Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
|
|
- Λάχεσις Γλυκύς
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αριθµητική Ανάλυση Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 1 / 36
2 Αριθµητική Παραγώγιση ίνεται µια συνάρτηση f(x) µε ένα πολύπλοκο τύπο ή δίνεται ένας πίνακας τιµών της. Ζητείται η f (x) (και πιθανόν οι f (x), f (x), κ.ο.κ). Τότε f (x) p n(x) όπου p n (x) το πολυώνυµο παρεµβολής σε n+1σηµεία της f(x). Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 2 / 36
3 Τύποι Αριθµητικής Παραγώγισης για ισαπέχοντα σηµεία ίνονται τα σηµεία x i = x 0 + ih, i = 0, 1, 2,...n και Ϲητείται ο υπολογισµός της f (x) σε ένα δεδοµένο σηµείο x. Εχουµε Αν τώρα f (x) p n(x) x = x 0 +θh και χρησιµοποιήσουµε το αντίστοιχο πολυώνυµο παρεµβολής του Newton µε προς τα εµπρός διαφορές λαµβάνουµε διαδοχικά ή ( θ f(x) p n(x) = f ( θ + n = 1 [ d f 0 + h dθ ) ( θ f ) n f 0 f (x) p n(x) = dpn(x) dθ ) ( θ f ( θ 1 dθ dx ) 2 f ) 2 f 0 + ( θ n ) n f 0 ] Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 3 / 36
4 οπότε [ f (x) 1 f h 2 (2θ 1) 2 f (3θ2 6θ+2) 3 f d ( ] θ ) n f 0. (1) dθ n Ο ανωτέρω τύπος απλοποιείται αρκετά αν Ϲητείται η παράγωγος της f(x) στο x i. Αν x = x 0 τότε γιαθ = 0 έχουµε ότι f (x 0 ) 1 [ f 0 12 h 2 f f 0 + +( 1) n 1 1n ] n f 0. (2) Για n = 1 f (x 0 ) 1 h f 0 = 1 h [f 1 f 0 ]. (3) Για n = 2 f (x 0 ) 1 h ( f f 0 ) = f 2 4f 1 + 3f 0 2h Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 4 / 36 (4)
5 Στην περίπτωση που ϑέλουµε να υπολογίσουµε την f (x 1 ), τότεθ = 1 και [ f f f 0 + +( 1) n 1n ] n f 0 f (x 1 ) 1 h εποµένως για n = 1 και για n = 2 f (x 1 ) 1 h f (x 1 ) 1 h f 0 = f 1 f 0, (5) h [ f f 0 ] = f 2 f 0 2h. (6) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 5 / 36
6 Χρήσιµες ϐοηθητικές πράξεις x = x 0 +θh θ = x x 0 h dθ dx = 1 h f (x) p n (θ(x)) = dp n(x) dθ dθ dx Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 6 / 36
7 ...Χρήσιµες ϐοηθητικές πράξεις... Είναι Αρα ( θ n ( d θ dθ n Για θ = 0 είναι ( d θ dθ n ) = 1 (θ n+1)(θ n+2) θ = n! = 1 [θ (n 1)][θ (n 2)] θ n! ) = d dθ [ ] 1 [θ (n 1)][θ (n 2)] θ n! = 1 n! ) θ=0 = 1 n 1 n! i=0 n 1 i=0 n 1 (θ j) j=0 }{{} j i n 1 ( j) = 1 n! ( 1)( 2) ( n+1) j=0 }{{} j i Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 7 / 36
8 Για θ = 0 είναι ( d θ dθ n ) θ=0 = 1 n 1 n! i=0 n 1 j=0 }{{} j i ( j) = 1 n! ( 1)( 2) ( n+1) άρα τελικά ( d θ dθ n ) θ=0 = 1 n! ( 1)n 1 (n 1)! = ( 1) n 1 1 n Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 8 / 36
9 Για θ = 1 είναι άρα τελικά ( d θ dθ n ( d θ dθ n ) θ=1 = 1 n 1 n! i=0 n 1 j=0 }{{} j i (1 j) ) θ=1 = 1 n! (1 0)(1 2)(1 3) [1 (n 1)] = 1 n! ( 1)n 2 (n 2)! = ( 1) n 2 1 n(n 1), n 2 Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 9 / 36
