσαν επιστήμη των υπολογιστών μπορούν να παρακολουθήσουν το μάθημα pvq: Όσοι δήλωσαν μαθηματικά (p) Ή επιστήμη των υπολογιστών (q) μπορούν να παρακολουθούν το μάθημα 17

18 Λογικοί τελεστές: αποκλειστική διάζευξη Έστω p και q προτάσεις. Αποκλειστική Διάζευξη ή αποκλειστικό Ή των p και q: πρόταση που είναι αληθής όταν μόνο μία από τις p και q είναι αληθής, διαφορετικά είναι ψευδής Συμβολίζεται p q: είτε p είτε q Π.χ., p: Όσοι δήλωσαν μαθηματικά μπορούν να παρακολουθήσουν το μάθημα q: Όσοι δήλωσαν επιστήμη των υπολογιστών μπορούν να παρακολουθήσουν το μάθημα p q: Όσοι δήλωσαν ΕΙΤΕ μαθηματικά ΕΙΤΕ επιστήμη των υπολογιστών (ΑΛΛΑ ΟΧΙ ΚΑΙ ΤΑ ΔΥΟ) μπορούν να παρακολουθούν το μάθημα 18

19 Συνεπαγωγές Έστω p και q προτάσεις. Συνεπαγωγή p q: πρόταση που είναι ψευδής όταν η p είναι αληθής και η q ψευδής, διαφορετικά είναι αληθής p: υπόθεση ή προϋπόθεση q: συμπέρασμα ή συνέπεια Δισυποθετική p q: πρόταση που είναι αληθής όταν η p και η q έχουν τις ίδιες τιμές αλήθειας, διαφορετικά είναι ψευδής 19

20 Συνεπαγωγές: παραδείγματα p q Αν p τότε q Αν εκλεγώ θα μειώσω τους φόρους Αν σήμερα είναι Παρασκευή, τότε 2+3=5 Η τοπική ομάδα κερδίζει όταν βρέχει ή αλλιώς Αν βρέχει τότε η τοπική ομάδα κερδίζει Αντιθετοαντίστροφη Αν ΔΕΝ κερδίζει η τοπική ομάδα τότε ΔΕΝ βρέχει Αντίστροφη Ανητοπικήομάδακερδίζειτότε βρέχει Αντιθετική Αν Δεν βρέχει τότεητοπικήομάδαδενκερδίζει p q Μπορείς να μπεις στο αεροπλάνο αν και μόνον αν αγοράσεις εισιτήριο 20

21 Προτεραιότητα λογικών τελεστών 21

22 Μετάφραση φράσεων ομιλίας (Ι) Μπορούμε να έχουμε πρόσβαση στο Internet από πανεπιστημιακό χώρο μόνον αν είμαστε διπλωματούχοι Η/Υ ή όχι πρωτοετείς Πρόταση p = Μπορούμε να έχουμε πρόσβαση στο Internet από πανεπιστημιακό χώρο Πρόταση q = είμαστε διπλωματούχοι Η/Υ Πρόταση r = (είμαστε) πρωτοετείς p (q r) 22

23 Μετάφραση φράσεων ομιλίας (ΙΙ) Δε μπορούμε να ανεβούμε στο τραινάκι του λούνα παρκ με τις καμπύλες τροχιές αν έχουμε ύψος μικρότερο από 1,30 εκτός και αν είμαστε μεγαλύτεροι από 16 χρονών Πρόταση p = Μπορούμε να ανέβουμε στο τραινάκι του λούνα παρκ με τις καμπύλες τροχιές Πρόταση q = έχουμε ύψος μικρότερο από 1,30 Πρόταση r = είμαστε μεγαλύτεροι από 16 χρονών (q r) p 23

24 Μετάφραση φράσεων φυσικής γλώσσας σε λογικές εκφράσεις Δεμπορείνασταλείηαυτόματηαπάντησηόταντοσύστημα αρχείων είναι πλήρες Πρόταση p = Μπορεί να σταλεί η αυτόματη απάντηση Πρόταση q = το σύστημα αρχείων είναι πλήρες q p 24

25 Σύμφωνες (ήσυνεπείς) προτασιακές εκφράσεις (Ι) Υπάρχει ανάθεση τιμών στις μεταβλητές των προτασιακών εκφράσεων που τις κάνει όλες ΑΛΗΘΕΙΣ Το διαγνωστικό μήνυμα αποθηκεύεται στην προσωρινή μνήμη ή επαναμεταδίδεται = P1 Το διαγνωστικό μήνυμα δεν αποθηκεύεται στην προσωρινή μνήμη = P2 Αν το διαγνωστικό μήνυμα αποθηκεύεται στην προσωρινή μνήμη τότε επαναμεταδίδεται = P3 Πρόταση p = Το διαγνωστικό μήνυμα αποθηκεύεται στην προσωρινή μνήμη Πρόταση q = Το διαγνωστικό μήνυμα επαναμεταδίδεται P1: p q P2: p P3: p q Η ανάθεση p=0, q=1 δίνει P1: p q= 0 1=1 P2: p= 0=1 P3: p q=0 1=1 Οι προτασιακές εκφράσεις είναι συνεπείς 25

26 Σύμφωνες (ήσυνεπείς) προτασιακές εκφράσεις (ΙΙ) Υπάρχει ανάθεση τιμών στις μεταβλητές των προτασιακών εκφράσεων που τις κάνει όλες ΑΛΗΘΕΙΣ Το διαγνωστικό μήνυμα αποθηκεύεται στην προσωρινή μνήμη ή επαναμεταδίδεται = P1 Το διαγνωστικό μήνυμα δεν αποθηκεύεται στην προσωρινή μνήμη = P2 Αν το διαγνωστικό μήνυμα αποθηκεύεται στην προσωρινή μνήμη τότε επαναμεταδίδεται = P3 Το διαγνωστικό μήνυμα δεν επαναμεταδίδεται = P4 Πρόταση p = Το διαγνωστικό μήνυμα αποθηκεύεται στην προσωρινή μνήμη Πρόταση q = Το διαγνωστικό μήνυμα επαναμεταδίδεται P1: p q P2: p P3: p q P4: q Δεν υπάρχει ανάθεση τιμών στις p, q που να κάνει τις P1, P2, P3 ταυτόχρονα αληθείς Οι προτασιακές εκφράσεις δεν είναι συνεπείς 26

27 Προτασιακή λογική και αναζητήσεις στο Internet Με χρήση των AND ( ), OR ( ), NOT ( ) κάνουμε σύνθετη αναζήτηση στο Internet Ιστοσελίδες για πανεπιστήμια στο New Mexico NEW AND MEXICO AND UNIVERSITIES Ιστοσελίδες για πανεπιστήμια στο New Mexico ή στην Arizona (NEW AND MEXICO OR ARIZONA) AND UNIVERSITIES Ιστοσελίδες για πανεπιστήμια στο Mexico (MEXICO AND UNIVERSITIES) NOT NEW 27

28 Λογικοί γρίφοι Γρίφοι που μπορούν να λυθούν με χρήση λογικών συλλογισμών Αποτελούν εξαιρετικό τρόπο εξάσκησης με τους κανόνες της λογικής Χρησιμοποιούνται για την επίδειξη δυνατοτήτων προγραμμάτων υπολογιστών που είναι σχεδιασμένα για να εκτελούν λογικούς συλλογισμούς Γρίφοι Smullyan (Σμάλιεν) & Γρίφος των λασπωμένων παιδιών Image source: 28

29 Λογικοί γρίφοι: παραδείγματα (Ι) [Smullyan 1978] Σε ένα νησί υπάρχουν 2 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Συναντάμε 2 ανθρώπους, τον Α και τον Β Τι είναι ο Α και τι ο Β αν ΟΑλέει: ο Β είναι αφέντης Ο Β λέει: οι δυο μας είμαστε διαφορετικοί Αν Α αφέντης Α λέει αλήθεια Βαφέντης Β λέει αλήθεια Ακαι Β είναι διαφορετικοί: άτοπο Αν Α υπηρέτης Α λέει ψέματα Β είναι υπηρέτης Β λέει ψέματα Α και Β είναι ίδιοι: αληθές ΑΠΑΝΤΗΣΗ: Α υπηρέτης και Β υπηρέτης 29

30 Λογικοί γρίφοι: παραδείγματα (ΙΙ) [Smullyan 1978] Σε ένα νησί υπάρχουν 2 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Συναντάμε 2 ανθρώπους, τον Α και τον Β Τι είναι ο Α και τι ο Β αν ΟΑλέει: τουλάχιστον ένας από εμάς είναι υπηρέτης Ο Β λέει: τίποτα Αν Α είναι αφέντης Αλέειαλήθεια τουλάχιστον ένας από Α και Β είναι υπηρέτης Β είναι υπηρέτης Β λέει ψέματα: αληθές Αν Α είναι υπηρέτης Α λέει ψέματα και οι δύο ΔΕΝ είναι υπηρέτες: άτοπο ΑΠΑΝΤΗΣΗ: Ο Α είναι αφέντης και ο Β είναι υπηρέτες 30

31 Λογικοί γρίφοι: παραδείγματα (ΙΙΙ) [Smullyan 1978] Σε ένα νησί υπάρχουν 2 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Συναντάμε 2 ανθρώπους, τον Α και τον Β Τι είναι ο Α και τι ο Β αν ΟΑλέει: και οι δύο είμαστε αφέντες Ο Β λέει: ο Α είναι υπηρέτης Αν ο Α είναι αφέντης Α λέει αλήθεια Α και Β είναι αφέντες Βείναι αφέντης Βλέειαλήθεια οαείναιυπηρέτης: άτοπο Αν ο Α είναι υπηρέτης Α λέει ψέματα τουλάχιστον ένας από τους δύο ΔΕΝ είναι αφέντης Β μπορεί να είναι είτε αφέντης είτε υπηρέτης Αν ο Β είναι αφέντης Βλέειαλήθεια Α είναι υπηρέτης: αληθές Αν ο Β είναι υπηρέτης Β λέει ψέματα Α δεν είναι υπηρέτης: άτοπο ΑΠΑΝΤΗΣΗ: ο Α είναι υπηρέτης και ο Β είναι αφέντης 31

32 Λογικοί γρίφοι: παραδείγματα (ΙV) [Smullyan 1978] Σε ένα νησί υπάρχουν 2 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Συναντάμε 2 ανθρώπους, τον Α και τον Β Τι είναι ο Α και τι ο Β αν ΟΑλέει: είμαι υπηρέτης ή ο Β είναι αφέντης Ο Β λέει: τίποτα Αν ο Α είναι αφέντης Α λέει αλήθεια Β είναι αφέντης Β λέει αλήθεια: αληθές Αν ο Α είναι υπηρέτης Α λέει ψέματα ούτε Α υπηρέτης ούτε Β αφέντης: άτοπο ΑΠΑΝΤΗΣΗ: ο Α είναι αφέντης και ο Β είναι αφέντης 32

33 Λογικοί γρίφοι: παραδείγματα (V) [Smullyan 1978] Σε ένα νησί υπάρχουν 2 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Συναντάμε 2 ανθρώπους, τον Α και τον Β Τι είναι ο Α και τι ο Β αν ΟΑλέει: είμαι αφέντης Ο Β λέει: είμαι αφέντης Αν ο Α αφέντης Α λέει αλήθεια: αληθές Αν ο Α υπηρέτης Α λέει ψέματα: αληθές Αν ο Β είναι αφέντης Β λέει αλήθεια: αληθές Αν ο Β είναι υπηρέτης Β λέει ψέματα: αληθές ΑΠΑΝΤΗΣΗ: και ο Α και ο Β μπορεί να είναι είτε αφέντης είτε υπηρέτης 33

34 Λογικοί γρίφοι: παραδείγματα (VΙ) [Smullyan 1978] Σε ένα νησί υπάρχουν 2 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Συναντάμε 2 ανθρώπους, τον Α και τον Β Τι είναι ο Α και τι ο Β αν ΟΑλέει: είμαστε και οι δύο υπηρέτες Ο Β λέει: τίποτα Αν ο Α είναι αφέντης Α λέει αλήθεια Είναι και οι δύο υπηρέτες: άτοπο Αν ο Α είναι υπηρέτης Α λέει ψέματα τουλάχιστον ένας από τους δύο ΔΕΝ είναι υπηρέτης Β είναι αφέντης: αληθές ΑΠΑΝΤΗΣΗ: ο Α είναι υπηρέτης και ο Β είναι αφέντης 34

35 Λογικοί γρίφοι: παραδείγματα (VIΙ) [Smullyan 1978] Σε ένα νησί υπάρχουν 3 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Οι κατάσκοποι που μπορεί να λένε αλήθεια ή ψέματα Συναντάμε 3 ανθρώπους, τον Α, τον Β και τον C Ξέρουμε ότι από αυτούς ένας είναι αφέντης, ένας υπηρέτης και ένας κατάσκοπος Το κάθε άτομο ξέρει σε ποιες κατηγορίες ανήκουν τα άλλα δύο άτομα ΤιείναιοιΑ, Β,C αν ΟΑλέει: ο C είναι υπηρέτης ΟΒλέει: ο Α είναι αφέντης O C λέει: εγώ είμαι ο κατάσκοπος Αν ο Α είναι αφέντης Α λέει αλήθεια C είναι υπηρέτης C λέει ψέματα: αληθές Ο Β είναι ο κατάσκοπος: αληθές Αν ο Α είναι υπηρέτης Αλέειψέματα C ΔΕΝ είναι υπηρέτης C είναι κατάσκοπος Βείναι αφέντης Β λέει αλήθεια Α είναι αφέντης: άτοπο Αν ο Α είναι κατάσκοπος Αν ο Β είναι αφέντης Β λέει αλήθεια Α είναι αφέντης: άτοπο Αν ο Β είναι υπηρέτης Β λέει ψέματα Α δεν είναι αφέντης Ο C είναι αφέντης ο C λέει αλήθεια ο C είναι κατάσκοπος: άτοπο ΑΠΑΝΤΗΣΗ: ο Α είναι αφέντης, ο Β είναι κατάσκοπος και ο C υπηρέτης 35

36 Λογικοί γρίφοι: παραδείγματα (VIIΙ) [Smullyan 1978] Σε ένα νησί υπάρχουν 3 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Οι κατάσκοποι που μπορεί να λένε αλήθεια ή ψέματα Συναντάμε 3 ανθρώπους, τον Α, τον Β και τον C Ξέρουμε ότι από αυτούς ένας είναι αφέντης, ένας υπηρέτης και ένας κατάσκοπος Το κάθε άτομο ξέρει σε ποιες κατηγορίες ανήκουν τα άλλα δύο άτομα ΤιείναιοιΑ, Β,C αν ΟΑλέει: είμαι ο αφέντης ΟΒλέει: είμαι ο υπηρέτης O C λέει: ο Β είναι ο αφέντης Αν ο Α είναι αφέντης Α λέει αλήθεια: αληθές Αν ο Β είναι υπηρέτης Β λέει ψέματα: άτοπο Αν ο Β είναι κατάσκοπος C είναι υπηρέτης C λέει ψέματα Β δεν είναι αφέντης: αληθές Αν ο Α είναι υπηρέτης Αλέειψέματα: αληθές Αν ο Β είναι αφέντης Β λέει αλήθεια Β είναι υπηρέτης: άτοπο Αν ο Β είναι κατάσκοπος C είναι αφέντης C λέει αλήθεια Βείναιαφέντης: άτοπο Αν ο Α είναι κατάσκοπος Αν ο Β είναι αφέντης Β λέει αλήθεια Β είναι υπηρέτης: άτοπο Αν ο Β είναι υπηρέτης Β λέει ψέματα: άτοπο ΑΠΑΝΤΗΣΗ: ο Α είναι αφέντης, ο Β είναι κατάσκοπος και ο C υπηρέτης 36

37 Λογικοί γρίφοι: παραδείγματα (ΙX) [Smullyan 1978] Σε ένα νησί υπάρχουν 3 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Οι κατάσκοποι που μπορεί να λένε αλήθεια ή ψέματα Συναντάμε 3 ανθρώπους, τον Α, τον Β και τον C Ξέρουμε ότι από αυτούς ένας είναι αφέντης, ένας υπηρέτης και ένας κατάσκοπος Το κάθε άτομο ξέρει σε ποιες κατηγορίες ανήκουν τα άλλα δύο άτομα ΤιείναιοιΑ, Β,C αν ΟΑλέει: είμαι ο αφέντης ΟΒλέει: ο Α λέει αλήθεια O C λέει: είμαι ο κατάσκοπος Αν ο Α είναι αφέντης Α λέει αλήθεια: αληθές Αν ο Β είναι υπηρέτης Β λέει ψέματα Α λέει ψέματα: άτοπο Αν ο Β είναι κατάσκοπος Ο C είναι υπηρέτης ο C λέει ψέματα: αληθές Αν ο Α είναι υπηρέτης Αλέειψέματα: αληθές Αν ο Β είναι αφέντης Β λέει αλήθεια Αλέειαλήθεια: άτοπο (αφού Α υπηρέτης) Αν ο Α είναι κατάσκοπος Αν ο Β είναι αφέντης Β λέει αλήθεια Αλέειαλήθεια: άτοπο (μπορεί να λέει αλήθεια ή ψέματα) Αν ο Β είναι υπηρέτης Β λέει ψέματα Α λέει ψέματα: άτοπο (μπορεί να λέει αλήθεια ή ψέματα) ΑΠΑΝΤΗΣΗ: ο Α είναι αφέντης, ο Β είναι κατάσκοπος και ο C υπηρέτης 37

38 Λογικοί γρίφοι: παραδείγματα (X) [Smullyan 1978] Σεένανησίυπάρχουν3 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Οι κατάσκοποι που μπορεί να λένε αλήθεια ή ψέματα Συναντάμε 3 ανθρώπους, τον Α, τον Β και τον C Ξέρουμε ότι από αυτούς ένας είναι αφέντης, έναςυπηρέτηςκαιέναςκατάσκοπος Το κάθε άτομο ξέρει σε ποιες κατηγορίες ανήκουν τα άλλα δύο άτομα Τι είναι οι Α, Β,C αν Ο Α λέει: είμαι ο αφέντης Ο Β λέει: οαδενείναιουπηρέτης O C λέει: οβδενείναιουπηρέτης Αν ο Α είναι αφέντης Α λέει αλήθεια Αν ο Β είναι υπηρέτης Β λέει ψέματα Αείναιυπηρέτης: άτοπο Αν ο Β είναι κατάσκοπος o C είναι υπηρέτης o C λέει ψέματα ο Β είναι υπηρέτης: άτοπο Αν ο Α είναι υπηρέτης Αλέειψέματα Αν ο Β είναι αφέντης Β λέει αλήθεια Α δεν είναι υπηρέτης: άτοπο Αν ο Β είναι κατάσκοπος o C είναι αφέντης ο C λέει αλήθεια: αληθές Αν ο Α είναι κατάσκοπος Αν ο Β είναι αφέντης Β λέει αλήθεια: αληθές o C είναι υπηρέτης C λέει ψέματα: άτοπο Αν ο Β είναι υπηρέτης Β λέει ψέματα Αείναιυπηρέτης: άτοπο ΑΠΑΝΤΗΣΗ: ο Α είναι υπηρέτης, ο Β είναι κατάσκοπος και ο C αφέντης 38

39 Λογικοί γρίφοι: παραδείγματα (XI) [Smullyan 1978] Σεένανησίυπάρχουν3 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Οι κατάσκοποι που μπορεί να λένε αλήθεια ή ψέματα Συναντάμε 3 ανθρώπους, τον Α, τον Β και τον C Ξέρουμε ότι από αυτούς ένας είναι αφέντης, έναςυπηρέτηςκαιέναςκατάσκοπος Το κάθε άτομο ξέρει σε ποιες κατηγορίες ανήκουν τα άλλα δύο άτομα Τι είναι οι Α, Β,C αν Ο Α λέει: είμαι ο αφέντης Ο Β λέει: είμαι ο αφέντης O C λέει: είμαι ο αφέντης Αν ο Α είναι αφέντης Α λέει αλήθεια: αληθές Αν ο Β είναι υπηρέτης Β λέει ψέματα Β δεν είναι αφέντης ο C είναι κατάσκοπος: αληθές Αν ο Β είναι κατάσκοπος ο C είναι υπηρέτης ο C λέει ψέματα: αληθές Αν ο Α είναι υπηρέτης Αλέειψέματα: αληθές Αν ο Β είναι αφέντης Β λέει αλήθεια C είναι κατάσκοπος: αληθές Αν ο Β είναι κατάσκοπος ο C είναι αφέντης C λέει αλήθεια: αληθές Αν ο Α είναι κατάσκοπος Αν ο Β είναι αφέντης: Β λέει αλήθεια o C είναι υπηρέτης C λέει ψέματα: αληθές Αν ο Β είναι υπηρέτης Β λέει ψέματα o C είναι αφέντης C λέει αλήθεια: αληθές ΑΠΑΝΤΗΣΗ: οποιοσδήποτε από τους Α, B, C μπορεί να είναι ο υπηρέτης, ο κατάσκοπος και ο αφέντης 39

40 Λογικοί γρίφοι: παραδείγματα (XII) [Smullyan 1978] Σε ένα νησί υπάρχουν 3 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Οι κατάσκοποι που μπορεί να λένε αλήθεια ή ψέματα Συναντάμε 3 ανθρώπους, τον Α, τον Β και τον C Ξέρουμε ότι από αυτούς ένας είναι αφέντης, ένας υπηρέτης και ένας κατάσκοπος Το κάθε άτομο ξέρει σε ποιες κατηγορίες ανήκουν τα άλλα δύο άτομα ΤιείναιοιΑ, Β,C αν Ο Α λέει: δεν είμαι ο κατάσκοπος Ο Β λέει: δεν είμαι ο κατάσκοπος O C λέει: ο Α είναι ο κατάσκοπος Αν ο Α είναι αφέντης Α λέει αλήθεια Αν ο Β είναι υπηρέτης Β λέει ψέματα: άτοπο Αν ο Β είναι κατάσκοπος o C είναι υπηρέτης ο C λέει ψέματα Α δεν είναι κατάσκοπος: αληθές Αν ο Α είναι υπηρέτης Αλέειψέματα Α είναι κατάσκοπος: άτοπο Αν ο Α είναι κατάσκοπος Αν ο Β είναι αφέντης Β λέει αλήθεια o C είναι υπηρέτης C λέει ψέματα Α δεν είναι κατάσκοπος: άτοπο Αν ο Β είναι υπηρέτης Β λέει ψέματα Β είναι κατάσκοπος: άτοπο ΑΠΑΝΤΗΣΗ: ο Α είναι ο αφέντης, ο Β ο κατάσκοπος και ο C ο υπηρέτης 40

41 Λογικοί γρίφοι: παραδείγματα (XIIΙ) [Smullyan 1978] Σε ένα νησί υπάρχουν 3 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Οι κατάσκοποι που μπορεί να λένε αλήθεια ή ψέματα Συναντάμε 3 ανθρώπους, τον Α, τον Β και τον C Ξέρουμε ότι από αυτούς ένας είναι αφέντης, ένας υπηρέτης και ένας κατάσκοπος Το κάθε άτομο ξέρει σε ποιες κατηγορίες ανήκουν τα άλλα δύο άτομα ΤιείναιοιΑ, Β,C αν ΟΑλέει: δεν είμαι ο κατάσκοπος ΟΒλέει: δεν είμαι ο κατάσκοπος O C λέει: δεν είμαι ο κατάσκοπος Αν ο Α είναι αφέντης Α λέει αλήθεια Αν ο Β είναι υπηρέτης Β λέει ψέματα: άτοπο Αν ο Β είναι κατάσκοπος o C είναι υπηρέτης ο C λέει ψέματα ο C είναι ο κατάσκοπος: άτοπο Αν ο Α είναι υπηρέτης ο Α λέει ψέματα: άτοπο Αν ο Α είναι κατάσκοπος Αν ο Β είναι αφέντης Β λέει αλήθεια o C είναι υπηρέτης C λέει ψέματα: άτοπο Αν ο Β είναι υπηρέτης Β λέει ψέματα: άτοπο ΑΠΑΝΤΗΣΗ: δεν υπάρχει ανάθεση 41

42 Λογικοί γρίφοι: παραδείγματα (XΙV) [Smullyan 1978] Σε ένα νησί υπάρχουν 3 είδη κατοίκων: Οι αφέντες που λένε πάντα αλήθεια Οι υπηρέτες που λένε πάντα ψέματα Οι κατάσκοποι που μπορεί να λένε αλήθεια ή ψέματα Συναντάμε 3 ανθρώπους, τον Α, τον Β και τον C Ξέρουμε ότι από αυτούς ένας είναι αφέντης, ένας υπηρέτης και ένας κατάσκοπος Το κάθε άτομο ξέρει σε ποιες κατηγορίες ανήκουν τα άλλα δύο άτομα Τι είναι οι Α, Β,C αν Ο Α λέει: είμαι ο υπηρέτης Ο Β λέει: είμαι ο υπηρέτης O C λέει: ο Β είναι ο υπηρέτης Αν ο Α είναι αφέντης Αλέειαλήθεια Α είναι υπηρέτης: άτοπο Αν ο Α είναι υπηρέτης Α λέει ψέματα Α ΔΕΝ είναι υπηρέτης: άτοπο Αν ο Α είναι κατάσκοπος Αν ο Β είναι αφέντης Β λέει αλήθεια Β είναι υπηρέτης: άτοπο Αν ο Β είναι υπηρέτης Β λέει ψέματα: άτοπο ΑΠΑΝΤΗΣΗ: δεν υπάρχει 42

43 Γρίφος των λασπωμένων παιδιών Ένας πατέρας λέει στα παιδιά του ένα κορίτσι κι ένα αγόρι να παίξουν χωρίς να λερωθούν Τα παιδιά τελικά λερώνονται και τα δύο με λάσπες στο μέτωπο και όταν σταματούν να παίζουν ο πατέρας λέει: «Τουλάχιστον ένα από τα παιδιά έχει λασπωμένο μέτωπο» και ζητά και από τα δύο παιδιά να απαντήσουν με Ναι ή Όχι στην ερώτηση: «Μήπως γνωρίζεις αν το μέτωπό σου αν είναι λασπωμένο» Τι θα απαντήσουν τα παιδιά δεδομένου ότι: Μπορούν να δουν το μέτωπο του άλλου αλλά όχι το δικό τους Και τα δύο παιδιά είναι έντιμα και απαντούν ταυτόχρονα Ο πατέρας κάνει την ερώτηση 2 φορές 43

44 Γρίφος των λασπωμένων παιδιών: ανάλυση s = το αγόρι έχει λερωμένο μέτωπο d = το κορίτσι έχει λερωμένο μέτωπο Πατέρας: «τουλάχιστον ένας από τους 2 έχει λερωμένο μέτωπο» σημαίνει ότι η πρόταση s d πρέπει να είναι αληθής Και τα δύο παιδιά απαντούν ΟΧΙ στην ερώτηση του πατέρα «Γνωρίζεις αν το μέτωπό σου είναι λερωμένο;» αφού βλέπουν το μέτωπο του άλλου παιδιού λερωμένο, δηλ. Το αγόρι γνωρίζει ότι η d είναι αληθής αλλά δε γνωρίζει τι είναι η s Τοκορίτσιγνωρίζειότιηs είναι αληθής αλλά δε γνωρίζει τι είναι η d Μετά την απάντηση ΟΧΙ του αγοριού, το κορίτσι μπορεί να καταλάβει ότι η d είναι αληθής αφού διαφορετικά το αγόρι θα είχε απαντήσει ΝΑΙ Όμοια, μετά την απάντηση ΟΧΙ του κοριτσιού, το κορίτσι μπορεί να καταλάβει ότι η s είναι αληθής αφού διαφορετικά το κορίτσι θα είχε απαντήσει ΝΑΙ Επομένως, τη δεύτερη φορά που θα γίνει η ερώτηση, απαντάνε και οι δύο ΝΑΙ 44

45 Ταυτολογία, Αντιλογία, Ενδεχόμενο Ταυτολογία: σύνθετη πρόταση που είναι πάντα αληθής ανεξάρτητα από τις τιμές αλήθειας των προτάσεων που υπάρχουν σε αυτήν Αντιλογία ή Αντίφαση: σύνθετη πρόταση που είναι πάντα ψευδής Ενδεχόμενο: πρόταση που δεν είναι ούτε ταυτολογία ούτε αντίφαση Παράδειγμα ταυτολογίας και αντιλογίας: 45

46 Λογικά ισοδύναμες προτάσεις (Ι) Οι προτάσεις p και q είναι λογικά ισοδύναμες αν η p q είναι ταυτολογία Συμβολίζουμε p q 46

47 Λογικά ισοδύναμες προτάσεις (ΙΙ) Οι προτάσεις p και q είναι λογικά ισοδύναμες αν η p q είναι ταυτολογία Συμβολίζουμε p q 47

48 Λογικά ισοδύναμες προτάσεις (ΙΙΙ) Οι προτάσεις p και q είναι λογικά ισοδύναμες αν η p q είναι ταυτολογία Συμβολίζουμε p q 48

49 Κατηγορήματα (Ι) Π1: Το x είναι μεγαλύτερο από 3 Το x είναι το υποκείμενο της πρότασης Π1 «μεγαλύτερο του 3»: κατηγόρημα Συμβολίζουμε την πρόταση Π1 ως P(x), όπου P είναι το κατηγόρημα Ποιες είναι οι τιμές αλήθειας των P(4) (αληθής) και P(2) (ψευδής) ; 49

50 Κατηγορήματα (ΙΙ) Π2: Q(x,y): x=y+3 Ποια είναι η τιμή αλήθειας της Q(1,2); ψευδής Ποια είναι η τιμή αλήθειας της Q(3,0); αληθής Π3: R(x,y,z): x+y=z Ποια είναι η τιμή αλήθειας της R(1,2,3); αληθής Ποια είναι η τιμή αλήθειας της R(0,0,1); ψευδής 50

51 Ποσοτικοποιήσεις Καθολική ποσοτικοποίηση της P(x) είναι η πρόταση: H P(x) είναι αληθής για όλες τις τιμές του x στο πεδίο ορισμού : καθολικός ποσοδείκτης xp(x): για κάθε xp(x) Υπαρξιακή ποσοτικοποίηση της P(x) είναι η πρόταση: Υπάρχει στοιχείο x στο πεδίο ορισμού έτσι ώστε η P(x) να είναι αληθής : υπαρξιακός ποσοδείκτης xp(x): υπάρχει τουλάχιστον ένα x έτσι ώστε η P(x) ήγια κάποιο x P(x) 51

52 Ποσοτικοποιήσεις: καθολικός ποσοδείκτης Καθολικός ποσοδείκτης, : «για κάθε» x P(x) P(x): x+1>x Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x P(x) όταν το πεδίο ορισμού είναι οι πραγματικοί αριθμοί;(αληθής) Q(x): x<2 Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x Q(x) όταν το πεδίο ορισμού είναι οι πραγματικοί αριθμοί; (ψευδής) R(x): x 2 <10 Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x R(x) όταν το πεδίο ορισμού είναι οι θετικοί ακέραιοι που δεν υπερβαίνουν το 4; (ψευδής) Τ(x): ο x έχει 2 γονείς Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x Τ(x) όταν το πεδίο ορισμού είναι οι όλοι οι άνθρωποι; (αληθής) Κ(x): x 2 x Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x K(x) όταν το πεδίο ορισμού είναι Όλοι οι πραγματικοί αριθμοί; (ψευδής) Όλοι οι ακέραιοι; (αληθής) L(x): x 2 >0 Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x L(x) όταν το πεδίο ορισμού είναι όλοι οι ακέραιοι; (ψευδής) 52

53 Ποσοτικοποιήσεις: αντιπαράδειγμα Καθολικός ποσοδείκτης, : «για κάθε» x P(x) P(x): x+1>x Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x P(x) όταν το πεδίο ορισμού είναι οι πραγματικοί αριθμοί;(αληθής) Q(x): x<2 Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x Q(x) όταν το πεδίο ορισμού είναι οι πραγματικοί αριθμοί; (ψευδής) R(x): x 2 <10 Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x R(x) όταν το πεδίο ορισμού είναι οι θετικοί ακέραιοι που δεν υπερβαίνουν το 4; (ψευδής) Τ(x): ο x έχει 2 γονείς Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x Τ(x) όταν το πεδίο ορισμού είναι οι όλοι οι άνθρωποι; (αληθής) Κ(x): x 2 x Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x K(x) όταν το πεδίο ορισμού είναι Όλοι οι πραγματικοί αριθμοί; (ψευδής) Όλοι οι ακέραιοι; (αληθής) L(x): x 2 >0 Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x L(x) όταν το πεδίο ορισμού είναι όλοι οι ακέραιοι; (ψευδής) 53

54 Ποσοτικοποιήσεις: υπαρξιακός ποσοδείκτης Υπαρξιακός ποσοδείκτης, : «υπάρχει» x P(x) P(x): x>3 Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x P(x) όταν το πεδίο ορισμού είναι οι πραγματικοί αριθμοί;(αληθής) Q(x): x=x+1 Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x Q(x) όταν το πεδίο ορισμού είναι οι πραγματικοί αριθμοί; (ψευδής) R(x): x 2 >10 Ποια είναι η τιμή αλήθειας της ποσοτικοποίησης x R(x) όταν το πεδίο ορισμού είναι οι θετικοί ακέραιοι που δεν υπερβαίνουν το 4; (αληθής) 54

55 Καθολικός και υπαρξιακός ποσοδείκτης 55

56 Άρνηση ποσοτικοποιήσεων Υπάρχει φοιτητής στην τάξη που έχει διδαχθεί μαθηματικά Q(x): Ο φοιτητήςx έχει διδαχθεί μαθηματικά, xq(x) Άρνηση: Κάθε φοιτητής στην τάξη δεν έχει διδαχθεί μαθηματικά, x Q(x) Κάθε φοιτητής στην τάξη έχει διδαχθεί μαθηματικά P(x): Ο φοιτητήςx έχει διδαχθεί μαθηματικά, xp(x) Άρνηση: Υπάρχει φοιτητής που δεν έχει διδαχθεί μαθηματικά, x P(x) 56

57 Άρνηση ποσοτικοποιήσεων: παραδείγματα Ποιες είναι οι αρνήσεις των δηλώσεων Υπάρχει έντιμος πολιτικός Όλοι οι πολιτικοί είναι ανέντιμοι Όλοι οι Έλληνες τρώνε σάντουιτς Υπάρχει Έλληνας που δεν τρώει σάντουιτς x(x 2 >x) x (x 2 x) x(x 2 =2) x (x 2 2) 57

58 Από την καθομιλούμενη γλώσσα σε λογικές εκφράσεις Κάθε φοιτητής στην τάξη αυτή έχει μελετήσει ανώτερα μαθηματικά φοιτητής: x C(x):έχει μελετήσει ανώτερα μαθηματικά x C(x) Κάποιοι φοιτητές στην τάξη αυτή έχουν επισκεφθεί το Μεξικό x Μ(x) Κάθε φοιτητής στην τάξη αυτή έχει επισκεφθεί είτε τον Καναδά είτε το Μεξικό x (Κ(x) Μ(x)) 58

59 Αλίκη στη χώρα των θαυμάτων & Λογική;;; Lewis Caroll Charles Lutwidge Dodgson [ ] Συγγραφέας της «Αλίκης στη χώρα των θαυμάτων» Συμβολική Λογική, Το παιχνίδι της Λογικής Παραδείγματα λογικών συμβολισμών με χρήση ποσοτικοποιητών Image source: Image source: le.blogspot.gr/ 59

60 Σύνολα: χρησιμότητα Χρησιμοποιούνται για να ομαδοποιούν μεταξύ τους αντικείμενα Τα αντικείμενα σε ένα σύνολο έχουν παρόμοιες ιδιότητες Αποτελούν μέσο μελέτης παρόμοιων συλλογών με οργανωμένο τρόπο 60

61 Σύνολα: ορισμός Σύνολο: μη διαταγμένη συλλογή αντικειμένων (π.χ., Α) αντικείμενα ενός συνόλου: στοιχεία ή μέλη του συνόλου (π.χ., Α= {a,b,c,d}) Συμβολίζουμε b A για να δηλώσουμε ότι το b είναι στοιχείο του συνόλου Α Συμβολίζουμε f A για να δηλώσουμε ότι το f ΔΕΝ είναι στοιχείο του συνόλου Α 61

62 Σύνολα: περιγραφή Τα σύνολα περιγράφονται Με καταγραφή των στοιχείων τους {a,b,c,d} Σύνολο φωνηέντων αγγλικού αλφαβήτου: V={a,e,i,o,u} Σύνολο περιττών θετικών ακεραίων που είναι μικρότεροι του 10: Ο={1,3,5,7,9} Σύνολα μπορεί να περιέχουν και φαινομενικά μη συσχετιζόμενα στοιχεία: {α,2,evi,patras} Σύνολο θετικών ακεραίων που είναι μικτότεροι από 100: {1,2,3,,99} δεν καταγράφουμε όλα τα στοιχεία όταν είναι φανερή η γενική μορφή τους Ν={0,1,2,3, }: σύνολο φυσικών αριθμών Ζ={ 2, 1,0,1,2, }: σύνολο ακεραίων αριθμών Ζ + ={0,1,2, }: σύνολο θετικών ακεραίων αριθμών Q={p/q p Z, q Z, q 0}: σύνολο ρητών αριθμών R: σύνολο πραγματικών αριθμών Με συμβολισμό κατασκευής συνόλου, δηλ., με αναφορά κάποιας κοινής ιδιότητας των στοιχείων Ο={x ο x είναι περιττός θετικός ακέραιος μικρότερος του 10} R={x ο x είναι πραγματικός αριθμός} 62

63 Σύνολα: ιδιότητες Δύο σύνολα είναι ίσα αν και μόνον αν έχουν τα ίδια στοιχεία Τα σύνολα {1,3,5} και {3,5,1} είναι ίσα Δεν έχει σημασία η σειρά καταγραφής των στοιχείων ενός συνόλου Κενό: σύνολο χωρίς στοιχεία, {}, Μοναδιαίο: σύνολο με ένα στοιχείο, π.χ., {α}, { } Σύνολο Α είναι υποσύνολο ενός συνόλου Β (συμβολίζουμε Α Β) αν και μόνον αν κάθε στοιχείο του Α είναι και στοιχείο του Β Κάθε σύνολο έχει δύο (τετριμμένα) υποσύνολα: τον εαυτό του και το κενό σύνολο ( ) Σύνολο Α είναι γνήσιο υποσύνολο ενός συνόλου Β (συμβολίζουμε Α Β) όταν το Α είναι υποσύνολο του Β και επιπλέον Α Β 63

64 Σύνολα: πληθάριθμος Σ: σύνολο Το Σ περιέχει n ξεχωριστά στοιχεία n: μη αρνητικός ακέραιος το σύνολο Σ είναι πεπερασμένο και ο αριθμός n είναι ο πληθικός αριθμός ή πληθάριθμος συμβολίζεται με Σ του συνόλου Σ Σ : πλήθος στοιχείων του Σ Α: σύνολο περιττών θετικών ακέραιων που είναι μικρότεροι του 10 Α =5 Σ: σύνολο γραμμάτων ελληνικού αλφαβήτου Σ =24 S: σύνολο γραμμάτων αγγλικού αλφαβήτου S =26 =0 Ένα σύνολο είναι άπειρο αν ΔΕΝ είναι πεπερασμένο 64

65 Δυναμοσύνολο Δυναμοσύνολο συνόλου Α είναι το σύνολο όλων των υποσυνόλων του Α και συμβολίζεται με P(A) (P από Powerset = Δυναμοσύνολο) Β={0,1,2} P(B)={,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}} P( )={ } P({ })={,{ }} Αν Α =n P(A) =2 n Γιατί; Κάθε ένα από τα n στοιχεία του Α μπορεί είτε να μετέχει είτε να μη μετέχει σε κάποιο υποσύνολο 65

66 Καρτεσιανά γινόμενα Όταν μας ενδιαφέρει η σειρά των n στοιχείων σε μια συλλογή τότε έχουμε μια διατεταγμένη ομάδα n στοιχείων (α1,α2,,αn) Δύο διατεταγμένες ομάδες n στοιχείων είναι ίσες αν και μόνον αν κάθε αντίστοιχο ζευγάρι στοιχείων τους είναι ίσο (α1,α2,,αn)=(b1,b2,,bn) αν και μόνον αν αi=bi για i=1,2,,n Καρτεσιανό γινόμενο των σύνολων Α και Β, ΑxΒ είναιτοσύνολοτων διατεταγμένων ζευγών (α,b) με α Ακαιb Β ΑXB={(α,b) α Α b Β} A το σύνολο των φοιτητών του Τμήματος Β το σύνολο των μαθημάτων που προσφέρονται στο Τμήμα Το καρτεσιανό γινόμενο AxB περιέχει όλα τα διατεταγμένα ζεύγη της μορφής (α,b) όπου α είναι κάποιο άτομο που φοιτά στο Τμήμα και b κάποιο προσφερόμενο μάθημα Α={1,2} Β={a,b,c} AxB={(1,a),(1,b), (1,c),(2,a), (2,b),(2,c),} AxB BxA εκτός αν Α= ήβ= ήα=β Ένα υποσύνολο R του ΑxΒ ονομάζεται σχέση απότοσύνολοαστοσύνολοβ R={(α,0),(α,1),(b,1),(c,0),(c,3)} είναι σχέση από το σύνολο {α,b,c} στο σύνολο {0,1,2,3} 66

67 Πράξεις με σύνολα: Ένωση ΈστωότιταΑκαιΒείναισύνολα. Η ένωση των συνόλων Α και Β συμβολίζεται με Α Β και είναι το σύνολο που περιέχει τα στοιχεία που ανήκουν είτε στο Α ή στο Β ή και στα δύο. Ένα στοιχείο x ανήκειστηντομήτωνακαιβανκαιμόνονανx A ή x B. Δηλαδή: Α Β={x x AV x B}. Α Β Είναι σκιασμένη η Α Β Η τομή των συνόλων {1,3,5} και {1,2,3} είναι το σύνολο {1,3} δηλ. {1,3,5} {1,2,3}={1,2,3,5}. 67

68 Πράξεις με σύνολα: Τομή ΈστωότιταΑκαιΒείναισύνολα. Η τομή των συνόλων Α και Β συμβολίζεται με Α Βκαιείναιτοσύνολοπουπεριέχει τα στοιχεία που ανήκουν και στο Α και στο Β. Ένα στοιχείο x ανήκειστηντομήτωνακαιβανκαιμόνονανx A και x B. Δηλαδή: Α Β={x x A Λ x B}. Α Β Είναι σκιασμένη η Α Β Η τομή των συνόλων {1,3,5} και {1,2,3} είναι το σύνολο {1,3} δηλ. {1,3,5} {1,2,3}={1,3}. 68

69 Πράξεις με σύνολα: Τομή Δύο σύνολα λέγονται ξένα μεταξύ τους όταν η τομή τους είναι το κενό σύνολο Δηλ., όταν δεν έχουν κοινά στοιχεία Α={1,3,5,7,9} και Β={2,4,6,8,10} Α Β= άρα Α και Β ξένα μεταξύ τους Α Β = Α + Β Α Β Η γενίκευση σε ενώσεις αυθαίρετου πλήθους συνόλων ονομάζεται αρχή Εγκλεισμού Αποκλεισμού 69

70 Πράξεις με σύνολα: Διαφορά ΈστωότιταΑκαιΒείναισύνολα. Η διαφορά των συνόλων Α και Β συμβολίζεται με Α Β και είναι το σύνολο που περιέχει τα στοιχεία που βρίσκονται στο Α αλλά όχι στο Β. Η διαφορά των Α και Β ονομάζεται και συμπλήρωμα του Β ως προς το Α. Ένα στοιχείο x ανήκει στη διαφορά των Α και Β αν και μόνον αν x A και x B. Δηλαδή: Α Β={x x A Λ x B}. Α Β Είναι σκιασμένη η Α Β Ηδιαφοράτων{1,3,5} και {1,2,3} είναι το σύνολο {5} δηλ. {1,3,5} {1,2,3}={5}. Αυτή είναι διαφορετική από τη διαφορά των {1,2,3} και {1,3,5} που είναι το σύνολο {2} 70

71 Πράξεις με σύνολα: Συμπλήρωμα Έστω ότι U είναι το γενικό σύνολο. Το συμπλήρωμα του συνόλου Α συμβολίζεται με Ā και είναι το συμπλήρωμα του Α ως προς το σύνολο U. Δηλ., το συμπλήρωμα του συνόλου Α είναι η διαφορά U A. Ένα στοιχείο x ανήκει στο Ā αν και μόνον αν x A. Δηλαδή: Ā={x x Α}. U Α Είναι σκιασμένo το Ā Έστω Α={a,e,i,o,u} και το γενικό σύνολο είναι το σύνολο των γραμμάτων του αγγλικού Αλφαβήτου. Τότε Ā={b,c,d,f,g,h,j,k,l,m,n,p,q,r,s,t,v,w,x,y,z}. 71

72 Πράξεις με σύνολα: Συμπλήρωμα Έστω ότι U είναι το γενικό σύνολο. Το συμπλήρωμα του συνόλου Α συμβολίζεται με Ā και είναι το συμπλήρωμα του Α ως προς το σύνολο U. Δηλ., το συμπλήρωμα του συνόλου Α είναι η διαφορά U A. Ένα στοιχείο x ανήκει στο Ā αν και μόνον αν x A. Δηλαδή: Ā={x x Α}. U Α Είναι σκιασμένo το Ā ΈστωΑτοσύνολοτωνθετικώνακεραίωνπουείναιμεγαλύτεροιτου10 και το γενικό σύνολο είναι το σύνολο των θετικών ακεραίων. Τότε Ā={1,2,3,4,5,6,7,8,9,10} 72

73 Ασκήσεις 73

74 A (A B)=A Αν x A (A B) (από τον ορισμό της τομής) x A και x (A B) Αν x A (από τον ορισμό της ένωσης) x (A B) (από τον ορισμό της τομής) x A (A B) 74

75 75

76 Συναρτήσεις: ιδέα Σε κάθε στοιχείο ενός συνόλου Α αναθέτουμε ένα συγκεκριμένο στοιχείο ενός συνόλου Β (μπορεί να είναι Α=Β) Π.χ., ανάθεση βαθμών σε φοιτητές Γιώργος Κωνσταντίνα Κατερίνα Σταύρος Κώστας Η ανάθεση αυτή αποτελεί παράδειγμα συνάρτησης 76

77 Συναρτήσεις: ορισμός ΈστωότιταΑκαιΒείναισύνολα. Συνάρτηση f από το Α στο Β είναι ανάθεση ενός μόνο στοιχείου του Β σε κάθε στοιχείο του Α. Γράφουμε f(α)=b αν b είναι το μοναδικό στοιχείο του Β που έχει ανατεθεί από τη συνάρτηση f στο στοιχείο α του Α. Αν η f είναι συνάρτηση από το Α στο Β γράφουμε f: A B α b=f(α) Ησυνάρτησηf απεικονίζειτοσύνολοαστοσύνολοβ 77

78 Συναρτήσεις: ορισμός Αν η f είναι συνάρτηση από το Α στο Β λέμε ότι το Α είναι το πεδίο ορισμού της f και το Β είναι το σύνολο τιμών της f. Αν f(α)=b λέμε ότι το b είναι εικόνα του α και το α είναι πρότυπο του b. Το πεδίο τιμών της f είναι το σύνολο όλων των εικόνων των στοιχείων του Α. Αν η f είναι συνάρτηση από το Α στο Β λέμε ότι η f απεικονίζει το Α στο Β α b=f(α) Ησυνάρτησηf απεικονίζειτοσύνολοαστοσύνολοβ 78

79 Παράδειγμα Έστω ότι f είναι η συνάρτηση που αναθέτει τα τελευταία 2 bits μιας Συμβολοσειράς bit μήκους 2 ή παραπάνω στη συμβολοσειρά αυτή. Τότε το πεδίο ορισμού της f είναι το σύνολο όλων των συμβολοσειρών bit μήκους 2 ή παραπάνω και το σύνολο τιμών της είναι το σύνολο {00,01,10,11}. 79

80 Συναρτήσεις: εικόνα συνόλου Έστω f συνάρτησηαπότοσύνολοαστοσύνολοβκαιέστωs υποσύνολο του Α. Η εικόνα του S είναι το υποσύνολο του Β που αποτελείται από τις εικόνες των στοιχείων του S. Συμβολίζουμε την εικόνα του S με f(s) έτσι ώστε: f(s)={f(s) s S} ΈστωΑ={a,b,c,d,e} καιβ={1,2,3,4} με f(a)=2, f(b)=1, f(c)=4, f(d)=1 και f(e)=1. Η εικόνα του υποσυνόλου S={b,c,d} είναι το σύνολο f(s={1,4}. 80

81 Συναρτήσεις ένα προς ένα Διαφορετικά στοιχεία του πεδίου ορισμού έχουν διαφορετικές εικόνες Μια συνάρτηση f είναι ένα προς ένα αν και μόνον αν f(x) f(y) αν x y Ησυνάρτησηf(x)=x+1 είναι ένα προς ένα αφού f(x+1) f(y+1) όταν x y Η παρακάτω συνάρτηση είναι ένα προς ένα α β γ δ

82 Συναρτήσεις επί Χρησιμοποιείται όλο το πεδίο ορισμού τους Μια συνάρτηση f από το σύνολο Α στο σύνολο Β είναι επί αν και μόνον αν για κάθε στοιχείο b Β υπάρχει στοιχείο α Αμεf(α)=b α β γ δ

83 Αντιστοιχίες Μια συνάρτηση f αντιστοιχία αν είναι και έναπρος ένα και επί α β γ 1 α 2 β 3 γ 4 δ α β γ δ 1 α 2 β 3 γ 4 δ α β γ

84 Ασκήσεις (Ι) ΠΤ=Το σύνολο των ακεραίων ΠΤ=Το σύνολο των μη αρνητικών άρτιων ακεραίων ΠΤ={0,1,2,3,4,5,6,7} ΠΤ={0,1,4,9,16,25,36,49,64, } Μόνο η (a) 84

85 Ασκήσεις (ΙΙ) 85

86 Ασκήσεις (ΙΙΙ) Αν Amy αφέντης Amy λέει αλήθεια Amy είναι αθώα: άτοπο αφού ο ένοχος είναι αφέντης Αν η Brenda αφέντης Brenda λέει αλήθεια Amy λέει αλήθεια Amy είναι αθώα Amy ΔΕΝ είναι αφέντης Αν Amy είναι υπηρέτης Amy λέει ψέματα Amy δεν είναι αθώα Amy είναι ένοχη Amy είναι αφέντης: άτοπο Αν Amy είναι κανονική Αν η Claire είναι υπηρέτης Claire λέει ψέματα: άτοπο Αν η Claire είναι κανονική Αν Brenda υπηρέτης Brenda λέει ψέματα Amy λέει ψέματα Amy δεν είναι αθώα Amy είναι αφέντης: άτοπο 86

87 Ασκήσεις (ΙV) 87

88 Λογικά παράδοξα Το παράδοξο του Επιμενίδη από την Κρήτη Κρῆτες ἀεὶ ψεῦσται (οι Κρήτες είναι πάντα ψεύτες) Λύση: φαίνεται να εννοούσε όλους τους άλλους Κρήτες εκτός από τον εαυτό του Το παράδοξο της κάρτας του Jourdain Σε μια καρτ ποστάλ υπάρχουν οι εξής δηλώσεις: Μπροστά μέρος: Η πρόταση στο άλλο μέρος είναι ΑΛΗΘΗΣ Ό, τι λέει η μητέρα σου είναι σωστό Πίσω μέρος: Η πρόταση στο άλλο μέρος είναι ΨΕΥΔΗΣ Ό, τι λέει ο πατέρας σου είναι λάθος Λύση: καμία πρόταση δεν είναι αληθής ή ψευδής Το παράδοξο του κουρέα (Bertrand Russell) Σε ένα χωριό, ο κουρέας ξυρίζει μόνον όποιον δεν ξυρίζεται μόνος του Ποιος ξυρίζει τον κουρέα; Λύση: δεν υπάρχει τέτοιος κουρέας 88

89 Τέλος Ενότητας

90 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

91 Σημειώματα

92 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση Έχουν προηγηθεί οι κάτωθι εκδόσεις:

93 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Εύη Παπαϊωάννου. «Διακριτά Μαθηματικά. Λογική και απόδειξη, Σύνολα, Συναρτήσεις». Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση:

94 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] nc sa/4.0/ Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί.

95 Σημείωμα Χρήσης Έργων Τρίτων (1/3) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Kenneth H. Rosen. Διακριτά μαθηματικά και εφαρμογές τους, 7ηΈκδοση, 2014, ΕΚΔΟΣΕΙΣ Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε, ISBN: , κωδικός Βιβλίου στον Εύδοξο:

96 Σημείωμα Χρήσης Έργων Τρίτων (2/3) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Πίνακες Kenneth H. Rosen. Διακριτά μαθηματικά και εφαρμογές τους, 7ηΈκδοση, 2014, ΕΚΔΟΣΕΙΣ Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε, ISBN: , κωδικός Βιβλίου στον Εύδοξο:

97 Σημείωμα Χρήσης Έργων Τρίτων (3/3) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εκφωνήσεις ασκήσεων Kenneth H. Rosen. Διακριτά μαθηματικά και εφαρμογές τους, 7ηΈκδοση, 2014, ΕΚΔΟΣΕΙΣ Α. ΤΖΙΟΛΑ & ΥΙΟΙ Α.Ε, ISBN: , κωδικός Βιβλίου στον Εύδοξο:

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Διακριτά Μαθηματικά Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Διακριτά Μαθηματικά: πυλώνες Image source: http://www.patrasevents.gr Διακριτά Μαθηματικά: λογική Διακριτά Μαθηματικά: αποδείξεις Διακριτά Μαθηματικά:

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις

Διακριτά Μαθηματικά. Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Διακριτά Μαθηματικά Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Λογική Αποδείξεις Σύνολα Συναρτήσεις Διακριτά Μαθηματικά Αποτελεί τη βάση εξαγωγής μαθηματικών συμπερασμάτων Λογική Αποδείξεις Σύνολα Συναρτήσεις

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Εξεταστέα ύλη. Ιανουάριος και Σεπτέμβριος 2016

Διακριτά Μαθηματικά. Εξεταστέα ύλη. Ιανουάριος και Σεπτέμβριος 2016 Διακριτά Μαθηματικά Εξεταστέα ύλη Ιανουάριος και Σεπτέμβριος 2016 Διακριτά Μαθηματικά Λογική, Αποδείξεις, Σύνολα, Συναρτήσεις Λογική δήλωση σημασία κανόνες λογικής: διαχωρίζουν τα επιχειρήματα σε έγκυρα

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 5: Απαρίθμηση: Διωνυμικοί συντελεστές

Διακριτά Μαθηματικά. Ενότητα 5: Απαρίθμηση: Διωνυμικοί συντελεστές Διακριτά Μαθηματικά Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση βασικών εννοιών από: Απαρίθμηση

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός

Διακριτά Μαθηματικά. Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Διακριτά Μαθηματικά Ενότητα 7: Προχωρημένες μέθοδοι απαρίθμησης: Εγκλεισμός Αποκλεισμός Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων

Διαβάστε περισσότερα

Θέματα υπολογισμού στον πολιτισμό

Θέματα υπολογισμού στον πολιτισμό Θέματα υπολογισμού στον πολιτισμό Ενότητα 6: Μοντελοποίηση υπολογισμού: Κανονικές εκφράσεις Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων

Διαβάστε περισσότερα

Θέματα υπολογισμού στον πολιτισμό

Θέματα υπολογισμού στον πολιτισμό Θέματα υπολογισμού στον πολιτισμό Ενότητα 5: Μοντελοποίηση υπολογισμού: Πεπερασμένα αυτόματα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και

Διαβάστε περισσότερα

Θέματα υπολογισμού στον πολιτισμό

Θέματα υπολογισμού στον πολιτισμό Θέματα υπολογισμού στον πολιτισμό Ενότητα 4: Μοντελοποίηση υπολογισμού: Γραμματικές Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών

Τεχνητή Νοημοσύνη Ι. Ενότητα 7:Προτασιακή Λογική. Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τεχνητή Νοημοσύνη Ι Ενότητα 7:Προτασιακή Λογική Πέππας Παύλος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Προτασιακή Λογική Σκοποί ενότητας 2 Περιεχόμενα ενότητας Προτασιακή

Διαβάστε περισσότερα

Θέματα υπολογισμού στον πολιτισμό

Θέματα υπολογισμού στον πολιτισμό Θέματα υπολογισμού στον πολιτισμό Ενότητα 1: Εισαγωγή Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Εισαγωγή

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 6: Όριο και συνέχεια συναρτήσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 6: Προτασιακός Λογισμός Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 6: Προτασιακός Λογισμός Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας

Διαβάστε περισσότερα

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών

Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &

Διαβάστε περισσότερα

Θεωρία Λήψης Αποφάσεων

Θεωρία Λήψης Αποφάσεων Θεωρία Λήψης Αποφάσεων Ενότητα 3: Ασκήσεις Bayes Περιοχές Απόφασης Διακρίνουσες Συναρτήσεις Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Πληροφορική ΙΙ Θεματική Ενότητα 5

Πληροφορική ΙΙ Θεματική Ενότητα 5 Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Πληροφορική ΙΙ Θεματική Ενότητα 5 Λογικοί Τελεστές Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 1: Συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ

Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων

K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων K15 Ψηφιακή Λογική Σχεδίαση 3: Προτασιακή Λογική / Θεωρία Συνόλων Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Στοιχεία προτασιακής λογικής Περιεχόμενα

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας

Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα

Διαβάστε περισσότερα

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων

1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων 1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά HY118-Διακριτά Μαθηματικά Παρασκευή, 02/03/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 02-Mar-18

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης

Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα 11: Βασικές έννοιες ψηφιακής λογικής Βασίλης Παλιουράς Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Γιατί χρησιμοποιούμε

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 12: Μήτρες (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 2:Στοιχεία Μαθηματικής Λογικής Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθμους

Εισαγωγή στους Αλγόριθμους Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Βάσεις Περιβαλλοντικών Δεδομένων

Βάσεις Περιβαλλοντικών Δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 5: Οι διαδοχικές επεκτάσεις της έννοιας του αριθμού: ακέραιος, κλάσμα, ρητός και πραγματικός αριθμός Δημήτρης Χασάπης

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη

Διαβάστε περισσότερα

Διοικητική Λογιστική

Διοικητική Λογιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Διδακτική Απειροστικού Λογισμού

Διδακτική Απειροστικού Λογισμού Διδακτική Απειροστικού Λογισμού Ενότητα 4: Θέματα σχετικά με τη διδασκαλία της συνέχειας. Ζαχαριάδης Θεοδόσιος Τμήμα Μαθηματικών 4. ΣΥΝΕΧΕΙΑ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ 1. Σε μια τάξη Γ Λυκείου στα μαθηματικά κατεύθυνσης

Διαβάστε περισσότερα

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων

Διαβάστε περισσότερα

Ενότητα. Εισαγωγή στις βάσεις δεδομένων

Ενότητα. Εισαγωγή στις βάσεις δεδομένων Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Να ενημερωθούν οι

Διαβάστε περισσότερα

Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ

Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ Ενότητα: 7 η Ελένη Περδικούρη Τμήμα Φιλοσοφίας 1 Ενότητα 7 η Πότε γνωρίζω; Α. Τα κριτήρια της γνώσης (Μετά τα Φυσικά Α 1 και Αναλυτικά Ύστερα Ι

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 1 : Σύνολα & Σχέσεις (1/2) Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου

Διαβάστε περισσότερα

Ενότητα 1: Εισαγωγή στην έννοια της Φιλοσοφίας του Δικαίου

Ενότητα 1: Εισαγωγή στην έννοια της Φιλοσοφίας του Δικαίου ΦΙΛΟΣΟΦΙΑ ΤΟΥ ΔΙΚΑΙΟΥ Ενότητα 1: Εισαγωγή στην έννοια της Φιλοσοφίας του Δικαίου Παρούσης Μιχαήλ Τμήμα Φιλοσοφίας Σκοποί της ενότητας Το μάθημα είναι εισαγωγικό και στοχεύει να καταγράψει τα εξής: 1.Τι

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Θεωρία Υπολογισμού. Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας

Θεωρία Υπολογισμού. Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Θεωρία Υπολογισμού Ενότητα 5 : Λογικά Επιχειρήματα, Αλφάβητα & Γλώσσες (2/2) Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα Τμήμα Μηχανικών

Διαβάστε περισσότερα

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι

Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος I Εναρξη μαθήματος 5 7 Υπολογιστική Άλγεβρα (439) ) Ευάγγελος

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 4: Εκθετικές και λογαριθμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων

Διαβάστε περισσότερα

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών

Διαβάστε περισσότερα

Αρχεία και Βάσεις Δεδομένων

Αρχεία και Βάσεις Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αρχεία και Βάσεις Δεδομένων Διάλεξη 7η: Σχεσιακός Λογισμός Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Σχεσιακός Λογισμός Γλώσσα βασισμένη στον Κατηγορηματικό

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 4: Εισαγωγή / Σύνολα Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 4: Εισαγωγή / Σύνολα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 1: Εισαγωγή

Διακριτά Μαθηματικά. Ενότητα 1: Εισαγωγή Διακριτά Μαθηματικά Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Βιβλιογραφία Αντικείμενο μαθήματος Χρησιμότητα

Διαβάστε περισσότερα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα

Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Θεωρία Συνόλων, Συναρτήσεις Πραγματικής Μεταβλητής, Όριο και Συνέχεια Ανδριανός Ε Τσεκρέκος Τμήμα Λογιστικής

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 6: Συμπίεση Έργου Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Εισαγωγή στους Υπολογιστές

Εισαγωγή στους Υπολογιστές Εισαγωγή στους Υπολογιστές Ενότητα #5: Δομές επιλογής Καθ. Δημήτρης Ματαράς Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Δομές επιλογής MATLAB Programming Α. Καλαμπούνιας Η δομή επιλογής if Η δομή if στο

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 10: Συστήματα γραμμικών εξισώσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών

Διαβάστε περισσότερα

Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Μεθοδολογία εφαρμογής προγράμματος Ολικής Ποιότητας

Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Μεθοδολογία εφαρμογής προγράμματος Ολικής Ποιότητας Διοίκηση Ολικής Ποιότητας & Επιχειρηματική Αριστεία Ενότητα 1.3.3: Ψωμάς Ευάγγελος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.) Υποενότητα

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός 1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Κβαντική Επεξεργασία Πληροφορίας

Κβαντική Επεξεργασία Πληροφορίας Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί

Διαβάστε περισσότερα

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση

Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών

Διαβάστε περισσότερα

Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού

Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος II Πολυώνυμα μίας μεταβλητής 17 Κεφάλαιο 3 Πολυώνυμα τρίτου βαθμού 3.1 Μάθημα

Διαβάστε περισσότερα

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ

ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ ΛΟΓΙΚΟ-ΜΑΘΗΜΑΤΙΚΕΣ ΣΧΕΣΕΙΣ & ΑΡΙΘΜΗΤΙΚΕΣ ΕΝΝΟΙΕΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΕΚΠΑΙΔΕΥΣΗ Ενότητα 4: Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία ΚΛΑΣΜΑ ΚΑΙ ΚΛΑΣΜΑΤΙΚΟΣ ΑΡΙΘΜΟΣ ΤΙ ΕΙΝΑΙ ΤΟ ΚΛΑΣΜΑ

Διαβάστε περισσότερα

Εφαρμοσμένη Βελτιστοποίηση

Εφαρμοσμένη Βελτιστοποίηση Εφαρμοσμένη Βελτιστοποίηση Ενότητα 2: Συναρτήσεις Χώροι - Μεταβλητές Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 7: Σχέσεις και Συναρτήσεις Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 7: Σχέσεις και Συναρτήσεις Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 2: Θερμοδυναμικές συναρτήσεις Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή νέων θερμοδυναμικών συναρτήσεων

Διαβάστε περισσότερα

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος

Διαβάστε περισσότερα

Διακριτά Μαθηματικά. Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα

Διακριτά Μαθηματικά. Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Διακριτά Μαθηματικά Ενότητα 3: Απαρίθμηση: Εισαγωγικά στοιχεία Αρχή του Περιστεριώνα Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών

Διαβάστε περισσότερα

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων

Διαβάστε περισσότερα

Βέλτιστος Έλεγχος Συστημάτων

Βέλτιστος Έλεγχος Συστημάτων Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα

Διαβάστε περισσότερα

Δομημένος Προγραμματισμός

Δομημένος Προγραμματισμός Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Δομημένος Προγραμματισμός Ενότητα 4: Εντολές ελέγχου ροής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 9: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (1o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Εισαγωγή στην Πληροφορική

Εισαγωγή στην Πληροφορική Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Εισαγωγή στην Πληροφορική Ενότητα 2: Ψηφιακή Λογική Ι Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν

Διαβάστε περισσότερα

Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος)

Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) 1 Περιεχόμενα 1 η Άσκηση Λειτουργίες του βιβλίου διευθύνσεων σε ένα πρόγραμμα ηλεκτρονικού ταχυδρομείου... 4 2 η Άσκηση Λειτουργίες

Διαβάστε περισσότερα

Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ

Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ Η ΓΝΩΣΗ ΚΑΙ ΤΟ ΠΡΑΓΜΑΤΙΚΟ ΣΤΟΝ ΠΛΑΤΩΝΑ ΚΑΙ ΤΟΝ ΑΡΙΣΤΟΤΕΛΗ Ενότητα: 1 η Ελένη Περδικούρη Τμήμα Φιλοσοφίας 1 Ενότητα 1 η Το ερώτημα της γνώσης 1. Τι γνωριζουμε, δηλαδη ποια ειναι τα αντικειμενα της γνωσης

Διαβάστε περισσότερα

Μαθηματική Ανάλυση ΙI

Μαθηματική Ανάλυση ΙI Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση ΙI Ενότητα 3: Συναρτήσεις πολλών μεταβλητών Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και

Διαβάστε περισσότερα

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών

Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων

Διαβάστε περισσότερα

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής

Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Κβαντική Φυσική Ι Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια πρώτη επαφή με την έννοια των τετραγωνικών

Διαβάστε περισσότερα

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης

Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα

Διαβάστε περισσότερα

Επιχειρησιακή Έρευνα

Επιχειρησιακή Έρευνα Επιχειρησιακή Έρευνα Ενότητα 8: Επίλυση με τη μέθοδο Simplex (2 ο μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων (Δ.Ε.Α.Π.Τ.)

Διαβάστε περισσότερα

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στους Αλγορίθμους Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 3: Σύνολα Συνδυαστική Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως

Διαβάστε περισσότερα

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)

Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα