4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη.

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη."

Transcript

1 4.4 Μετατροπή από μία μορφή δομής επανάληψης σε μία άλλη. Η μετατροπή μιας εντολής επανάληψης σε μία άλλη ή στις άλλες δύο εντολές επανάληψης, αποτελεί ένα θέμα που αρκετές φορές έχει εξεταστεί σε πανελλαδικό επίπεδο. Στη συνέχεια παρουσιάζεται μία συνολική προσέγγιση των μετατροπών από μία εντολή επανάληψης στις άλλες δύο εντολές επανάληψης εφόσον μπορούν να πραγματοποιηθούν. Αν και παρατίθενται μεθοδολογίες που καλύπτουν όλες τις δυνατές περιπτώσεις μετατροπών, σημειώνεται ότι οι συγκεκριμένοι κανόνες δεν είναι απόλυτοι και για αυτό σε περίπτωση που κάποιος δεν τους ακολουθήσει είναι καθοριστικής σημασίας η εικονική εκτέλεση (στο χαρτί) ή η εκτέλεση στον υπολογιστή του αρχικού τμήματος αλγόριθμου και του τμήματος αλγόριθμου που δημιουργήθηκε από την μετατροπή, ώστε για τις ίδιες εισόδους να δίνουν τα ίδια αποτελέσματα. Για τις ανάγκες παρουσίασης και την ευκολότερη κατανόηση είναι απαραίτητες ορισμένες συντομογραφίες που θα χρησιμοποιηθούν στις επόμενες παραγράφους. Στις συντομογραφίες αυτές έχει ξαναγίνει αναφορά στην εντολή Για..από μέχρι και είναι οι ακόλουθες: μτ: μεταβλητή ατ: αρχική τιμή ττ: τελική τιμή τβ: τιμή βήματος Πριν όμως προχωρήσουμε στη παρουσίαση των μετατροπών ας ξαναθυμηθούμε κάποια από τα χαρακτηριστικά των τριών δομών επανάληψης. Οι εντολές που περιέχονται στην εντολή Όσο επανάλαβε υπάρχει περίπτωση να μην εκτελεστούν αν στον πρώτο έλεγχο της συνθήκης που περιλαμβάνει η εντολή επανάληψης, αυτή είναι Ψευδής. Οι εντολές που περιέχονται στην εντολή Για μτ από ατ μέχρι ττ με_βήμα τβ, υπάρχει περίπτωση να μην εκτελεστούν αν τβ > 0 και ατ > ττ αν τβ < 0 και ατ < ττ Οι εντολές που περιέχονται στην εντολή Μέχρις_ότου θα εκτελεστούν τουλάχιστον μία φορά. Στο σημείο αυτό θα πρέπει να ξεκαθαριστεί ότι δεν είναι δυνατή κάθε μετατροπή από μία εντολή ε- πανάληψης σε μία άλλη. Έτσι η μετατροπή από τις εντολές Όσο επανάλαβε και Μέχρις_ότου στην Για από μέχρι είναι δυνατή μόνο αν στην αρχική εντολή υπάρχει μία μεταβλητή (μτ) που λαμβάνει κάποια αρχική τιμή (ατ) πριν από την εντολή επανάληψης, αν η συνθήκη είναι της μορφής: μτ συγκριτικός_τελεστής ττ όπου ο συγκριτικός τελεστής είναι ένας εκ των, >,, <. και ττ είναι η τελική τιμή που μπορεί να φτάσει η μεταβλητή και για την οποία εκτελούνται οι εντολές της επανάληψης Στην περίπτωση είτε του = είτε του θα γίνει ειδική αναφορά. αν η μεταβλητή μέσα στο σώμα της εντολής επανάληψης αλλάζει μόνο κατά την τιμή κάποιου βήματος (τβ). Επανάληψη 149

2 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον αν είναι γνωστές εκ των προτέρων η αρχική (ατ) και η τελική τιμή (ττ) της μεταβλητής, καθώς και η τιμή του βήματος (τβ) με την οποία αλλάζει η μεταβλητή κάθε φορά στην επανάληψη. Αν οι τιμές των ατ, ττ και τβ είναι τυχαίες, δηλαδή δεν είναι γνωστές ποιες συγκεκριμένες σταθερές τιμές έχουν στο ορατό τμήμα του αρχικού αλγόριθμου, θα πρέπει να διερευνηθεί με τη χρήση εντολών επιλογής πότε είναι εφικτή η μετατροπή. αν η αρχική (ατ), η τελική τιμή (ττ) της μεταβλητής, και η τιμή του βήματος (τβ) διατηρούν σταθερή την τιμή τους σε όλη τη διάρκεια εκτέλεσης της επανάληψης. Είναι σαφές επίσης ότι μία μετατροπή από μία εντολή επανάληψης σε μία άλλη έχει νόημα μόνο αν δεν παραβιάζεται το κριτήριο της περατότητας Μετατροπή από την εντολή Όσο επανάλαβε στην εντολή Μέχρις_ότου Μεθοδολογία Όσο συνθήκη επανάλαβε Αν συνθήκη τότε Μέχρις_ότου όχι(συνθήκη) Αν όμως από την εικονική εκτέλεση του αλγόριθμου είναι βέβαιο ότι κατά τον πρώτο έλεγχο της συνθήκης αυτή είναι Αληθής, τότε η μετατροπή έχει ως εξής: Όσο συνθήκη επανάλαβε Μέχρις_ότου όχι(συνθήκη) Παράδειγμα 4.32 Μέχρις_ότου. Διάβασε t Όσο t 0 επανάλαβε υ *t Εμφάνισε t, υ Διάβασε t Επειδή δεν είναι σίγουρο ότι η τιμή του t την πρώτη φορά είναι μεγαλύτερη ή ίση του 0 η μετατροπή έχει ως εξής: 150 Επανάληψη

3 Διάβασε t Αν t 0 τότε υ *t Εμφάνισε t, υ Διάβασε t Μέχρις_ότου t < 0 Παράδειγμα 4.33 Μέχρις_ότου. Σ 0 Όσο Σ < 2000 επανάλαβε Διάβασε χ Σ Σ + χ Επειδή είναι σίγουρο ότι η συνθήκη είναι αληθής την πρώτη φορά, η μετατροπή έχει ως εξής: Σ 0 Διάβασε χ Σ Σ + χ Μέχρις_ότου όχι (Σ < 2000) Μετατροπή από την εντολή Μέχρις_ότου στην εντολή Όσο επανάλαβε Μεθοδολογία Μία προτεινόμενη μέθοδος μετατροπής που δίνει πάντοτε λύση είναι η ακόλουθη: Μέχρις_ότου συνθήκη Όσο όχι(συνθήκη) επανάλαβε Θα πρέπει να επισημανθεί ότι η προτεινόμενη μέθοδος μπορεί πάντα να εφαρμοστεί, ωστόσο υπάρχουν και άλλοι τρόποι (πιο κατανοητοί και με λιγότερες γραμμές κώδικα) για να μετατραπεί η Μέχρις_ότου σε Όσο επανάλαβε, αρκεί η αρχική εντολή επανάληψης και η τελική να προκύψουν Επανάληψη 151

4 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ισοδύναμες. Υπάρχουν λοιπόν περιπτώσεις όπου αν η λογική έκφραση (όχι(συνθήκη)) είναι αληθής την πρώτη φορά που θα ελεγχθεί με εικονική εκτέλεση τότε οι εντολές πριν από το σώμα της επανάληψης είναι δυνατόν να παραλειφθούν. Μέχρις_ότου συνθήκη Όσο όχι(συνθήκη) επανάλαβε Παράδειγμα 4.34 Όσο επανάλαβε. Διάβασε Κ Διάβασε χ y 3 * x 2 Εμφάνισε x, y Μέχρις_ότου y > K Η μετατροπή έχει ως εξής: Διάβασε Κ Διάβασε χ y 3 * x 2 Εμφάνισε x, y Όσο y <= K επανάλαβε!όχι (y > K) Διάβασε χ y 3 * x 2 Εμφάνισε x, y Παρατηρούμε ότι οι εντολές εκτελούνται μία φορά πριν να ελεγχθεί η συνθήκη στην εντολή Όσο επανάλαβε γιατί δεν είναι γνωστό αν η συνθήκη την πρώτη φορά που ελέγχεται είναι αληθής. Παράδειγμα 4.35 Όσο επανάλαβε. κ 0 Διάβασε χ 152 Επανάληψη

5 Αν χ > 0 τότε κ κ + 3 Μέχρις_ότου κ > 12 Στο παραπάνω τμήμα αλγορίθμου είναι σίγουρο ότι η συνθήκη είναι αληθής την πρώτη φορά στην εντολή Όσο επανάλαβε όποτε η μετατροπή έχει ως εξής: κ 0 Όσο όχι(κ > 12) επανάλαβε! κ 12 Διάβασε χ Αν χ > 0 τότε κ κ Μετατροπή από την εντολή Για από μέχρι στις άλλες δύο εντολές Μεθοδολογία Προτείνεται σε περίπτωση που ζητείται μετατροπή από Για από μέχρι σε Μέχρις_ότου να μετατρέπεται πρώτα η εντολή Για από μέχρι στην εντολή Όσο επανάλαβε και κατόπιν με τη μεθοδολογία που παρουσιάστηκε προηγουμένως στην εντολή Μέχρις_ότου. Η προτεινόμενη μέθοδος μετατροπής βασίζεται στο πρόσημο της τιμής του βήματος αν τβ > 0 τότε η συνθήκη στην εντολή Όσο επανάλαβε θα είναι της μορφής μτ ττ αν τβ < 0 τότε η συνθήκη στην εντολή Όσο επανάλαβε θα είναι της μορφής μτ ττ Αν χρησιμοποιηθούν οι παραπάνω προτεινόμενες συνθήκες τότε σίγουρα οι μετατροπές είναι σωστές. Η μετατροπές είναι οι ακόλουθες: Για μτ από ατ μέχρι ττ με_βήμα τβ Αν τβ > 0 τότε μτ ατ Όσο μτ ττ επανάλαβε αλλιώς_αν τβ < 0 τότε μτ ατ Όσο μτ ττ επανάλαβε Αν τβ > 0 τότε μτ ατ Αν μτ ττ τότε Μέχρις_ότου μτ > ττ αλλιώς_αν β < 0 τότε Επανάληψη 153

6 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον μτ ατ Αν μτ >=ττ τότε Μέχρις_ότου μτ < ττ Η παραπάνω μετατροπή χρειάζεται να εφαρμοστεί στις περιπτώσεις που δεν είναι γνωστό αν το βήμα είναι θετικό ή αρνητικό. Διαφορετικά αξιοποιείται μόνο το αντίστοιχο τμήμα αλγόριθμου και χωρίς την εντολή επιλογής. Παράδειγμα 4.36 Όσο επανάλαβε και της Μέχρις_ότου. Για μ από 6 μέχρι 16 με_βήμα 0.8 Εμφάνισε μ Η μετατροπή έχει ως εξής: μ 6 Όσο μ 16 επανάλαβε Εμφάνισε μ μ μ μ 6 Εμφάνισε μ μ μ Μέχρις_ότου μ > 16!αρχική τιμή της μεταβλητής!τελική τιμή της μεταβλητής!αλλαγή της τιμής της μεταβλητής κατά το βήμα!αρχική τιμή της μεταβλητής!αλλαγή της τιμής της μεταβλητής κατά το βήμα!τελική τιμή της μεταβλητής Ασκήσεις προς επίλυση: 4.54, 4.55 σελ Μετατροπή από την εντολή Όσο επανάλαβε στην εντολή Για από μέχρι Η μετατροπή από την εντολή Όσο επανάλαβε στην εντολή Για από μέχρι μπορεί να γίνει μόνο αν ισχύουν οι προϋποθέσεις που παρουσιάστηκαν προηγουμένως 154 Επανάληψη

7 Κατά τη μετατροπή από την εντολή Όσο επανάλαβε στην εντολή Για από μέχρι διακρίνουμε τρεις περιπτώσεις. 1. Ο συγκριτικός τελεστής της εντολής Όσο επανάλαβε είναι είτε μικρότερος ή ίσος ( ), είτε μεγαλύτερος ή ίσος ( ) 2. Ο συγκριτικός τελεστής της εντολής Όσο επανάλαβε είναι είτε αυστηρά μικρότερος (<) είτε αυστηρά μεγαλύτερος (>) 3. Στην εντολή Όσο επανάλαβε υπάρχουν εντολές μετά την αλλαγή της μεταβλητής κατά το βήμα. Στη συνέχεια θα παρουσιαστούν μεθοδολογίες και παραδείγματα στα οποία γίνεται εφαρμογή των μεθοδολογιών για κάθε μία περίπτωση ξεχωριστά. Θα πρέπει να τονιστεί ότι στο τμήμα αλγορίθμου που δίνεται και περιέχει την εντολή Όσο επανάλαβε αν ο συγκριτικός τελεστής είναι ή < τότε το βήμα θα είναι υποχρεωτικά θετικό ενώ αν είναι ή > υποχρεωτικά αρνητικό. Διαφορετικά υπάρχει περίπτωση παραβίασης της περατότητας. Μεθοδολογία 1 ης Περίπτωσης μτ ατ Όσο μτ ττ επανάλαβε μτ ατ Όσο μτ ττ επανάλαβε τβ > 0 τβ < 0 Για μτ από ατ μέχρι ττ με_βήμα τβ Για μτ από ατ μέχρι ττ με_βήμα τβ Παράδειγμα 4.37 Για από μέχρι. κ 2 Όσο κ 12 επανάλαβε Εμφάνισε κ κ κ + 2!αρχική τιμή!τελική τιμή!τιμή βήματος Με βάση τους προηγούμενους πίνακες η μετατροπή είναι η εξής: Επανάληψη 155

8 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Για κ από 2 μέχρι 12 με_βήμα 2 Εμφάνισε κ Μεθοδολογία 2 ης Περίπτωσης Αν στη συνθήκη της εντολής Όσο επανάλαβε ο τελεστής σύγκρισης είναι αυστηρά μικρότερος ή αυστηρά μεγαλύτερος, τότε οι εντολές του βρόχου δεν εκτελούνται αν η μεταβλητή της συνθήκης λάβει την τιμή ττ. Έτσι η εντολή Για από μέχρι δεν θα πρέπει να εκτελεστεί όταν η μεταβλητή λάβει την τιμή ττ. Εφόσον οι τιμές των ατ, ττ και τβ είναι γνωστές μπορεί να γίνει εικονική εκτέλεση και να βρεθεί η τελική τιμή για την οποία εκτελείται η εντολή Όσο επανάλαβε και να τοποθετηθεί ως τελική τιμή στην εντολή Για από μέχρι. Ακόμη εφόσον οι τιμές των ατ, ττ και τβ είναι γνωστές ή δεν είναι γνωστές αλλά είναι γνωστή η θέση του τελευταίου μη μηδενικού ψηφίου σε αυτές, μπορεί να δημιουργηθεί μια τελική τιμή (θα αναφέρεται ως ττ_για) για την εντολή Για από μέχρι η οποία μπορεί να τεθεί ως εξής: Αν τβ >(<) 0 τότε ττ_για = ττ - (+) 10 -Ν Η μεταβλητή Ν εκφράζει τη μεγαλύτερη θέση του τελευταίου μη μηδενικού ψηφίου μετά την υποδιαστολή, στις τιμές των ατ, ττ και τβ. Είναι προφανές ότι το Ν ισούται με μηδέν αν όλοι οι αριθμοί είναι ακέραιοι. Ο παραπάνω τύπος δεν βασίζεται σε κάποιον αλγόριθμο αλλά σε παρατήρηση των τιμών των μεταβλητών. Η τιμή που δημιουργείται με τη χρήση του παραπάνω τύπου είναι μεγαλύτερη ή ίση από την τελευταία τιμή για την οποία εκτελείται η εντολή Όσο επανάλαβε και μικρότερη από την ττ. Παράδειγμα 4.38 Για από μέχρι. κ 2!αρχική τιμή ατ Όσο κ < 12 επανάλαβε!τελική τιμή ττ Εμφάνισε κ κ κ + 2!τιμή βήματος τβ Εκτελώντας εικονικά το τμήμα αλγορίθμου παρατηρούμε ότι οι εντολές του βρόχου εκτελούνται για τις ακόλουθες τιμές της μεταβλητής κ: 2, 4, 6, 8, 10 ενώ δεν εκτελούνται για την τιμή 12 η οποία δεν ικανοποιεί τη συνθήκη ελέγχου. Έτσι η τελική τιμή της μεταβλητής στην εντολή Για από μέχρι θα είναι το Επανάληψη

9 Για κ από 2 μέχρι 10 με_βήμα 2 Εμφάνισε κ Η τιμή που προκύπτει με βάση τον τύπο ττ_για = ττ Ν είναι ττ_για = = 11. Η τιμή του Ν είναι μηδέν επειδή όλες οι τιμές των ατ, ττ και τβ είναι ακέραιες. Και για αυτή την τιμή όμως οι ε- ντολές του βρόχου στην εντολή Για από μέχρι θα εκτελεστούν τις ίδιες φορές όπως και στην εντολή Όσο επανάλαβε. Έτσι η εντολή Για από μέχρι μπορεί να γραφεί και ως εξής: Για κ από 2 μέχρι 11 με_βήμα 2 Εμφάνισε κ Η τιμή 11 είναι μεγαλύτερη μεν της τιμής 10 για την οποία εκτελείται τελευταία φορά η εντολή Όσο επανάλαβε αλλά μικρότερη από την τιμή της ττ που είναι η 12. Παράδειγμα 4.39 Για από μέχρι. μ 1.3 Όσο μ < επανάλαβε Εμφάνισε μ μ μ Στο συγκεκριμένο παράδειγμα η εικονική εκτέλεση είναι αρκετά χρονοβόρα. Παρατηρούμε όμως ότι ατ = 1.3, ττ = 5.345, τβ = Η μεγαλύτερη θέση που υπάρχει μη μηδενικό ψηφίο μετά την υποδιαστολή βρίσκεται στην ττ και ισούται με 3. Έτσι ττ_για = = = Έτσι η μετατροπή έχει ως εξής: Για μ από 1.3 μέχρι με_βήμα 0.02 Εμφάνισε μ Παράδειγμα 4.40 Για από μέχρι. Θεωρήστε τις μεταβλητές Α και Τ ακέραιες. Επανάληψη 157

10 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Διάβασε Α, Τ μ Α Όσο μ < Τ επανάλαβε Εμφάνισε μ μ μ + 1 Στο παράδειγμα αυτό οι τιμές των ατ = Α και ττ = Τ δεν είναι γνωστές αλλά είναι ακέραιες. Επίσης η τιμή του βήματος είναι τβ = 1. Έτσι στον τύπο ττ_για = ττ Ν το Ν ισούται με 0. Προκύπτει λοιπόν ττ_για = Τ 10-0 = Τ 1. Διάβασε Α, Τ Για μ από Α μέχρι Τ 1 Εμφάνισε μ Μεθοδολογία 3 ης Περίπτωσης Στην περίπτωση που υπάρχουν εντολές μετά την αλλαγή της τιμής της μεταβλητής της συνθήκης ε- λέγχου κατά μία ποσότητα στην εντολή Όσο επανάλαβε, τότε είναι απαραίτητο να εντοπιστούν οι εντολές (εκφράσεις) που χρησιμοποιείται η τιμή της μεταβλητής μετά την αλλαγή της και στις αντίστοιχες εντολές της Για από μέχρι να χρησιμοποιηθεί η τιμή της μεταβλητής αλλαγμένη κατά την αντίστοιχη ποσότητα. Παράδειγμα 4.41 Για από μέχρι. κ 2 Όσο κ <= 12 επανάλαβε α κ 1 Εμφάνισε α κ κ + 2 α κ + 1 Εμφάνισε α!αλλαγή της τιμής της μεταβλητής!χρήση της μεταβλητής σε έκφραση μετά την αλλαγή της τιμής της Όπως φαίνεται η εντολή α κ + 1 εκτελείται μετά την αλλαγή της τιμή της μεταβλητής κ κατά την τιμή 2. Έτσι η μετατροπή έχει ως εξής: Για κ από 2 μέχρι 12 με_βήμα 2 α κ 1 Εμφάνισε α 158 Επανάληψη

11 α (κ + 2) + 1! μτ + 2 Εμφάνισε α Μετατροπή από την εντολή Μέχρις_ότου στην εντολή Για από μέχρι Μεθοδολογία Προτείνεται να μετατραπεί πρώτα η Μέχρις_ότου σε Όσο επανάλαβε και στη συνέχεια να ακολουθηθούν οι μεθοδολογίες που περιγράφηκαν στην προηγούμενη παράγραφο. μτ ατ εντολές Μέχρις_ότου μτ > ττ μτ ατ εντολές Όσο μτ <= ττ επανάλαβε εντολές Σε περίπτωση που οι εντολές πριν από το σώμα της επανάληψης δεν είναι δυνατόν να παραλειφθούν κατά τη μετατροπή της Όσο επανάλαβε σε Για από μέχρι θα πρέπει να σημειωθεί ότι η αρχική τιμή είναι η ατ + τβ αφού οι εντολές έχουν ήδη εκτελεστεί μία φορά. Έτσι τελικά προκύπτει: μτ ατ εντολές Για μτ από ατ + τβ μέχρι ττ με_βήμα τβ εντολές Αν όμως είναι δυνατόν να παραλειφθούν οι εντολές του αρχικού βρόχου τότε η μετατροπή είναι η ακόλουθη: Για μτ από ατ μέχρι ττ με_βήμα τβ εντολές Παράδειγμα 4.42 Για από μέχρι. Θεωρήστε τις τιμές των Α, Τ και ΤΒ ακέραιες. Χ Α Επανάληψη 159

12 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Χ Χ + ΤΒ Εκτύπωσε Χ Μέχρις_ότου Χ >= Τ Όπως αναφέρθηκε προηγουμένως η τιμή της μεταβλητής ΤΒ θα πρέπει να είναι θετική για μην υπάρχει περίπτωση παραβίασης της περατότητας. Πρώτα θα μετατραπεί στην εντολή Όσο επανάλαβε. Χ Α Χ Χ + ΤΒ Εκτύπωσε Χ Όσο Χ < Τ επανάλαβε Χ Χ + ΤΒ Εκτύπωσε Χ Για να μετατραπεί τώρα στην εντολή Για από μέχρι πρέπει να ληφθούν υπόψη τα εξής: Οι τιμές των Α, Τ και ΤΒ μπορεί να είναι οποιεσδήποτε ακέραιες. Υπάρχει αυστηρή ανισότητα στη συνθήκη της εντολής Όσο επανάλαβε. Έτσι η τελική τιμή στην εντολή Για από μέχρι θα είναι η Τ - 1. Υπάρχει μία εντολή «Εκτύπωσε Χ» μετά την αλλαγή της μεταβλητής κατά μία ποσότητα στην οποία χρησιμοποιείται η τιμή της μεταβλητής ελέγχου. Επειδή οι εντολές εκτελούνται ήδη μία φορά πριν από την εκτέλεση της εντολής Όσο επανάλαβε η αρχική τιμή της εντολής Για από μέχρι θα είναι τώρα η Α + ΤΒ για το συγκεκριμένο παράδειγμα. Χ Α Χ Χ + ΤΒ Εκτύπωσε Χ Για Χ από Α + ΤΒ μέχρι Τ - 1 με_βήμα ΤΒ Εκτύπωσε Χ + ΤΒ Ασκήσεις προς επίλυση: 4.56, 4.57 σελ Επανάληψη

13 4.4.6 Μετατροπή Εμφωλευμένων Βρόχων Μεθοδολογία Ένα σημείο που χρήζει προσοχής είναι το εξής: αν υπάρχουν εσωτερικοί βρόχοι αρχίζουμε τη μετατροπή από τον εξωτερικό. Παράδειγμα 4.43 Δίνεται το παρακάτω τμήμα αλγορίθμου. Να μετατραπεί σε ισοδύναμο τμήμα μόνο με τη χρήση της εντολής Για από μέχρι. κ 1 Όσο κ 5 επανάλαβε i κ + 1 Όσο i 5 επανάλαβε Εμφάνισε κ, i i i + 1 κ κ + 1 Πρώτα μετατρέπεται η εξωτερική εντολή Όσο επανάλαβε. Για κ από 1 μέχρι 5 i κ +1 Όσο i 5 επανάλαβε Εμφάνισε κ, i i i + 1 Στη συνέχεια μετατρέπεται η εσωτερική εντολή Όσο επανάλαβε και τελικά προκύπτει: Για κ από 1 μέχρι 5 Για i από κ + 1 μέχρι 5 Εμφάνισε κ, i Μεθοδολογία επίλυσης μετατροπών σύνθετων προβλημάτων. Μετά την παραπάνω ανάλυση όπως φαίνεται η μεγαλύτερη δυσκολία υπάρχει στις περιπτώσεις μετατροπής από τις εντολές επανάληψης Όσο επανάλαβε και Μέχρις_ότου στην εντολή Για Επανάληψη 161

14 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον από μέχρι. Βέβαια η εντολή Μέχρις_ότου μετατρέπεται πρώτα στην εντολή Όσο επανάλαβε οπότε ακολουθούνται οι μεθοδολογίες για την μετατροπή από την εντολή στην εντολή Για από μέχρι. Συνοψίζοντας τις παραπάνω μεθοδολογίες η επίλυση των συγκεκριμένων προβλημάτων μπορεί να γίνει σε τρία βήματα. Μεθοδολογία 1 ο Βήμα Εντοπίζουμε τις τιμές της ατ, ττ και τβ στον αλγόριθμο προς μετατροπή. Αν η αρχική εντολή προς μετατροπή ήταν η Μέχρις_ότου και κατά την μετατροπή της στην εντολή Όσο επανάλαβε οι εντολές του αρχικού βρόχου γράφονται μία φορά πριν από την συνθήκη ελέγχου τότε ως ατ ορίζεται η τιμή ατ + τβ Αν δεν είναι δυνατόν να εντοπιστεί η ττ τότε θα πρέπει να γίνει εικονική εκτέλεση ώστε να βρεθεί ποια είναι η τελική τιμή για την οποία εκτελείται η αρχική εντολή προς μετατροπή. Αν η μτ αλλάζει μέσα στις εντολές του βρόχου περισσότερες από μία φορές τότε η τιμή του βήματος προκύπτει από το άθροισμα των τιμών των αλλαγών. Οι τιμές που αλλάζει η μεταβλητή μπορεί να είναι αρνητικές ή θετικές. 2 ο Βήμα Ελέγχουμε αν υπάρχει αυστηρή ανισότητα και δημιουργούμε την τιμή της ττ_για εφόσον δεν έχει γίνει εικονική εκτέλεση προηγουμένως. 3 ο Βήμα Ελέγχουμε αν υπάρχουν εκφράσεις στις οποίες συμμετέχει η μτ εφόσον έχει αλλάξει κατά μία ποσότητα στις εντολές του βρόχου και αλλάζουμε κατάλληλα την τιμή της στις εντολές της Για από μέχρι. Παράδειγμα 4.44 Να μετατρέψετε ισοδύναμα το παραπάνω τμήμα αλγορίθμου χρησιμοποιώντας αποκλειστικά την ε- ντολή επανάληψης Για... από... μέχρι αντί των εντολών Μέχρις_ότου και Όσο επανάλαβε. χ 3 χ χ + 2 y χ + 2 Όσο y < 15 επανάλαβε y y + 4 Εμφάνισε y Αν χ > 6 τότε Εμφάνισε y χ χ χ + 3 Μέχρις_ότου χ mod 8 >= Επανάληψη

15 Παρατηρούμε ότι υπάρχουν δύο εντολές επανάληψης η μία μέσα στην άλλη. Θα μετατρέψουμε πρώτα την εξωτερική εντολή Μέχρις_ότου. Αρχικά τη μετατρέπουμε στην εντολή Όσο επανάλαβε. Επειδή η συνθήκη ελέγχου είναι Αληθής τη πρώτη φορά που ελέγχεται στην εντολή Όσο επανάλαβε (εικονική εκτέλεση) προκύπτει: χ 3 Όσο χ mod 8 < 5 επανάλαβε χ χ + 2 y χ + 2 Όσο y < 15 επανάλαβε y y + 4 Εμφάνισε y Αν χ > 6 τότε Εμφάνισε y χ χ χ + 3 Με βάση το 1 ο βήμα της προηγούμενης μεθοδολογίας έχουμε τα εξής: Η αρχική τιμή της μεταβλητής χ είναι ατ = 3 Για να βρεθεί η ττ απαιτείται εικονική εκτέλεση. Επειδή η μεταβλητή σε κάθε επανάληψη αλλάζει την τιμή της κατά 2 αρχικά και στη συνέχεια κατά 3, η τιμή του βήματος θα είναι τελικά τβ = 5. Με βάση εικονική εκτέλεση του τμήματος αλγορίθμου προκύπτει ότι η τελευταία τιμή της μεταβλητής για την οποία εκτελείται η εντολή Όσο χ mod 8 < 5 επανάλαβε είναι η 8. Άρα ττ = 8. Δεν έχει νόημα να εκτελεστεί το 2 ο βήμα αφού η συνθήκη δεν είναι της μορφής «μτ τελεστής ττ» και η τελική τιμή προέκυψε από εικονική εκτέλεση. Με βάση το 3 ο βήμα παρατηρούμε ότι υπάρχουν εκφράσεις στις οποίες χρησιμοποιείται η μεταβλητή μετά την αλλαγή της τιμής της κατά μία ποσότητα. Οι εντολές που θα τροποποιηθούν είναι οι ακόλουθες: y χ + 2 σε y (χ +2)+ 2 Αν χ > 6 τότε σε Αν (χ + 2) > 6 τότε Εμφάνισε y χ σε Εμφάνισε y - (χ + 2) Έτσι το τμήμα αλγορίθμου είναι τώρα το ακόλουθο: Για χ από 3 μέχρι 8 με_βήμα 5 y (χ +2)+ 2 Όσο y < 15 επανάλαβε y y + 4 Επανάληψη 163

16 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Εμφάνισε y Αν (χ + 2) > 6 τότε Εμφάνισε y - (χ + 2) Θα ασχοληθούμε τώρα με την εσωτερική εντολή επανάληψης. Με βάση τα τρία βήματα της παραπάνω μεθοδολογίας έχουμε: 1 ο Βήμα: ατ = (χ + 2) + 2, ττ = 15 και τβ = 4 2 ο Βήμα: υπάρχει αυστηρή ανισότητα άρα ττ_για = 15 1 = 14 αφού όλες οι τιμές είναι ακέραιες 3 ο Βήμα: υπάρχει μία εντολή «Εμφάνισε y» που χρησιμοποιείται η τιμή της μεταβλητής μετά την αλλαγή της κατά μία ποσότητα. Η εντολή θα αλλάξει σε «Εμφάνισε y + 4». Έτσι τελικά προκύπτει: Για χ από 3 μέχρι 8 με_βήμα 5 Για y από (χ + 2) + 2 μέχρι 14 με_βήμα 4 Εμφάνισε y + 4 Αν (χ + 2) > 6 τότε Εμφάνισε y - (χ + 2) Ασκήσεις προς επίλυση: 4.58 σελ 219 Όλες οι προτεινόμενες μέθοδοι βασίζονται στην παραδοχή ότι η μετατροπή από μία εντολή επανάληψης σε μία άλλη είναι εφικτή. Για αυτό αναφέρθηκε πότε είναι δυνατόν να μετατραπεί μία εντολή επανάληψης σε μία άλλη. Υπάρχουν όμως και κάποιοι περιορισμοί που αφορούν κυρίως τη μετατροπή από και σε Για... από... μέχρι. Αν πρόκειται να μετατραπεί η εντολή Για... από... μέχρι στην εντολή Όσο επανάλαβε, όπως παρουσιάστηκε πρέπει να συνταχθεί με βάση το πρόσημο του βήματος η συνθήκη στην εντολή Όσο επανάλαβε, αλλιώς θα είναι λανθασμένη. Αν ζητείται να μετατραπεί η εντολή Όσο επανάλαβε στην εντολή Για... από... μέχρι και υπάρχει ο τελεστής του διάφορου ( ) στην συνθήκη τότε θα πρέπει στην εντολή Όσο επανάλαβε η μεταβλητή να πάρει κάποια στιγμή την ττ γιατί διαφορετικά παραβιάζεται η περατότητα. Επίσης η μετα- 164 Επανάληψη

17 τροπής μίας εντολής Όσο επανάλαβε στην εντολή Για... από... μέχρι με τον τελεστή της ισότητας (=) στην συνθήκη έχει νόημα μόνο αν ατ = ττ όποτε και οι δυο εντολές εκτελούνται ακριβώς μία φορά Αλγόριθμος εύρεσης της τελικής τιμής της μεταβλητής για την οποία εκτελούνται οι εντολές του βρόχου στην εντολή Όσο επανάλαβε Οι παραπάνω μεθοδολογίες δεν μπορούν να δώσουν λύση στη μετατροπή από την εντολή Όσο επανάλαβε στην εντολή Για από μέχρι όταν κάποια ή κάποιες από τις τιμές των ατ, ττ και τβ είναι τυχαίες. Στο συγκεκριμένο σημείο παρουσιάζεται ένας αλγόριθμος ο οποίος βρίσκει την τελική τιμή για την οποία πραγματικά εκτελείται η εντολή Όσο επανάλαβε. Η εκμάθηση αυτού του αλγορίθμου θα πρέπει να θεωρηθεί πέρα από τους στόχους του μαθήματος. Βέβαια με τη χρήση του συγκεκριμένου αλγορίθμου μπορεί να δοθεί σωστή λύση σε θέμα πανελλαδικών εξετάσεων που ανήκε στη συγκεκριμένη περίπτωση. Η λύση που δόθηκε από την Κεντρική Επιτροπή Εξετάσεων τότε κάλυπτε μόνο την περίπτωση οι τιμές των ατ, ττ και τβ να είναι ακέραιες. Το συγκεκριμένο θέμα, τέθηκε το 2001 στις επαναληπτικές εξετάσεις, ήταν το εξής: Δίνεται το παρακάτω τμήμα αλγορίθμου: Χ Α Χ Χ+2 Εκτύπωσε Χ Μέχρις_ότου Χ >= Μ α. Να δώσετε τη δομή επανάληψης "Για από μέχρι με_βήμα " η οποία τυπώνει ακριβώς τις ίδιες τιμές με το πιο πάνω τμήμα αλγορίθμου. Μ 7 β. Τι θα τυπωθεί, αν Α = 4 και Μ = 9; Μ 3 γ. Τι θα τυπωθεί, αν Α = 5 και Μ = 0; Μ 3 Μία λύση που δόθηκε ήταν η εξής: Χ Α Χ Χ + 2 Εκτύπωσε Χ Για Χ από Α+2 μέχρι Μ - 1 με_βήμα 2 Εκτύπωσε Χ + 2 Η συγκεκριμένη λύση είναι σωστή μόνο για την περίπτωση που οι μεταβλητές Α και Μ θεωρηθούν ακέραιες. Όμως στο συγκεκριμένο θέμα δεν διευκρίνιζε τι ακριβώς τύπου είναι οι συγκεκριμένες με- Επανάληψη 165

18 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ταβλητές. Αν οι μεταβλητές έχουν για παράδειγμα τις τιμές Α=4.1, Μ= 6.6 τότε οι δύο παραπάνω αλγόριθμοι δεν δίνουν τα ίδια αποτελέσματα. Φυσικά για να φτάσει κάποιος στη συγκεκριμένη λύση θα πρέπει να περάσει πρώτα από τη μετατροπή της εντολής Μέχρις_ότου στην εντολή Όσο επανάλαβε. Χ Α Χ Χ+2 Εκτύπωσε Χ Όσο Χ < Μ επανάλαβε Χ Χ+2 Εκτύπωσε Χ Εδώ λοιπόν προκύπτει και το πρόβλημα. Εφόσον δεν γνωρίζουμε ποιες ακριβώς είναι οι τιμές των μεταβλητών Α και Μ και υπάρχει αυστηρή ανισότητα δεν είναι δυνατόν να ορίσουμε μία τελική τιμή για την εντολή Για από μέχρι. Ο παρακάτω αλγόριθμος λύνει αυτό το πρόβλημα. Έστω η γενική μορφή της εντολής Όσο επανάλαβε στην οποία δεν υπάρχει αυστηρή ανισότητα και κ ένας ακέραιος που εκφράζει πόσες φορές αλλάζει μέσα στο βρόχο η μεταβλητή (μτ) κατά το βήμα για να πλησιάσει ή να φτάσει την τελική τιμή (ττ), όχι όμως να την ξεπεράσει. Η τιμή του κ, θα είναι: κ = (ττ - ατ) / τβ Ωστόσο, η τιμή του κ θα πρέπει να είναι ακέραια, ενώ η συγκεκριμένη διαίρεση μπορεί να δώσει και πραγματικό αποτέλεσμα. Για το λόγο αυτό, τελικά η τιμή του κ θα δίνεται από τη σχέση: κ = Α_Μ((ττ - ατ) / τβ) Υπενθυμίζεται ότι Α_Μ(x) είναι η συνάρτηση που επιστρέφει το ακέραιο μέρος του x. Έτσι η πραγματικά τελική τιμή για την οποία εκτελείται η εντολή Όσο επανάλαβε είναι η ττπ = ατ + κ * τβ Αν υπάρχει τώρα αυστηρή ανισότητα και ττπ < ττ για τβ >0 ή ττπ > ττ για τβ<0 τότε δεν υπάρχει πρόβλημα να μετατραπεί σε Για μτ από ατ μέχρι ττ με_βήμα τβ αφού η μεταβλητή δεν φτάνει στην ττ. Αν όμως ττπ = ττ τότε η πραγματικά τελική τιμή της μεταβλητής για την οποία εκτελούνται οι εντολές στην εντολή Όσο επανάλαβε δεν είναι η προαναφερόμενη, αλλά η αμέσως προηγούμενη της. ττπ = ατ + κ * τβ - τβ Τα παραπάνω βήματα συνοψίζονται ως εξής: Βήμα 1: Υπολογισμός των φορών που αλλάζει η μεταβλητή κατά το βήμα για να πλησιάσει ή να φτάσει την τελική τιμή, όχι όμως να την ξεπεράσει, στη γενική μορφή της εντολής Ό- σο επανάλαβε: κ = Α_Μ((ττ - ατ) / τβ) Βήμα 2: Εύρεση της τελευταίας τιμής που λαμβάνει πραγματικά η μεταβλητή της εντολής Ό- σο επανάλαβε στη γενική της μορφή: ττπ = ατ + κ * τβ Βήμα 3: Εύρεση της πραγματικά τελικής τιμής αν στην περίπτωση της αυστηρής ανισότητας ισχύει ττπ = ττ, από τον τύπο ττπ = ατ + κ * τβ - τβ 166 Επανάληψη

19 Το τμήμα αλγορίθμου που υλοποιεί τα παραπάνω είναι το ακόλουθο: κ Α_Μ((ττ - ατ) / τβ) ττπ ατ + κ * τβ Αν ττπ = ττ τότε ττπ ττ - τβ Έτσι η λύση που καλύπτει όλες τις πιθανές τιμές των μεταβλητών Α και Μ είναι η ακόλουθη: Χ Α Χ Χ + 2 Εκτύπωσε Χ κ Α_Μ((Μ - Α) / 2) ττπ Α + κ * 2 Αν ττπ = Μ τότε ττπ Μ 2 Για Χ από Α+2 μέχρι ττπ με_βήμα 2 Εκτύπωσε Χ + 2 Ο συγκεκριμένος αλγόριθμος μπορεί να χρησιμοποιηθεί ακόμη και σε περιπτώσεις που οι τιμές είναι γνωστές και υπάρχει αυστηρή ανισότητα. Έστω ότι δίνεται το τμήμα αλγόριθμου του παραδείγματος χ 2 Όσο χ < 12 επανάλαβε Εμφάνισε χ χ χ + 2 Έχουμε ατ = 2 ττ = 12 και τβ = 2. Επίσης υπάρχει αυστηρή ανισότητα. Εφαρμόζοντας τον αλγόριθμο που αναπτύχθηκε προηγουμένως προκύπτει: κ = Α_Μ ((12 2) / 2 ) = 5 ττπ = * 2 = 12 Επειδή ττπ = ττ προκύπτει ότι ττπ = 12-2 = 10 Καταλήγουμε λοιπόν στην ίδια τιμή με αυτήν που προκύπτει από εικονική εκτέλεση. Σε περιπτώσεις για γνωστές τιμές των ατ, ττ και τβ, προτείνεται να ακολουθηθούν οι μεθοδολογίες που περιγράφηκαν στις προηγούμενες παραγράφους. Επανάληψη 167

Αλγοριθμική Προσέγγιση της Μετατροπής από μία Εντολή Επανάληψης σε Άλλη

Αλγοριθμική Προσέγγιση της Μετατροπής από μία Εντολή Επανάληψης σε Άλλη Αλγοριθμική Προσέγγιση της Μετατροπής από μία Εντολή Επανάληψης σε Άλλη Αθανάσιος Πέρδος 1, Σπύρος Δουκάκης 2, Νάγια Γιαννοπούλου 3 1 Δρ. Καθηγητής Πληροφορικής, Ελληνογαλλική Σχολή Καλαμαρί perdos@kalamari.gr

Διαβάστε περισσότερα

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)

Διαβάστε περισσότερα

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;

1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της; 1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή ΑΠΑΝΤΗΣΗ ΑΡΧΗ_ΕΠΑΝΑΛΗΨΗΣ ΜΕΧΡΙΣ_ΟΤΟΥ Α<-54

Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή ΑΠΑΝΤΗΣΗ ΑΡΧΗ_ΕΠΑΝΑΛΗΨΗΣ ΜΕΧΡΙΣ_ΟΤΟΥ Α<-54 Άσκηση_1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή επανάληψης ΜΕΧΡΙΣ_ΟΤΟΥ. 1 η Περίπτωση Κ 0 ΌΣΟ Λ > 5 ΕΠΑΝΑΛΑΒΕ

Διαβάστε περισσότερα

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη

Επιλογή και επανάληψη. Λογική έκφραση ή συνθήκη Επιλογή και επανάληψη Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως, ότι στο

Διαβάστε περισσότερα

Επαναληπτικές Διαδικασίες

Επαναληπτικές Διαδικασίες Επαναληπτικές Διαδικασίες Οι επαναληπτικές δομές ( εντολές επανάληψης επαναληπτικά σχήματα ) χρησιμοποιούνται, όταν μια ομάδα εντολών πρέπει να εκτελείται αρκετές- πολλές φορές ανάλογα με την τιμή μιας

Διαβάστε περισσότερα

Δρίμτζιας Βασίλειος MSc, Καθηγητής Πληροφορικής ΠΕ19, 1ο Γενικό Λύκειο Ηγουμενίτσας

Δρίμτζιας Βασίλειος MSc, Καθηγητής Πληροφορικής ΠΕ19, 1ο Γενικό Λύκειο Ηγουμενίτσας Μεθοδολογία Μετατροπής ενός τμήματος αλγορίθμου που χρησιμοποιεί την εντολή Όσο επανάλαβε σε ισοδύναμη μορφή χρησιμοποιώντας την εντολή Για από μέχρι... με_βήμα Δρίμτζιας Βασίλειος MSc, Καθηγητής Πληροφορικής

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2.4.5 8.2 Δομή Επανάληψης Δομές Επανάληψης Οι δομές επανάληψης χρησιμοποιούνται στις περιπτώσεις όπου μια συγκεκριμένη ακολουθία εντολών πρέπει να εκτελεστεί

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ

Κεφάλαια Εντολές επανάληψης. Τρεις εντολές επανάληψης. Επιλογή εντολής επανάληψης ΟΣΟ...ΕΠΑΝΑΛΑΒΕ. Σύνταξη στη ΓΛΩΣΣΑ Εντολές επανάληψης Κεφάλαια 02-08 οµές Επανάληψης Επιτρέπουν την εκτέλεση εντολών περισσότερες από µία φορά Οι επαναλήψεις ελέγχονται πάντοτε από κάποια συνθήκη η οποία καθορίζει την έξοδο από το βρόχο

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

Η Δομή Επανάληψης. Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες

Η Δομή Επανάληψης. Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες Η Δομή Επανάληψης Εισαγωγή στην δομή επανάληψης Χρονική διάρκεια: 3 διδακτικές ώρες Οι 2 πρώτες διδακτικές ώρες στην τάξη Η τρίτη διδακτική ώρα στο εργαστήριο Γενικός Διδακτικός Σκοπός Ενότητας Να εξοικειωθούν

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1

Διαβάστε περισσότερα

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής:

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής: ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 12 ΙΑΝΟΥΑΡΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΟΚΤΩΒΡΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α

Διαβάστε περισσότερα

Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1

Δομές Επανάληψης. Όσο μέχρις ότου για. 22/11/08 Ανάπτυξη εφαρμογών 1 Δομές Επανάληψης Όσο μέχρις ότου για 22/11/08 Ανάπτυξη εφαρμογών 1 Όσο. επανάλαβε Όσο Συνθήκη επανάλαβε Εντολή1 Εντολή2.. Ομάδα εντολών Συνθήκη Αληθής Ομάδα εντολών Εντολή Ν Τέλος_Επανάληψης Ψευδής 1.

Διαβάστε περισσότερα

Να γράψετε τα αποτελέσματα αυτού του αλγόριθμου για Χ=13, Χ=9 και Χ=22. Και στις 3 περιπτώσεις το αποτέλεσμα του αλγορίθμου είναι 1

Να γράψετε τα αποτελέσματα αυτού του αλγόριθμου για Χ=13, Χ=9 και Χ=22. Και στις 3 περιπτώσεις το αποτέλεσμα του αλγορίθμου είναι 1 Άσκηση 1. Δίνεται ο παρακάτω αλγόριθμος: ΑΛΓΟΡΙΘΜΟΣ ΕΛΕΓΧΟΣ_ΑΝΑΘΕΣΗΣ ΔΙΑΒΑΣΕ X ΌΣΟ Χ > 1 ΕΠΑΝΑΛΑΒΕ ΑΝ Χ MOD 2 = 0 ΤΟΤΕ Χ Χ / 2 Χ 3 * Χ + 1 ΑΠΟΤΕΛΕΣΜΑΤΑ // Χ // ΤΕΛΟΣ ΕΛΕΓΧΟΣ_ΑΝΑΘΕΣΗΣ Να γράψετε τα αποτελέσματα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα

Διαβάστε περισσότερα

Συμβουλές και Μεθοδολογία Ασκήσεων Ψευδογλώσσας / ΓΛΩΣΣΑΣ

Συμβουλές και Μεθοδολογία Ασκήσεων Ψευδογλώσσας / ΓΛΩΣΣΑΣ Ψευδογλώσσας / ΓΛΩΣΣΑΣ Χρήση εντολών Εισόδου Εξόδου Α) Εντολές εισόδου Όσον αφορά στη Ψευδογλώσσα, για την κατάλληλη επιλογή εντολής εισόδου διαβάζουμε προσεχτικά την εκφώνηση. Αν η εκφώνηση αναφέρει «να

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 1/12/2013

ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 1/12/2013 ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 1/12/2013 ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό,

Διαβάστε περισσότερα

Επαναληπτικές δοµές. µτ α.τ. Όχι. ! απαγορεύεται µέσα σε µία ΓΙΑ να µεταβάλλουµε τον µετρητή! διότι δεν θα ξέρουµε µετά πόσες επαναλήψεις θα γίνουν

Επαναληπτικές δοµές. µτ α.τ. Όχι. ! απαγορεύεται µέσα σε µία ΓΙΑ να µεταβάλλουµε τον µετρητή! διότι δεν θα ξέρουµε µετά πόσες επαναλήψεις θα γίνουν Επαναληπτικές δοµές Η λογική των επαναληπτικών διαδικασιών εφαρµόζεται όπου µία ακολουθία εντολών εφαρµόζεται σε ένα σύνολο περιπτώσεων που έχουν κάτι κοινό. Όταν ψάχνουµε θέση για να παρκάρουµε κοντά

Διαβάστε περισσότερα

Ψευδογλώσσας και Διαγράμματα Ροής

Ψευδογλώσσας και Διαγράμματα Ροής Βασικοί κανόνες Αρχή και Τέλος Η ψευδογλώσσα ξεκινάει με την εντολή Αλγόριθμος , το διάγραμμα ροής με το οβάλ Η ψευδογλώσσα καταλήγει με την εντολή Τέλος , το διάγραμμα ροής με το οβάλ Εντολές

Διαβάστε περισσότερα

Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασμένες (Λ).

Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασμένες (Λ). ΚΟΡΥΦΑΙΟ ΦΡΟΝΤΙΣΤΗΡΙΟ korifeo.gr ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 6 ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις

Διαβάστε περισσότερα

I. ΑΛΓΟΡΙΘΜΟΣ II. ΠΡΑΞΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ III. ΕΠΑΝΑΛΗΨΕΙΣ. 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι:

I. ΑΛΓΟΡΙΘΜΟΣ II. ΠΡΑΞΕΙΣ - ΣΥΝΑΡΤΗΣΕΙΣ III. ΕΠΑΝΑΛΗΨΕΙΣ. 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι: ΑΕσΠΠ 1 / 8 I. ΑΛΓΟΡΙΘΜΟΣ 1. Τα πιο συνηθισμένα σενάρια παραβίασης αλγοριθμικών κριτηρίων είναι: i. Είσοδος : χρήση μιας μεταβλητής που δεν έχει πάρει προηγουμένως τιμή. ii. Έξοδος : ο αλγόριθμος δεν εμφανίζει

Διαβάστε περισσότερα

i 1 Όσο i <> 100 επανάλαβε i i + 2 Γράψε A[i] Τέλος_επανάληψης

i 1 Όσο i <> 100 επανάλαβε i i + 2 Γράψε A[i] Τέλος_επανάληψης ΘΕΜΑ Α A1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις α-δ και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη. a. Σε μία εντολή εκχώρησης του αποτελέσματος

Διαβάστε περισσότερα

Ψευδοκώδικας. November 7, 2011

Ψευδοκώδικας. November 7, 2011 Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ 1 ο ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΣΑΒΒΑΤΟ 23 ΙΑΝΟΥΑΡΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

Μάριος Αγγελίδης

Μάριος Αγγελίδης Δομή Επανάληψης Ενότητες βιβλίου: 2.4.5, 8.2, 8.2.1, 8.2.2, 8.2.3 Ώρες διδασκαλίας: 5 Η δομή επανάληψης χρησιμοποιείται όταν έχουμε μία ομάδα εντολών που θέλουμε να εκτελεστούν πολλές φορές. Υπάρχουν τρείς

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: 6 ΘΕΜΑ 1 ο Α. Να χαρακτηρίσετε τις παρακάτω προτάσεις ως σωστές (Σ) η λανθασµένες

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005 ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα να ικανοποιεί ένας αλγόριθµος. Μονάδες 5 2. Ποιο κριτήριο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ονοματεπώνυμο: Βαθμός: Θέμα 1ο Α) Απαντήστε στις παρακάτω ερωτήσεις επιλέγοντας Σ (Σωστό) ή Λ (Λάθος). 1. Η ομάδα εντολών μέσα στην Αρχή_επανάληψης..μέχρις_ότου

Διαβάστε περισσότερα

Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΕΠΠ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας το γράμμα κάθε πρότασης και δίπλα σε

Διαβάστε περισσότερα

Αλγοριθμική Δομή Επανάληψης

Αλγοριθμική Δομή Επανάληψης Ημερίδα : «Διδακτικές προσεγγίσεις στα μαθήματα Ανάπτυξη εφαρμογών και Προγραμματιμός» Αλγοριθμική Δομή Επανάληψης Γεώργιος Χρ. Μακρής Διδακτικοί στόχοι στις δομές επανάληψης Να μπορούν να ξεχωρίζουν οι

Διαβάστε περισσότερα

ττιαογή και επανάληψη

ττιαογή και επανάληψη Κεφάλαιο 8 ττιαογή και επανάληψη 8.1 Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου είναι να καταστούν ικανοί οι μαθητές να συντάσσουν και να εκτελούν σε δομημένη γλώσσα προγραμματισμού προγράμματα

Διαβάστε περισσότερα

Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια

Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια Είσοδος:

Διαβάστε περισσότερα

Φάσμα. προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Φάσμα. προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. σύγχρονο Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι. μαθητικό φροντιστήριο 25ης Μαρτίου 111 - ΠΕΤΡΟΥΠΟΛΗ - 210 50 20 990-210 50 27 990 25ης Μαρτίου 74 - ΠΕΤΡΟΥΠΟΛΗ - 210 50 50 658-210 50 60 845 Γραβιάς 85 -

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ & 8.2 (ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ) ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΑ & 8.2 (ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ) ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΑ 2.4.5 & 8.2 (ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ) ΘΕΩΡΙΑ Ερωτήσεις Σωστό / Λάθος 1. Στη δομή Για... από... μέχρι η αρχική τιμή του μετρητή πρέπει να είναι πάντα μικρότερη από την τελική. 2. Η δομή Όσο... επανάλαβε

Διαβάστε περισσότερα

Δομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός

Δομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός Δομές Ακολουθίας- Επιλογής - Επανάληψης Δομημένος Προγραμματισμός 1 Βασικές Έννοιες αλγορίθμων Σταθερές Μεταβλητές Εκφράσεις Πράξεις Εντολές 2 Βασικές Έννοιες Αλγορίθμων Σταθερά: Μια ποσότητα που έχει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ:- Γ ΛΥΚΕΙΟΥ ΤΜΗΜΑΤΑ: ΓΟ4 ΓΟ7 (ΖΩΓΡΑΦΟΥ) ΓΟ5 ΓΟ6 (ΧΟΛΑΡΓΟΣ) HM/NIA: 15/1/2017

ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ:- Γ ΛΥΚΕΙΟΥ ΤΜΗΜΑΤΑ: ΓΟ4 ΓΟ7 (ΖΩΓΡΑΦΟΥ) ΓΟ5 ΓΟ6 (ΧΟΛΑΡΓΟΣ) HM/NIA: 15/1/2017 ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ:- Γ ΛΥΚΕΙΟΥ ΤΜΗΜΑΤΑ: ΓΟ4 ΓΟ7 (ΖΩΓΡΑΦΟΥ) ΓΟ5 ΓΟ6 (ΧΟΛΑΡΓΟΣ) HM/NIA: 15/1/2017 ΘΕΜΑ Α (Α1) Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ Θέμα Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2016-2017 Πάτρα 3/5/2017 Ονοματεπώνυμο:.. Α1. Να γράψετε στην κόλλα σας τον αριθμό

Διαβάστε περισσότερα

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με:

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με: Αλγόριθμοι 2.2.1. Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά εντολών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Τα κυριότερα χρησιμοποιούμενα

Διαβάστε περισσότερα

ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ

ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΠΕΚ ΤΡΙΠΟΛΗΣ ΕΠΙΜΟΡΦΩΣΗ ΕΚΠ/ΚΩΝ ΠΕ19,20 ΗΜ/ΝΙΑ 4-11-07 ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ Γ Γενικού Λυκείου (τεχνολογική κατεύθυνση) ΚΕΦ. 2 ο -7 ο : ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ

Διαβάστε περισσότερα

Παλλατίδειο ΓΕΛ Σιδηροκάστρου

Παλλατίδειο ΓΕΛ Σιδηροκάστρου Δομή Επανάληψης 2000 Θέμα 2 ο Έστω τμήμα αλγορίθμου με μεταβλητές A, B, C, D, X και Υ. D 2 Για Χ από 2 μέχρι 5 με_βήμα 2 Α 10 * Χ Β 5 * Χ + 10 C Α + Β (5 * Χ) D 3 * D - 5 Υ A + B C + D Να βρείτε τις τιμές

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2o Επαναληπτικό Διαγώνισμα Κεφ: 2 ο 7 ο 8 ο ΗΜΕΡΟΜΗΝΙΑ 21/ 10/ 2017

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2o Επαναληπτικό Διαγώνισμα Κεφ: 2 ο 7 ο 8 ο ΗΜΕΡΟΜΗΝΙΑ 21/ 10/ 2017 ΜΑΘΗΜΑ Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΔΙΑΓΩΝΙΣΜΑ 2o Επαναληπτικό Διαγώνισμα ΥΛΗ Κεφ: 2 ο 7 ο 8 ο ΗΜΕΡΟΜΗΝΙΑ 21/ 10/ 2017 Θέμα Α A1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Δίνεται το παρακάτω τμήμα αλγορίθμου. Να εξετάσετε αν ικανοποιεί τα αλγοριθμικά κριτήρια. Γράψε 'Δώσε

Διαβάστε περισσότερα

Θέμα Α Α3.1 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 9 ΣΕΛΙΔΕΣ

Θέμα Α Α3.1 ΤΕΛΟΣ 1ΗΣ ΑΠΟ 9 ΣΕΛΙΔΕΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΟΥ ΔΙΑΓΩΝΙΣΜΑΤΟΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2012-2013 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1 Α2 1. Μέχρι το 1976

Διαβάστε περισσότερα

Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ

Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ Κεφαλαιο 2.2 ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΕΣ ΑΛΓΟΡΙΘΜΟΙ 1.Σ, 2.Σ, 3. Λ, 4.Σ, 5.Σ Στο α) ανήκουν: 1,2,5,6,7 Στο β) ανήκουν: 3,4,8,9,10 1.-Λ, 2.-Λ, 3.-Σ, 4.-Σ, 5.-Σ 1. -Πραγματικός, 2. -Αρφαριθμητικός, 3.-Αλφαριθμητικός,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2011-2012 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 7 Α1. Κάθε σωστή απάντηση

Διαβάστε περισσότερα

Προτεινόμενα Θέματα ΑΕΠΠ

Προτεινόμενα Θέματα ΑΕΠΠ Προτεινόμενα Θέματα ΑΕΠΠ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε αν κάθε μία από τις παρακάτω προτάσεις είναι σωστή (Σ) ή λανθασμένη (Λ). Αιτιολογήσετε κάθε σας απάντηση 1. Η μερικώς περιορισμένη εμβέλεια προσφέρει

Διαβάστε περισσότερα

8.4. Δραστηριότητες - ασκήσεις

8.4. Δραστηριότητες - ασκήσεις 8.4. Δραστηριότητες - ασκήσεις ΣΤΗΝ ΤΑΞΗ ΔΤ1. ΔΤ2. ΔΤ3. ΔΤ4. Αν η μεταβλητή Α έχει την τιμή 10, η μεταβλητή Β έχει την τιμή 5 και η μεταβλητή Γ έχει την τιμή 3, ποιες από τις παρακάτω εκφράσεις είναι αληθείς

Διαβάστε περισσότερα

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ

Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Γ τάξη Τεχνολογικής Κατεύθυνσης Ενιαίου Λυκείου ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΟΜΗ ΕΠΙΛΟΓΗΣ Διδάσκων: ΔΟΥΡΒΑΣ ΙΩΑΝΝΗΣ Κεφάλαιο 2 : Δομή Επιλογής Εντολές επιλογής Εντολή ΑΝ. Εντολές

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ «ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΕ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ»

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ «ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΕ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ» 1 ΣΗΜΕΙΩΣΕΙΣ ΣΤΟ ΜΑΘΗΜΑ «ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΕ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ» Β Με τον όρο Πρόβλημα προσδιορίζεται μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008. Τμήμα ΓΤ1 Όνομα:...

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008. Τμήμα ΓΤ1 Όνομα:... ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΔΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 19/12/2008 Τμήμα ΓΤ1 Όνομα:... ΘΕΜΑ 1 ο. Α) Να γράψετε στο φύλλο απαντήσεών σας Σ εάν κρίνετε ότι η πρόταση είναι σωστή και

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β)

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β) ΘΕΜΑ 1 ο (Μονάδες 40) A. Γράψτε τον αριθµό καθεµιάς από τις παρακάτω προτάσεις και διπλά τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος,

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α [40 μόρια] α) Να επιλέξτε το γράμμα Σ, αν μια πρόταση είναι σωστή και το γράμμα

Διαβάστε περισσότερα

8. Επιλογή και επανάληψη

8. Επιλογή και επανάληψη 8. Επιλογή και επανάληψη 8.1 Εντολές Επιλογής ΕΣΕΠ06-Θ1Β5 Η ιεραρχία των λογικών τελεστών είναι µικρότερη των αριθµητικών. ΕΣ07-Θ1Γ5 Η σύγκριση λογικών δεδοµένων έχει έννοια µόνο στην περίπτωση του ίσου

Διαβάστε περισσότερα

Προβλήματα, αλγόριθμοι, ψευδοκώδικας

Προβλήματα, αλγόριθμοι, ψευδοκώδικας Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι

Διαβάστε περισσότερα

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε "Ναι" Τέλος Α2

Παράδειγμα 2. Λύση & Επεξηγήσεις. Τέλος_επανάληψης Εμφάνισε Ναι Τέλος Α2 Διδακτική πρόταση ΕΝΟΤΗΤΑ 2η, Θέματα Θεωρητικής Επιστήμης των Υπολογιστών Κεφάλαιο 2.2. Παράγραφος 2.2.7.4 Εντολές Όσο επανάλαβε και Μέχρις_ότου Η διαπραγμάτευση των εντολών επανάληψης είναι σημαντικό

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ ΑΕΠΠ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ ΑΕΠΠ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 - ΑΕΠΠ ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-6 και δίπλα τη λέξη Σωστό, αν

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Ασκή σεις στή δομή επανα λήψής

Ασκή σεις στή δομή επανα λήψής Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 1 Ασκή σεις στή δομή επανα λήψής Ανάγνωση Στοιχείων Εύρεση Πλήθους 1. Να γραφεί αλγόριθμος ο οποίος να διαβάζει Ν πραγματικούς αριθμούς. Αλγόριθμος Άσκηση1

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Παραβιάζει τα κριτήρια της καθοριστικότητας και της περατότητας β. Αιτιολόγηση: ο αλγόριθμος παραβιάζει το κριτήριο

Διαβάστε περισσότερα

στο μάθημα προσανατολισμού Γ τάξης ενιαίου Λυκείου: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

στο μάθημα προσανατολισμού Γ τάξης ενιαίου Λυκείου: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΔΙΑΓΩΝΙΣΜΑ ΒΑΘΜΟΣ: στο μάθημα προσανατολισμού Γ τάξης ενιαίου Λυκείου: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον [εξεταστέα ύλη: Βασικές Έννοιες Αλγορίθμων, Δομή Επιλογής, Δομή Επανάληψης Όσο,

Διαβάστε περισσότερα

Εισαγωγή - Βασικές έννοιες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο

Εισαγωγή - Βασικές έννοιες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο Εισαγωγή - Βασικές έννοιες Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος 2012-13 A Εξάμηνο Αλγόριθμος Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7)

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7) Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ 1 A. Να γράψετε τους κανόνες που πρέπει να ακολουθούνται στη χρήση των εμφωλευμένων βρόχων. B. Να χαρακτηρίσετε ως σωστή (Σ) ή λάθος (Λ) καθεμία από

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Σάββατο, 4 Ιουνίου 2005 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1o Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα να ικανοποιεί ένας αλγόριθµος.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 Ο Α. Να αναπτύξετε τις παρακάτω ερωτήσεις: 1. Τι καλείται βρόγχος; 2. Σε ποιες κατηγορίες διακρίνονται τα προβλήματα ανάλογα με

Διαβάστε περισσότερα

θέμα των Πανελλαδικών Εξετάσεων

θέμα των Πανελλαδικών Εξετάσεων Θέμα 2000. 1. Σωστό (Σ) Λάθος (Λ). i. Η περατότητα ενός αλγορίθμου αναφέρεται στο γεγονός ότι καταλήγει στη λύση του προβλήματος μετά από πεπερασμένο αριθμό βημάτων (εντολών). Μονάδες 4 ii. Για να αναπαραστήσουμε

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός...

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός... 1 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Διάρκεια 3 ώρες Στοιχεία Μαθητή: Όνομα... Επώνυμο... Βαθμός... 2 Θεμα Α (30%) Α1 ΣΩΣΤΟ - ΛΑΘΟΣ 1. Ένα υποπρόγραμμα δεν μπορεί να κληθεί περισσότερες

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς Βασικές Έννοιες Αλγορίθμων Δομή Ακολουθίας (κεφ. 2 και 7 σχολικού βιβλίου) 1. Οι μεταβλητές αντιστοιχίζονται από τον μεταγλωττιστή κάθε

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή ή τη λέξη ΛΑΘΟΣ, αν είναι

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-4 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων Πληροφορικής 2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών 3. Ο αλγόριθμος

Διαβάστε περισσότερα

Θέμα 1 ο. Επαναληπτικό ΛΥΣΕΙΣ

Θέμα 1 ο. Επαναληπτικό ΛΥΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΣΤΡΙΤΣΙΟΥ ΠΑΡΑΣΚΕΥΗ 5 Μαΐου 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ον/μο:.. Γ Λυκείου Τεχν. Κατ. 04-11-12 ΘΕΜΑ 1 ο Α.1)Ποιες κατηγορίες προβλημάτων γνωρίζετε; 2)Να αναπτύξετε τα κριτήρια που πρέπει να ικανοποιεί ένας αλγόριθμος. 3)Ποια τα στάδια

Διαβάστε περισσότερα

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008. Τµήµα ΓΤ2 Όνοµα:...

ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008. Τµήµα ΓΤ2 Όνοµα:... ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΡΠΕΝΗΣΙΟΥ ΙΩΡΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ 16/12/2008 Τµήµα ΓΤ2 Όνοµα:... ΘΕΜΑ 1 ο. Α) Να γράψετε στο φύλλο απαντήσεών σας Σ εάν κρίνετε ότι η πρόταση είναι σωστή και

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ/Γ ΟΙΚΟΝΟΜΙΚΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ-ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΚΑΤΡΑΚΗ Α.-ΣΙΟΤΡΟΠΟΣ Π.-ΛΙΟΔΑΚΗΣ Ε.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ/Γ ΟΙΚΟΝΟΜΙΚΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ-ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΚΑΤΡΑΚΗ Α.-ΣΙΟΤΡΟΠΟΣ Π.-ΛΙΟΔΑΚΗΣ Ε. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 2017-2018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ/Γ ΟΙΚΟΝΟΜΙΚΩΝ & ΠΛΗΡΟΦΟΡΙΚΗΣ-ΘΕΡΙΝΑ ΗΜΕΡΟΜΗΝΙΑ: 12/11/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΚΑΤΡΑΚΗ Α.-ΣΙΟΤΡΟΠΟΣ Π.-ΛΙΟΔΑΚΗΣ Ε. ΘΕΜΑ Α Α1. Να γράψετε τον αριθμό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΣΤΗΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 05/01/2010 ΘΕΜΑ 1 ο Α) Δίνεται η παρακάτω ακολουθία εντολών αλγορίθμου: ΑΛΓΟΡΙΘΜΟΣ Θέμα1 ΔΙΑΒΑΣΕ Ν Σ 0 π 0 ΓΙΑ ψ ΑΠΟ -1 ΜΕΧΡΙ

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ Ερωτήσεις Ανάπτυξης 1. Να περιγράψετε τη δομή της λίστας και τη διαδικασία εισαγωγής και διαγραφής ενός κόμβου. 3.9.1 Σελ 71-72

Διαβάστε περισσότερα

Β. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α, που αντιστοιχούν σωστά με το γράμμα της Στήλης Β. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Β. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α, που αντιστοιχούν σωστά με το γράμμα της Στήλης Β. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Σ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 4 ΙΟΥΛΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ

Διαβάστε περισσότερα

ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της

ΔΟΜΗ ΕΠΙΛΟΓΗΣ. Οι διάφορες εκδοχές της ΔΟΜΗ ΕΠΙΛΟΓΗΣ Οι διάφορες εκδοχές της Απλή επιλογή Ναι Ομάδα Εντολών Α Ισχύει η Συνθήκη; Χ Χ Χ Όχι Αν (Συνθήκη =Αληθινή) Τότε Ομάδα εντολών Τέλος_αν Λειτουργία: 1. Αν ισχύει η συνθήκη εκτελείται ΠΡΩΤΑ

Διαβάστε περισσότερα

Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις με τη λέξη Σωστή ή με τη λέξη Λάθος.

Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις με τη λέξη Σωστή ή με τη λέξη Λάθος. ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ- ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 08-11-2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι.ΜΙΧΑΛΕΑΚΟΣ- Α.ΚΑΤΡΑΚΗ - Π.ΣΙΟΤΡΟΠΟΣ ΘΕΜΑ Α Α1. Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις

Διαβάστε περισσότερα

ΦάσµαGroup προπαρασκευή για

ΦάσµαGroup προπαρασκευή για Σύγχρονο ΦάσµαGroup προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι Μαθητικό Φροντιστήριο 25 ης Μαρτίου 74 ΠΛΑΤΕΙΑ ΠΕΤΡΟΥΠΟΛΗΣ 50.50.658 50.60.845 25 ης Μαρτίου 111 ΠΕΤΡΟΥΠΟΛΗ 50.20.990 50.27.990 Γραβιάς 85 ΚΗΠΟΥΠΟΛΗ

Διαβάστε περισσότερα

Ορισµοί κεφαλαίου. Σηµαντικά σηµεία κεφαλαίου

Ορισµοί κεφαλαίου. Σηµαντικά σηµεία κεφαλαίου Ορισµοί κεφαλαίου Αλγόριθµος είναι µια πεπερασµένη σειρά ενεργειών, αυστηρά καθορισµένων και εκτελέσιµων σε πεπερασµένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήµατος. Σηµαντικά σηµεία κεφαλαίου Κριτήρια

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2.4.5 8.2 Βασικές Ασκήσεις στις Δομές Επανάληψης Έλεγχος Εισαγόμενων Τιμών Εύρεση Αθροισμάτων - Μέσων όρων Εύρεση Μέγιστου- Ελάχιστου Εύρεση Πλήθους Ποσοστών

Διαβάστε περισσότερα

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Λάθος. Ποια η διαφορά μεταξύ διερμηνευτή και μεταγλωττιστή; Απάντηση:

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Λάθος. Ποια η διαφορά μεταξύ διερμηνευτή και μεταγλωττιστή; Απάντηση: ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασμένη. 1. Η ταξινόμηση είναι μια από τις βασικές

Διαβάστε περισσότερα

3. Να γραφεί πρόγραμμα που θα διαβάζει 100 ακεραίους αριθμούς από το πληκτρολόγιο και θα υπολογίζει το άθροισμά τους.

3. Να γραφεί πρόγραμμα που θα διαβάζει 100 ακεραίους αριθμούς από το πληκτρολόγιο και θα υπολογίζει το άθροισμά τους. ΑΕσΠΠ-Δομή Επανάληψης 9 ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1. Να γραφεί πρόγραμμα που να υπολογίζει το άθροισμα των πρώτων 100 φυσικών αριθμών. 2. Να τροποποιηθεί ο παραπάνω πρόγραμμα ώστε να υπολογίζει το άθροισμα των πρώτων

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. S <-- 0 ιάβασε Υ Όσο α <= Υ επανάλαβε S <-- S +α. Τέλος_επανάληψης

ΘΕΜΑ 1 ο. S <-- 0 ιάβασε Υ Όσο α <= Υ επανάλαβε S <-- S +α. Τέλος_επανάληψης ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από

Διαβάστε περισσότερα

Μεθοδολογία προβλημάτων με Δομή Επανάληψης

Μεθοδολογία προβλημάτων με Δομή Επανάληψης Μεθοδολογία προβλημάτων με Δομή Επανάληψης Ενότητες βιβλίου: - Ώρες διδασκαλίας: 3 Μετρητές Σε πολλές ασκήσεις ζητείται να καταμετρηθεί το πλήθος των τιμών που ικανοποιούν μια συνθήκη (π.χ. είναι θετικοί

Διαβάστε περισσότερα

Ένα περιοδικό για το ΑΕΠΠ Τεύχος Πανελλαδικών ΙΙ

Ένα περιοδικό για το ΑΕΠΠ Τεύχος Πανελλαδικών ΙΙ Ένα περιοδικό για το ΑΕΠΠ Τεύχος Πανελλαδικών ΙΙ Περιλαμβάνει τα δεύτερα θέματα των πανελληνίων εξετάσεων από το 2000 μέχρι και σήμερα ΑΠΟΛΥΤΗΡΙΕΣ ΓΕΝΙΚΟΥ 2000 Έστω τμήμα αλγορίθμου με μεταβλητές Α, Β,

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΣΚΗΣΕΙΣ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΙΛΟΓΗΣ ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ Σημειώστε αν είναι

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 15 / 01 / 2012

Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 15 / 01 / 2012 ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 15 / 01 / 2012 A. Να σημειώσετε αν είναι σωστή ή λανθασμένη η καθεμιά από τις παρακάτω

Διαβάστε περισσότερα

Για Ι από 2 μέχρι 10 με_βήμα 0 S S+I Τέλος_επανάληψης Εμφάνισε S Μονάδες 5

Για Ι από 2 μέχρι 10 με_βήμα 0 S S+I Τέλος_επανάληψης Εμφάνισε S Μονάδες 5 ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ)

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-6 και δίπλα τη λέξη Σωστό,

Διαβάστε περισσότερα

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.:

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ,

Διαβάστε περισσότερα