10 Τύποι για τον υπολογισµό των f (x), f (x), Υπολογισµός της δεύτερης παράγωγου f (x) οπότε f (x) 1 [ d f h dx 2 (2θ 1) 2 f (3θ2 6θ + 2) 3 f d ( ] θ ) n f 0 dθ n = 1 [ d f h dθ 2 (2θ 1) 2 f (3θ2 6θ + 2) 3 f d ( ] θ ) n f 0. (7) dθ n f (x) 1 h 2 [ 2 f 0 +(θ 1) 3 f d2 dθ 2 ( θ n Αρα για x = x 0 (δηλ. θ = 0) και n = 2 έχουµε ) n f 0 ]. (8) f (x 0) 1 f h = 1 2f1 + f0). (9) h2(f2 Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 10 / 36
11 Παράδειγµα Χρησιµοποιώντας όλες τις πληροφορίες του πίνακα x f(x) να ϐρεθούν οι προσεγγιστικές τιµές f (1.5) και f (2.5). Τα σηµεία x 0 = 0, x 1 = 1, x 2 = 2 και x 3 = 3 είναι ισαπέχοντα µε ϐήµα h = 1. Για τον υπολογισµό της f (1.5) ϑα χρησιµοποιήσουµε τον τύπο (1). Εχουµε θ = x x 0 = = 1.5 h 1 και επειδή έχουµε 4 σηµεία είναι n = 3. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 11 / 36
12 Πίνακας των προς τα εµπρός διαφορών x f(x) οπότε για την f (x) έχουµε από την (1) ότι [ f (2θ 1) 2 f ] (3θ2 6θ + 2) 3 f 0 f (x) 1 h και f (1.5) 1 h [ ( ) 4+ 1 ] 6 ( ) 0 = 5. Για τον υπολογισµό της f (2.5) από τον τύπο (8) προκύπτει f (x) 1 f h 2[ 2 0 +(θ 1) 3 f 0] = 1 12[4+(2.5 1) 0] = 4. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 12 / 36
13 Αριθµητική Παραγώγιση µε τη µέθοδο των προσδιοριστέων συντελεστών Παράδειγµα 1 Να προσδιοριστούν οι συντελεστές w 1 και w 1 στον παρακάτω προσεγγιστικό τύπο της αριθµητικής παραγώγισης f (x 0) w 1f 1 + w 1f 1 (10) µε f i = f(x 0 + ih), i = 1, 0, 1, ώστε να είναι όσο το δυνατόν πιο ακριβής. Λύση Για να προσδιορίσουµε τις παραµέτρους w 1 και w 1 ϑα απαιτήσουµε ο τύπος που δόθηκε να είναι ακριβής για f(x) = 1, x, x 2,... Για f(x) = 1 έχουµε f (x) = 0 οπότε το πρώτο µέλος του τύπου (10) γίνεται A = 0 ενώ το δεύτερο µέλος γίνεται B = w 1 + w 1. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 13 / 36
14 Εξισώνοντας τα δύο µέλη ϐρίσκουµε w 1 + w 1 = 0. (11) Για f(x) = x έχουµε f (x) = 1 οπότε A = 1 και B = w 1 (x 0 h)+w 1 (x 0 + h) = (w 1 + w 1 )x 0 +( w 1 + w 1 )h εξισώνοντας (A = B) προκύπτει (w 1 + w 1 )x 0 +( w 1 + w 1 )h = 1 λόγω όµως της (11) έχουµε ( w 1 + w 1 )h = 1. (12) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 14 / 36
15 Από τις (11) και (12) ϐρίσκουµε αµέσως ότι οπότε ο τύπος (10) γίνεται w 1 = w 1 = 1 2h f (x 0 ) 1 2h (f 1 f 1 ). (13) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 15 / 36
16 Συνεπώς, ο τύπος (13) είναι ακριβής για πολυώνυµα µέχρι και πρώτου βαθµού. Για να διαπιστώσουµε αν είναι ακριβής και για πολυώνυµα µεγαλύτερου ϐαθµού αρκεί να συνεχίσουµε την προηγούµενη διαδικασία για f(x) = x 2, x 3,... Οπότε, για f(x) = x 2, έχουµε f (x) = 2x και A = 2x 0 B = 1 [ (x0 + h) 2 (x 0 h) 2] = 2x 0. 2h Αρα A B, οπότε είναι ακριβής και για δευτέρου βαθµού πολυώνυµα. για f(x) = x 3, έχουµε f (x) = 3x 2 και ϐρίσκουµε A = 3x 2 0 B = 1 [ (x0 + h) 3 (x 0 h) 3] = 3x 2 0 2h + h2. Αρα A B, οπότε δεν είναι ακριβής για τρίτου βαθµού πολυώνυµα. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 16 / 36
17 Παράδειγµα 2 Να προσδιοριστούν οι συντελεστές w 0, w 1 και w 2 στο προσεγγιστικό τύπο της αριθµητικής παραγωγίσεως f (x 0 ) 1 h (w 0f 0 + w 1 f 1 + w 2 f 2 ) µε f i = f(x 0 + ih), i = 0, 1, 2 ώστε να είναι όσο το δυνατόν πιο ακριβής. Λύση Για να προσδιορίσουµε τις παραµέτρους w 0, w 1 και w 2 ϑα απαιτήσουµε ο τύπος που δόθηκε να είναι ακριβής για f(x) = 1, x, x 2,... έτσι ώστε να µπορέσουµε να σχηµατίσουµε τρεις εξισώσεις που να περιέχουν τους τρεις αγνώστους w 0, w 1 και w 2. Για f(x) = 1 έχουµε A = f (x 0 ) = 0 και B = 1 h (w 0f 0 + w 1 f 1 + w 2 f 2 ) = 1 h (w 0 + w 1 + w 2 ) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 17 / 36
18 Επειδή απαιτούµε A B προκύπτει αµέσως ότι w 0 + w 1 + w 2 = 0. (14) Για f(x) = x έχουµε A = f (x 0 ) = 1 και ή B = 1 h [w 0x 0 + w 1 (x 0 + h)+w 2 (x 0 + 2h)] B = 1 h [x 0(w 0 + w 1 + w 2 )+h(w 1 + 2w 2 ) λόγω όµως της (14) έχουµε B = w 1 + 2w 2 άρα w 1 + 2w 2 = 1. (15) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 18 / 36
19 Για f(x) = x 2 έχουµε A = f (x 0 ) = 2x 0 και B = 1 h [w 0x w 1 (x 0 + h) 2 + w 2 (x 0 + 2h) 2 ] = 1 h [x2 0(w 0 + w 1 + w 2 )+2x 0 h(w 1 + 2w 2 ) +h 2 (w 1 + 4w 2 )] = 2x 0 + h(w 1 + 4w 2 ), λόγω των(14) και(15) άρα 2x 0 + h(w 1 + 4w 2 ) = 2x 0 ή w 1 + 4w 2 = 0. (16) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 19 / 36
20 Λύνοντας τις (14), (15) και (16) ϐρίσκουµε w 0 = 3 2, w 1 = 2, w 2 = 1 2. Με ϐάση τις τιµές αυτές ο τύπος που δόθηκε γίνεται f (x 0 ) 1 2h (3f 0 4f 1 + f 2 ). Παρατηρούµε ότι ο τύπος που δόθηκε είναι ακριβής για πολυώνυµα µέχρι δευτέρου βαθµού τουλάχιστον. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 20 / 36
21 Σφάλµα αποκοπής της πρώτης παραγώγου Το σφάλµα αποκοπής E n στον υπολογισµό της πρώτης παραγώγου στην περίπτωση των n+1σηµείων παρεµβολής είναι όπου E n = f (x) p n(x) (17) Επειδή όµως έχουµε f(x) = p n (x)+f[x 0, x 1,... x n, x] d n (x x i ). (18) i=0 g (x) = lim h 0 g[x, x + h] = g[x, x] dx f[x 0, x 1,..., x n, x] = f[x 0, x 1,..., x n, x, x]. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 21 / 36
22 Παραγωγίζοντας την (18) έχουµε f (x) = p n (x)+f[x 0, x 1,...,x n, x, x]ψ n (x)+ f[x 0, x 1,..., x n, x]ψ n (x) όπου ψ n (x) = (x x 0 )(x x 1 ) (x x n ) (19) ή f (x) = p n (x)+ f(n+2) (ξ 1 ) (n+2)! ψ n(x)+ f(n+1) (ξ) (n+1)! ψ n (x) (20) όπουξ 1 = ξ 1 (x), ξ = ξ(x) I, f(x)c n+2 (I) και I = [min{x 0, x 1,..., x n, x}, max{x 0, x 1,..., x n, x}]. Συνεπώς, λόγω της (20) η (17) γράφεται E n = ψ n (x) f(n+2) (ξ 1 ) (n+2)! +ψ n(x) f(n+1) (ξ) (n+1)!. (21) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 22 / 36
23 Ο ανωτέρω τύπος µπορεί να απλοποιηθεί σηµαντικά όταν το τυχόν σηµείο x είναι ένα από τα σηµεία παρεµβολής x k, 0 k n. Στην περίπτωση αυτή η (21) γίνεται όπου Πράγµατι, ή E n = n (x k x i) f(n+1) (ξ) (n+1)! i=0 }{{} i k ξ = ξ(x) = I = [min{x 0, x 1,...x n}, max{x 0, x 1,... x n}]. (23) ψ n(x) = (x x 0)(x x 1) (x x n) ψ n(x) = (x x 1)(x x 2) (x x n)+(x x 0)(x x 2) (x x n)+ + οπότε όταν x = x k έχουµε +(x x 0)(x x 1) (x x n 1) ψ n(x k) = (x k x 0)(x k x 1) (x k x k 1)(x k x k+1) (x k x n) (22) ή n ψ n(x k) = (x k x i). i=0 }{{} Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 23 / 36
24 Παράδειγµα 1 Να ϐρεθεί το σφάλµα αποκοπής στην περίπτωση χρήσης του τύπου Λύση f (x 0) f1 f0 Με εφαρµογή του τύπου (22) µε n = 1, x k = x 0 και έχοντας υπόψη ότι τα σηµεία παρεµβολής ισαπέχουν ϐρίσκουµε 1 1 E 1 = (1+1)! f(1+1) (ξ) (x 0 x i), όπου Από τα ανωτέρω προκύπτει h. i=0 }{{} i 0 ξ I = [min{x 0, x 1}, max{x 0, x 1}]. E 1 = h 2! f(2) (ξ), ξ (x 0, x 1). Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 24 / 36
25 Παράδειγµα 2 Να ϐρεθεί, όπως στο προηγούµενο παράδειγµα 1, το σφάλµα αποκοπής στην περίπτωση χρήσης του τύπου Λύση f (x 0 ) f 2 4f 1 + 3f 0 2h Εργαζόµαστε παρόµοια µε n = 2 ϐρίσκουµε ότι E 2 = 1 3! f(3) (ξ)(x 0 x 1 )(x 0 x 2 ) = 1 3! f(3) (ξ)( h)( 2h) = h2 3 f(3) (ξ), ξ (x 0, x 2 ). Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 25 / 36
26 Παράδειγµα 3 Για την εύρεση της πρώτης παραγώγου του πολυωνύµου f(x) = 3x 3 2x στο σηµείο x = 1.5 χρησιµοποιείται ο τύπος (4) µε σηµεία παρεµβολής τα x 0 = 0, x 1 = 1 και x 2 = 2. Να ϐρεθεί, εφαρµόζοντας τον τύπο (21), το αντίστοιχο σφάλµα αποκοπής. Λύση Επειδή το x = 1.5 δεν είναι σηµείο παρεµβολής ϑα εφαρµοστεί ο τύπος (21) για n = 2 και x = 1.5. Επειδή η συνάρτηση είναι πολυώνυµο τρίτου ϐαθµού, έχουµε αµέσως από την αναλυτική έκφρασή της ότι f (3) (ξ) = 18 και f (4) (ξ 1 ) = 0. Εποµένως ο τύπος (21) δίνει E 2 = 1 3! 18[(x 0)(x 1)(x 2)] x=1.5 = 3(x 3 3x 2 + 2x) x=1.5 = 3(3x 2 6x + 2) x=1.5 = 3(3 (1.5) 2 6 (1.5)+2) = Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 26 / 36
27 Σφάλµα αποκοπής της παραγώγου στη µέθοδο των προσδιοριστέων συντελεστών Εστω ότι Ϲητάµε να ϐρούµε το σφάλµα αποκοπής του τύπου (13), δηλαδή του f (x 0 ) 1 2h (f 1 f 1 ). (24) Οπως διαπιστώθηκε προηγούµενα, ο τύπος αυτός είναι ακριβής µέχρι και για δευτέρου ϐαθµού πολυώνυµα, συνεπώς µε ϐάση τον τύπο (22) συµπεραίνουµε ότι το σφάλµα αποκοπής του είναι ανάλογο προς την f (ξ), δηλαδή ϑα ισχύει f (x 0 ) = 1 2h (f 1 f 1 )+Af (ξ), ξ (x 1, x 1 ). (25) Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 27 / 36
28 Αν τώρα ϑέσουµε f(x) = x 3, ϑα µπορέσουµε να προσδιορίσουµε την σταθερά A. Πράγµατι, επειδή f (x) = 3x 2 και f (x) = 6, ο τύπος (25) γράφεται 3x 2 0 = 1 2h (x3 1 x 3 1)+A 6 όπου x 1 = x 0 h και x 1 = x 0 + h, οπότε αντικαθιστώντας ϐρίσκουµε ή ή Συνεπώς η (25) γράφεται τελικά σαν 3x 2 0 = 1 2h [(x0 + h)3 (x 0 h) 3 ]+6A 12hA = 6x 0h 2 2h(3x h 2 ) A = h2 6. f (x 0) = 1 h2 (f1 f 1) 2h 6 f (ξ), ξ (x 1, x 1). (26) Ανάλογα µπορούµε να εργαστούµε για την εύρεση του σφάλµατος αποκοπής για τον άλλο τύπο. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 28 / 36
29 Σφάλµα την Αριθµητική Παραγώγιση Ενα ιδιαίτερα σηµαντικό ϑέµα στη µελέτη του προβλήµατος της αριθµητικής παραγώγισης είναι η επίδραση του σφάλµατος στρογγύλευσης. Χάριν απλότητας, ας µελετήσουµε το σφάλµα στρογγύλευσης στον τύπο f (x 0 ) = f(x 0 + h) f(x 0 h) 2h h2 6 f(3) (ξ). (27) Ας υποθέσουµε ότι κατά τον υπολογισµό των f(x 0 + h) και f(x 0 h) υπεισέρχονται σφάλµατα στρογγύλευσηςε 1 καιε 1, τότε οι προσεγγιστικές τιµές f1 και f 1 δίνονται από τους τύπους fi = f i ε i, i = 1, 1 (28) όπου f i, i = 1, 1 συµβολίζουν τις ακριβείς τιµές της f(x) στα σηµεία x i, i = 1, 1. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 29 / 36
30 Το σφάλµα για τον υπολογισµό της f (x 0 ) δίνεται από την ποσότητα ή λόγω της (28) [ E = E = f (x 0 ) f 1 f 1 2h f (x 0 ) f 1 f 1 2h και τελικά, λόγω της (27), λαµβάνουµε ] + ε 1 ε 1 2h E = h2 6 f(3) (ξ)+ ε 1 ε 1. (29) 2h Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 30 / 36
31 Από την (29) παρατηρούµε ότι το σφάλµα έχει ένα τµήµα που οφείλεται στο σφάλµα στρογγύλευσης και ένα τµήµα που οφείλεται στο σφάλµα αποκοπής. Υποθέτοντες ότι τα σφάλµατα στρογγύλευσης είναι ϕραγµένα, δηλαδή ε i ε και f (3) (ξ) < M, η (29) γράφεται E ε h + h2 M = g(h). (30) 6 Για την ελαχιστοποίηση του E είναι ϕανερό ότι αρκεί να ελαχιστοποιηθεί η g(h) ως προς h. Ετσι, από την g (h) = 0 προκύπτει ( ) 1 3ε 3 h =. M Στην πράξη όµως δεν είναι δυνατόν να υπολογίσουµε την ακριβή ϐέλτιστη τιµή του h αφού δεν γνωρίζουµε το M. Ανάλογα συµπεράσµατα ισχύουν και για τους άλλους τύπους αριθµητικής παραγώγισης. Αξίζει λοιπόν να σηµειωθεί ότι η αριθµητική παραγώγιση είναι ασταθής καθόσον µικρές τιµές του h ελαττώνουν το σφάλµα αποκοπής αλλά συγχρόνως αυξάνουν το σφάλµα στρογγύλευσης. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 31 / 36
32 Σηµειώµατα Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 32 / 36
33 Σηµείωµα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήµιον Αθηνών 2015, Νικόλαος Μισυρλής, Αριθµητική Ανάλυση. Ενότητα 6- Αριθµητική Παραγώγιση και Ολοκλήρωση Εκδοση:1.01. Αθήνα ιαθέσιµο από τη δικτυακή διεύθυνση: Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 33 / 36
34 Σηµείωµα Αδειοδότησης Το παρόν υλικό διατίθεται µε τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εµπορική Χρήση Παρόµοια ιανοµή 4.0 [1] ή µεταγενέστερη, ιεθνής Εκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. ϕωτογραφίες, διαγράµµατα κ.λ.π., τα οποία εµπεριέχονται σε αυτό και τα οποία αναφέρονται µαζί µε τους όρους χρήσης τους στο «Σηµείωµα Χρήσης Εργων Τρίτων». [1] Ως Μη Εµπορική ορίζεται η χρήση: που δεν περιλαµβάνει άµεσο ή έµµεσο οικονοµικό όφελος από την χρήση του έργου, για το διανοµέα του έργου και αδειοδόχο που δεν περιλαµβάνει οικονοµική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προορίζει στο διανοµέα του έργου και αδειοδόχο έµµεσο οικονοµικό όφελος (π.χ. διαφηµίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος µπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιµοποιεί το έργο για εµπορική χρήση, εφόσον αυτό του Ϲητηθεί. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 34 / 36
35 ιατήρηση Σηµειωµάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού ϑα πρέπει να συµπεριλαµβάνει: το Σηµείωµα Αναφοράς το Σηµείωµα Αδειοδότησης τη δήλωση ιατήρησης Σηµειωµάτων το Σηµείωµα Χρήσης Εργων Τρίτων (εφόσον υπάρχει) µαζί µε τους συνοδευόµενους υπερσυνδέσµους. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 35 / 36
36 Σηµείωµα Χρήσης Εργων τρίτων Το Εργο αυτό κάνει χρήση του ακόλουθου έργου: Εισαγωγή στην Αριθµητική Ανάλυση : Μια αλγοριθµική προσέγγιση, αυτο-έκδοση, Αθήνα, 2009, Νικόλαος Μισυρλής. Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 36 / 36
Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 21 εκεµβρίου 2015 ΕΚΠΑ
Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Παραγώγιση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 21 εκεµβρίου 2015 ιδάσκοντες:τµήµα Α ( Αρτιοι)
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 2 ιαίρει και Βασίλευε Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 2 1 / 24 Επιλογή Το πρόβληµα
Αριθµητική Ανάλυση. Ενότητα 5 Προσέγγιση Συναρτήσεων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
Αριθµητική Ανάλυση Ενότητα 5 Προσέγγιση Συναρτήσεων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 5 1 / 55 Παρεµβολή Ας υποθέσουµε ότι δίνονται
15 εκεµβρίου εκεµβρίου / 64
15 εκεµβρίου 016 15 εκεµβρίου 016 1 / 64 Αριθµητική Ολοκλήρωση Κλειστοί τύποι αριθµητικής ολοκλήρωσης Εστω I(f) = b µε f(x) C[a, b], τότε I(f) = F(b) F(a), όπου F(x) είναι το αόριστο ολοκλήρωµα της f(x).
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Bellman Ford Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Bellman
Αριθµητική Ανάλυση. ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης. 25 Μαΐου 2010 ΕΚΠΑ
Αριθµητική Ανάλυση Κεφάλαιο 9. Αριθµητική Ολοκλήρωση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 5 Μαΐου 010 ιδάσκοντες:τµήµα Α ( Αρτιοι)
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Dijkstra Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Dijkstra
Αριθµητική Ανάλυση. Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
Αριθµητική Ανάλυση Ενότητα 6 Αριθµητική Παραγώγιση και Ολοκλήρωση Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 6 1 / 96 Αριθµητική Ολοκλήρωση
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 12: Ελαχιστοποίηση κόστους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Ελαχιστοποίηση κόστους
Τµήµα Πληροφορικής και Τηλεπικοινωνιών
Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα Νικόλαος Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών 2 Σεπτεµβρίου 2015 Νικόλαος Μισυρλής Επιστηµονικοί Υπολογισµοί 1 / 35 Περιεχόµενα
Αριθµητική Ανάλυση. Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων. Ν. Μ. Μισυρλής. Τµήµα Πληροφορικής και Τηλεπικοινωνιών,
Αριθµητική Ανάλυση Ενότητα 4 Αριθµητικός Υπολογισµός Ιδιοτιµών και Ιδιοδιανυσµάτων Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αριθµητική Ανάλυση - Ενότητα 4 1 / 48
Ορισμός κανονικής τ.μ.
Πιθανότητες και Στατιστική Ενότητα 4: Τυχαίες τυχαίες μεταβλητές Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Ορισμός κανονικής τ.μ. Ορισμός κανονικής τ.μ. Μια συνεχής τ.μ.
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ
Υπολογιστική άλγεβρα Ενότητα 10: Βάσεις Groebner ενός ιδεώδους ΙΙΙ Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 10 Βάσεις Groebner ενός ιδεώδους 10.1 Τρίτο μέρος Επαναλαμβάνουμε
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Μαθηματική Ανάλυση Ι
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Μαθηματική Ανάλυση Ι Ενότητα 10: Δυναμοσειρές Επίκουρος Καθηγητής Θ. Ζυγκιρίδης e-mail: tzygiridis@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών
Αριθµητική Ανάλυση. ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ. 16 Ιανουαρίου 2015
Αριθµητική Ανάλυση ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 16 Ιανουαρίου 2015 ιδάσκοντες:καθηγητής Ν. Μισυρλής,Επίκ. Καθηγητής Φ.Τζαφέρης Αριθµητική (ΕΚΠΑ) Ανάλυση 16 Ιανουαρίου
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 5 υναµικός Προγραµµατισµός Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 5 1 / 49 Εισαγωγή
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ. Καθηγητής νάλυση Φ.Τζαφέρης (ΕΚΠΑ) 27 Μαΐου / 20
Αριθµητική Ανάλυση ιδάσκοντες: Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής, Τµήµα Β (Περιττοί) : Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 27 Μαΐου 2010 ιδάσκοντες:τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β
Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι
Υπολογιστική άλγεβρα Ενότητα 1: Πολυωνυμικές σχέσεις και ταυτότητες, μέρος Ι Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος I Εναρξη μαθήματος 5 7 Υπολογιστική Άλγεβρα (439) ) Ευάγγελος
Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση
Γεωγραφικά Συστήµατα Πληροφοριών και Αρχές Τηλεπισκόπησης
Γεωγραφικά Συστήµατα Πληροφοριών και Αρχές Τηλεπισκόπησης Ενότητα: Αριθµητικές Μέθοδοι Επίλυσης Εξισώσεων, Αριθµητική Ολοκλήρωση Γεώργιος Σκιάνης Γεωλογίας και Γεωπεριβάλλοντος Σελίδα 2 1. Περιεχόµενα
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
1/8 Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.05: Ολοκλήρωση Ρητών Συναρτήσεων Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 10: Δυναμικός προγραμματισμός Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το παρόν
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 10 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
Διδακτική των εικαστικών τεχνών Ενότητα 1
Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της
Διδακτική των εικαστικών τεχνών Ενότητα 3
Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού
Υπολογιστική άλγεβρα Ενότητα 3: Πολυώνυμα τρίτου βαθμού Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Μέρος II Πολυώνυμα μίας μεταβλητής 17 Κεφάλαιο 3 Πολυώνυμα τρίτου βαθμού 3.1 Μάθημα
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Συστήματα Επικοινωνιών
Συστήματα Επικοινωνιών Ενότητα 2: Μαθιόπουλος Παναγιώτης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Τυχαίες Διαδικασίες: Ορισμοί, Μέσες τιμές συνόλου (Ensemble averages),
Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί)
Εισαγωγή στον Προγραµµατισµό Αριθµητική Ανάλυση (ή Επιστηµονικοί Υπολογισµοί ιδάσκοντες: Καθηγητής Ν. Μισυρλής, Επίκ. Καθηγητής Φ.Τζαφέρης ΕΚΠΑ 19 εκεµβρίου 2015 Ανάλυση (ή Επιστηµονικοί 19Υπολογισµοί
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 8: Πλεόνασμα καταναλωτή Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Χρηματικά μέτρα των ωφελειών
Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 7: Σειρές Taylor, Maclaurin Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Επεξεργασία Στοχαστικών Σημάτων
Επεξεργασία Στοχαστικών Σημάτων Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα Σεραφείμ Καραμπογιάς Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Βέλτιστα γραμμικά χρονικά αναλλοίωτα συστήματα
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Εισαγωγή στις Επιστήμες της Αγωγής
Εισαγωγή στις Επιστήμες της Αγωγής Αλεξάνδρα Ανδρούσου - Βασίλης Τσάφος Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Επίπεδα Κοινωνιολογίας της Εκπαίδευσης Αναλύει τη θέση και τη λειτουργία
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι Ενότητα 2: Παράλληλες θεωρητικές και εργαστηριακές προσεγγίσεις των τεχνικών και της δομής του κουκλοθέατρου, της κινούμενης εικόνας και ενός θέματος από
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Ενότητα 5: Δρ. Θεοκλής-Πέτρος Ζούνης Σχολή : ΟΠΕ Τμήμα : Ε.Μ.Μ.Ε. Περιεχόμενα ενότητας Τι ορίζουμε ως Μάρκετινγκ ενός Πολιτιστικού Οργανισμού; Τα 4
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim
Εισαγωγή στους Αλγορίθμους Ενότητα 9η Άσκηση - Αλγόριθμος Prim Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Emil: zro@ei.uptrs.r Άδειες Χρήσης Το παρόν
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Φιλοσοφία της Ιστορίας και του Πολιτισμού
Φιλοσοφία της Ιστορίας και του Πολιτισμού Ενότητα 1: Εισαγωγή στις έννοιες Ιστορίας και Πολιτισμού Λάζου Άννα Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Aθηνών Τμήμα Φιλοσοφίας Παιδαγωγικής και Ψυχολογίας Φιλοσοφία
Έλεγχος Ποιότητας Φαρμάκων
Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4
Γενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers)
Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers) Αναστασία Γεωργάκη Τμήμα Μουσικών Σπουδών Περιεχόμενα 5. Ελεγκτές MIDI μηνυμάτων (Midi Controllers)... 3 Σελίδα 2 5.
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.03: Μέθοδοι Ολοκλήρωσης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Ηλεκτρονική. Ενότητα 9: Τρανζίστορ Επίδρασης Πεδίου (FET) Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρονική Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενο ενότητας (1 από 2) Τύποι τρανζίστορ επίδρασης πεδίου (JFET, MOSFET, MESFET). Ομοιότητες και διαφορές των FET με τα διπολικά
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια
Υπολογιστική άλγεβρα Ενότητα 4: Πολυώνυμα τετάρτου και μεγαλύτερου βαθμού
Υπολογιστική άλγεβρα Ενότητα 4: Πολυώνυμα τετάρτου και μεγαλύτερου βαθμού Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 4 Πολυώνυμα τετάρτου και μεγαλυτέρου βαθμού 4.1 Εξίσωση τετάρτου
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 2: Εισαγωγή στον βέλτιστο έλεγχο Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I
Υπολογιστική άλγεβρα Ενότητα 7: Βάσεις Groebner I Ράπτης Ευάγγελος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Κεφάλαιο 7 Βάσεις Groebner Ι Τετάρτη 21 Μαϊου 2014 7.1 Ιδεώδη μονονύμων Εχουμε ήδη δει οτι
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Αποτελεσματικότητα αλγορίθμων
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Αποτελεσματικότητα αλγορίθμων Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αποτελεσµατικότητα αλγορίθµων 127 Αποτελεσµατικότητα αλγορίθµων Ενας σωστός αλγόριθµος
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό
Λογικός Προγραμματισμός Ασκήσεις
Λογικός Προγραμματισμός Ασκήσεις Παναγιώτης Σταματόπουλος Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιεχόμενα 1. Ασκήσεις "Λογικού Προγραμματισμού" Ακαδημαϊκού Έτους 2003-04... 3 1.1 Άσκηση 1 (0.2 μονάδες)...
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
P (B) P (B A) = P (AB) = P (B). P (A)
Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Διαισθητική έννοια ανεξαρτησίας Διαισθητική
Παιδαγωγική ή Εκπαίδευση ΙΙ
Παιδαγωγική ή Εκπαίδευση ΙΙ Ενότητα 2 Ζαχαρούλα Σμυρναίου Σχολή: Φιλοσοφική Τμήμα: Φιλοσοφίας Παιδαγωγικής Ψυχολογίας Μορφές διδασκαλίας Οι Μορφές διδασκαλίας Αναφέρονται στον τρόπο παρουσίασης του μαθήματος,
Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμογές πληροφορικής σε θέματα πολιτικού μηχανικού Ενότητα 5b - Εφαρμογές λογιστικών φύλλων στην Υδρολογία: Προσδιορισμός του μοναδιαίου
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
ΟΙΚΟΝΟΜΕΤΡΙΑ. Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά)
ΟΙΚΟΝΟΜΕΤΡΙΑ Ενότητα 1: Εκτιμητές και Ιδιότητες. Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Αριθµητική Ανάλυση. 14 εκεµβρίου Αριθµητική ΑνάλυσηΚεφάλαιο 6. Παρεµβολή 14 εκεµβρίου / 28
Αριθµητική Ανάλυση Κεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 Αριθµητική ΑνάλυσηΚεφάλαιο 6 Παρεµβολή 14 εκεµβρίου 2016 1 / 28 Τα πολυώνυµα Chebyshev Αν η f (n+1) (x) είναι συνεχής, τότε υπάρχει ένας αριθµός
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΟΙΚΟΝΟΜΙΚΑ ΜΑΘΗΜΑΤΙΚΑ Ενότητα 7: ΕΦΑΡΜΟΓΕΣ ΣΥΝΑΛΛΑΓΜΑΤΙΚΕΣ ΙΣΟΔΥΝΑΜΕΣ ΣΥΝΑΛΛΑΓΜΑΤΙΚΕΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Ενότητα 7: Πολιτιστικός τουρισμός και τοπικό πολιτιστικό προϊόν Δρ. Θεοκλής-Πέτρος Ζούνης Σχολή : ΟΠΕ Τμήμα : Ε.Μ.Μ.Ε. Περιεχόμενα ενότητας Ο Πολιτιστικός
Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μελέτη
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Βασιλική Λεβέντη.
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών
ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 2: Έλεγχος συνθηκών Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών ΠΛΗΡΟΦΟΡΙΚΗ Ι (MATLAB) Ενότητα 2 Σημειώσεις βασισμένες στο βιβλίο Το MATLAB στην Υπολογιστική Επιστήμη
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 8: Το γραμμικό τετραγωνικό πρόβλημα ρύθμισης (LQ) για συστήματα διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 3.2: Υλικότητα Βιβλίου Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική:
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο