Molecular Tweezers with Varying Anions - A Comparative Study

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Molecular Tweezers with Varying Anions - A Comparative Study"

Transcript

1 Molecular Tweezers with Varying Anions - A Comparative Study SomDutt a, ConstanzeWilch a, Thomas Gersthagen a, Peter Talbiersky a, Kenny Bravo- Rodriguez b, MattiHanni c, Elsa Sánchez-García* b,christian chsenfeld* c, Frank-Gerrit Klärner* a, Thomas Schrader* a a University of Duisburg-Essen, Department of Chemistry, Universitätsstr. 7, Essen, Germany b Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 4547 Mülheim an der Ruhr, Germany c Chair of Theoretical Chemistry, Department of Chemistry, University of Munich (LMU), Butenandtstr. 7, Munich, Germany and Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, University of Munich (LMU), Butenandtstr.5-13, Munich, Germany esanchez@mpi-muelheim.mpg.de; christian.ochsenfeld@uni-muenchen.de; frank.klaerner@uni-duisburg-essen.de; thomas.schrader@uni-due.de Supporting Information Table of Contents 1. Experimental Section: Page H NMR and 13 C NMR spectra of the tweezers 1c, 1g, and 1d Dimerisation of the molecular tweezers determined by NMR titration Host-guest complex formation of the molecular tweezers with various amino acid and peptide guest molecules containing lysine or arginine moieties determined by fluorescence titration Host-guest complex formation of the molecular tweezers with various amino acid and peptide guest molecules containing lysine or arginine moieties determined by 1 H-NMR titration Solvent-dependent 1 H-NMR spectra of host-guest complexes Host-guest complex formation of the molecular tweezers with various amino acid and peptide guest molecules containing lysine or arginine moieties determined by isothermal titration calorimetry (ITC) Computational Section: 2.1 Calculation of host-guest complex structures by QM/MM Calculation of 1 H NMR shifts of the guest signals by ab initio methods 64 1

2 1 Experimental Section H NMR and 13 C NMR spectra of the tweezers 1c, 1g, and 1d S S H-NMR in CD 3 D: 1c ppm ppm ppm H-NMR in D 2 : 1c ppm ppm ppm

3 13 C-NMR in CD 3 D: 1c 3

4 3 CH CH 3 1 H-NMRin CDCl 3 : 1g 4

5 13 C-NMRin CDCl 3 : 1g 5

6 Na Na 1 H-NMR in D 2 : 1d 6

7 13 C-NMR in D 2 : 1d 7

8 1.2 Dimerisation of the molecular tweezers determined by NMR titration Dilution titration of the phosphate tweezer 1a Receptor (R) 1a M R g/mol] 1a.19 Solvent Phosphate buffer m R (1a) [mg] 1.1 Substrate T [ C] Itself 25 V [ml] [R] [mm] δ (5-H, 11-H, 16-H, 22-H) = P 24 a i 4 Li δ (6-H, 1-H, 17-H, 21-H) = i 25 a 9 2 δ (1-H, 4-H, 12-H, 15-H) = P δ (2-H, 3-H, 13-H, 14-H) = a i i a [1a] [mm] δ obs (2-H, 3-H, 13-H, 14-H) δ obs δ calc ,,8 obs [ppm],6,4,2 K dim [M -1 ] = 6 ± 1 δ max (5-H, 11-H, 16-H, 22-H) = -.2 δ max (6-H, 1-H, 17-H, 21-H) = -.28 δ max (1-H, 4-H, 12-H, 15-H) =.37 δ max (2-H, 3-H, 13-H, 14-H) = 2.23,,,1,2,3,4,5 [R] [mol/l] 8

9 1.2.2 Dilution titration of the sufate tweezer 1c Receptor(R) 1c M R [g/mol] Solvent Phosphate buffer m R [mg] 1.13 T[ o C] 25 V [ml] 2.3 Substrate Itself [R] [mm] 1.13 S 2Na S [R][mM] δ obs [ppm] δ monomercalc - δ obs = δ calc [ppm] , 6,8 obs [ppm] 6,6 6,4 6,2 K dim [M -1 ] = 37 ± 8 δ max [ppm] = 2.2 δ monomercalc [ppm] = ,,,2,4,6,8,1,12 [R] [mol/l] 9

10 1.2.3 Concentration-dependent 1 H NMR spectra of tweezer 1a in aqueous phosphate buffer (7 mm, ph 7.2, 25 C) Concentration-dependent 1 H NMR spectra of tweezer 1c in aqueous phosphate buffer (1 mm, ph 7.2, 25 C) 1

11 1.3 Fluorescence titrations UV-Vis and Fluorescence spectra of molecular tweezers and 1,4-dimethoxybenzene 1,4-dimethoxybenzene, DMB 1f (R 1 =R 2 =Ac) 1a (R 1 =R 2 =P 3 2-2Li + ) Compound 1a (R 1 =R 2 = P 3 2-2Li + ) 1f:(R 1 =R 2 = Ac) 1,4-dimethoxybenzene Solvent H 2 CD 3 CN CD 3 CN Absorption max ε max [nm] [M -1 cm -1 ] Emission max Ф em [nm] [ns] Figure S1. UV-VIS and fluorescence spectra of the molecular tweezers substituted by phosphate or acetoxy groups in the central benzene bridge and of 1,4-dimethoxybenzene (determined by P. Ceroni, Dipartimento di ChimicaCiamicianUniversita' di Bologna Via Selmi, 2, 4126 Bologna, Italy). 11

12 1.3.2 Fluorescence titrations Fluorescence titrations for Ac Lys Me Titration of Ac Lys Me and tweezer 1b in phosphate buffer (2mM, ph 7.64) λ exc = 28 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1b Guest Ac Lys Me HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 336 ) I obs E-5.E E-5 3.4E E-5 6.7E E E E-5 1.3E E-5 1.9E E E E-5 3.1E E E E E E E E E E E E E I calc V(AcLysMe) = µl V(AcLysMe) = 1 µl V(AcLysMe) = 2 µl V(AcLysMe) = 3 µl V(AcLysMe) = 4 µl V(AcLysMe) = 6 µl V(AcLysMe) = 8 µl V(AcLysMe) = 1 µl V(AcLysMe) = 12 µl V(AcLysMe) = 15 µl V(AcLysMe) = 18 µl V(AcLysMe) = 22 µl V(AcLysMe) = 26 µl V(AcLysMe) = 3 µl [AcLysMe]/[1b] [nm] K a [M -1 ] = ± 1%, K d [µm] = 68 ± 1% 12

13 Titration of AcLysMe and tweezer 1c in phosphate buffer (2mM, ph 7.64) λ exc = 285 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest Ac Lys Me HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 337 ) I obs I calc E-5.E E E E-5 7.9E E-5 1.5E E E E-5 2.1E E E E E E E E-5 4.5E E E E-5 6.1E E E E E l l 2 l 3 l 4 l 6 l 8 l 1 l 12 l 15 l 18 l 22 l 3 l [AcLysMe]/[1c] [nm] K a [M -1 ] = 36 ± 2 % K d [µm] = 28 ± 2 % 13

14 Titration of AcLysMe and tweezer 1d in phosphate buffer (2mM, ph 7.64) λ exc = 285 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1d Guest Ac Lys Me HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 349 ) I obs I calc 7 4.9E-5.E E E E E E E E-5 1.4E E E E E E E E E E-5 3.4E E E E E E E E E I I V(Ac-Lys-Me) = L V(Ac-Lys-Me) = 1 L V(Ac-Lys-Me) = 2 L V(Ac-Lys-Me) = 3 L V(Ac-Lys-Me) = 4 L V(Ac-Lys-Me) = 6 L V(Ac-Lys-Me) = 8 L V(Ac-Lys-Me) = 1 L V(Ac-Lys-Me) = 12 L V(Ac-Lys-Me) = 15 L V(Ac-Lys-Me) = 18 L V(Ac-Lys-Me) = 22 L V(Ac-Lys-Me) = 26 L V(Ac-Lys-Me) = 3 L [AcLysMe]/[1d] [nm] K a [M -1 ] = 4434 ± 14% K d [µm] = 226 ± 14% 14

15 Titration of AcLysMe and tweezer 1a in phosphate buffer (1 mm, ph 7.6) λ exc = 285 nm λ em = 334 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1a Guest AcLysMe HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 334 nm ) I obs I calc E-5.E E E E E E E E E E E E E E E E E E E E E E E l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 14 l 18 l 24 l 3 l nm [AcLysMe]/[1a] K a [M -1 ] = 113 ± 6 % K d [µm] = 9 ± 6 % I max = 24 (4 %) 15

16 Titration of AcLysMe and tweezer 1c in phosphate buffer (1 mm, ph 7..2) λ exc = 285 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest Ac Lys Me HCl Guest V (µl) Receptor V (µl) [Receptor] [Guest] [mol/l] [mol/l] 2.33E-5.E+ 2.33E-5 3.6E E-5 7.9E E-5 1.5E E E E-5 2.2E E E E E E E E-5 4.5E E E E-5 6.1E E E E E-4 [Guest]/ [Receptor] F I (I 338 ) I obs I calc [AcLysMe]/[1c] µl 1 µl 2 µl 3 µl 4 µl 6 µl 8 µl 1 µl 12 µl 15 µl 18 µl 22 µl 26 µl 3 µl K a [M -1 ] = 515 ± 3 % K d [µm] = 19 ± 3 % I max = 48 (44 %) 16

17 Titration of AcLysMe and tweezer 1d in phosphate buffer (1 mm, ph 7.2) λ exc = 285 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1d Guest Ac Lys Me HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 348 ) I obs I calc E-5.E E E E E E E E E E E E-5 8.1E E E E E E E E E E E E E E E I I V(Ac-Lys-Me) = L V(Ac-Lys-Me) = 1 L V(Ac-Lys-Me) = 2 L V(Ac-Lys-Me) = 3 L V(Ac-Lys-Me) = 4 L V(Ac-Lys-Me) = 6 L V(Ac-Lys-Me) = 8 L V(Ac-Lys-Me) = 1 L V(Ac-Lys-Me) = 12 L V(Ac-Lys-Me) = 15 L V(Ac-Lys-Me) = 18 L V(Ac-Lys-Me) = 22 L V(Ac-Lys-Me) = 26 L V(Ac-Lys-Me) = 3 L [AcLysMe]/[1d] [nm] K a [M -1 ] = 1555 ± 7% K d [µm] = 643 ± 7% I max = 225 (36 %) 17

18 Fluorescence titrations for H Lys H Titration of H LysH and tweezer 1b in phosphate buffer (2 mm, ph 7.6) λ exc = 28 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1b Guest H Lys H HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 336 ) I obs E-5.E E E E E E E E E E E E E E-5 3.3E E E E E E E E E E E E E I calc V(HLysH) = µl V(HLysH) = 1 µl V(HLysH) = 2 µl V(HLysH) = 3 µl V(HLysH) = 4 µl V(HLysH) = 6 µl V(HLysH) = 8 µl V(HLysH) = 1 µl V(HLysH) = 12 µl V(HLysH) = 15 µl V(HLysH) = 18 µl V(HLysH) = 22 µl V(HLysH) = 26 µl V(HLysH) = 3 µl [HLysH]/[1b] [nm] K a [M -1 ] = 1144 ± 1% K d [µm] = 874 ± 1% 18

19 Titration of HLysH and tweezer 1c in phosphate buffer (1mM, ph 7.6) λ exc = 285 nm λ em = 338 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest H LysH HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 338 ) I obs I calc E-5.E E E E-5 7.6E E-5 1.5E E E E-5 2.1E E E E E E E E-5 5.2E E E E E l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 14 l 18 l 24 l 3 l [HLysH]/[1c] [nm] K a [M -1 ] = 441 ± 6 % K d [µm] = 227 ± 6% 19

20 Titration of HLysH and tweezer 1d in phosphate buffer (1 mm, ph 7.2) λ exc = 285 nm λ em = 348 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1d Guest H LysH HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 348 ) I obs I calc E-5.E E E E E E E E E E E E E E E E E E-5 8.3E E E E-5 1.9E E E E E I I 6 V(H-Lys-H) = L V(H-Lys-H) = 1 L V(H-Lys-H) = 2 L 5 V(H-Lys-H) = 3 L V(H-Lys-H) = 4 L V(H-Lys-H) = 6 L 4 V(H-Lys-H) = 8 L V(H-Lys-H) = 1 L V(H-Lys-H) = 12 L V(H-Lys-H) = 15 L 3 V(H-Lys-H) = 18 L V(H-Lys-H) = 22 L V(H-Lys-H) = 26 L 2 V(H-Lys-H) = 3 L [HLysH]/[1d] [nm] K a [M -1 ] = 855 ± 2% K d [µm] = 117 ± 2% 2

21 Fluorescence titration for peptide KAA Titration of KAA and tweezer 1a in phosphate buffer (2 mm, ph 7.6) λ exc = 285 nm Tweezer 1a KAA Amount [mg]: Volume [ml]: Concentration [mol/l]:.164 ( mmol) ( mmol) V Guest V total [1a] [KAA] [KAA]/ I [ L] [ L] [mol/l] [mol/l] [1a] 334 nm I obs I calc V(KAA) = µl V(KAA) = 1 µl V(KAA) = 2 µl V(KAA) = 3 µl V(KAA) = 4 µl V(KAA) = 6 µl V(KAA) = 8 µl V(KAA) = 1 µl V(KAA) = 12 µl V(KAA) = 15 µl V(KAA) = 18 µl V(KAA) = 22 µl V(KAA) = 26 µl V(KAA) = 3 µl [KAA]/[1a] [nm] K a [M -1 ] = 3334 ± 3 % K d [µm] = 3 ± 3 % 21

22 Titration of KAA and tweezer 1b in phosphate buffer (2 mm, ph 7.6) λ exc = 28 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1b Guest KAA Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 334 ) I obs E-5.E E E E E E E E-5 1.3E E-5 1.9E E E E-5 3.E E E E E E E E E E-5 6.5E E-5 7.2E I calc V(KAA) = µl V(KAA) = 1 µl V(KAA) = 2 µl V(KAA) = 3 µl V(KAA) = 4 µl V(KAA) = 6 µl V(KAA) = 8 µl V(KAA) = 1 µl V(KAA) = 12 µl V(KAA) = 15 µl V(KAA) = 18 µl V(KAA) = 22 µl V(KAA) = 26 µl V(KAA) = 3 µl [KAA]/[1b] [nm] K a [M -1 ] = 115 ± 1% K d [µm] = 95 ± 1% 22

23 Titration of KAA and tweezer1c in phosphate buffer (1 mm, ph 7.6) λ exc = 285 nm λ em = 338 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest KAA Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 338 ) I obs I calc E-5.E E E E-5 7.9E E-5 1.5E E E E-5 2.1E E E E E c E E E E E E E E l 1 l 2 l 3 l 4 l 6 l 4 8 l 1 l 14 l 18 l 24 l 2 3 l [KAA]/[1c] [nm] K a [M -1 ] = 33 ± 5 % K d [µm] = 33 ± 5 % 23

24 Titration of KAA and tweezer 1d in phosphate buffer (1 mm, ph 7.2) λ exc = 285 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1d Guest KAA Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 348 ) I obs I calc E-5.E E-5 1.3E E E E E E E E E E E E E E E E E E E E-5 2.2E E E E E I [KAA]/[1d] I [nm] V(KAA) = L V(KAA) = 1 L V(KAA) = 2 L V(KAA) = 3 L V(KAA) = 4 L V(KAA) = 6 L V(KAA) = 8 L V(KAA) = 1 L V(KAA) = 12 L V(KAA) = 15 L V(KAA) = 18 L V(KAA) = 22 L V(KAA) = 26 L V(KAA) = 3 L K a [M -1 ] = 3 ± 83% K d [µm] = ± 83% 24

25 I Fluorescence titrations for KLVFF Titration of KLVFF and tweezer1a in phosphate buffer (2 mm, ph 7.6) λ exc = 28 nm Tweezer 1a KLVFF Amount [mg]: Volume [ml]: Concentration [mol/l]:.172 ( mmol) ( mmol) V Gast V gesamt [75] [KLVFF] I [KLVFF]/ [1a] [ L] [ L] [mol/l] [mol/l] 334 nm I obs I calc V(KLVFF) = µl V(KLVFF) = 1 µl V(KLVFF) = 2 µl V(KLVFF) = 3 µl V(KLVFF) = 4 µl V(KLVFF) = 6 µl V(KLVFF) = 8 µl V(KLVFF) = 1 µl V(KLVFF) = 12 µl V(KLVFF) = 15 µl V(KLVFF) = 18 µl V(KLVFF) = 22 µl V(KLVFF) = 26 µl V(KLVFF) = 3 µl [KLVFF]/[1a] [nm] K a [M -1 ] = ± 5 % K d [µm] =2 ± 5 % 25

26 Titration of KLVFF and tweezer 1c in phosphate buffer (1 mm, ph 7.6) λ exc = 285 nm λ em = 338 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest KLVFF Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 338 ) I obs I calc E-5.E E-5 1.6E E-5 2.8E E-5 3.8E E-5 4.5E E E E E E E E E E E E E E E b [KLVFF]/[1c] µl 1 µl 2 µl 3 µl 4 µl 6 µl 8 µl 1 µl 14 µl 18 µl 3 µl K a [M -1 ] = 262 ± 11 % K d [µm] =38 ± 11% λ ~ 2 nm,blue shift 26

27 Fluorescence titrations for KKLVFF Titration of KKLVFFand tweezer 1a in phosphate buffer (2 mm, ph 7.64) λ exc = 28 nm Tweezer1a KKLVFF Amount [mg]: Volume [ml]: Concentration [mol/l]:.172 ( mmol) ( mmol) V Guest V total [1a] [KKLVFF] [KKLVFF]/ I [ L] [ L] [mol/l] [mol/l] [1a] 334 nm I obs I calc V(KKLVFF) = µl V(KKLVFF) = 5 µl V(KKLVFF) = 1 µl V(KKLVFF) = 15 µl V(KKLVFF) = 2 µl V(KKLVFF) = 25 µl V(KKLVFF) = 3 µl V(KKLVFF) = 4 µl V(KKLVFF) = 6 µl V(KKLVFF) = 8 µl V(KKLVFF) = 1 µl V(KKLVFF) = 12 µl V(KKLVFF) = 15 µl V(KKLVFF) = 18 µl V(KKLVFF) = 22 µl V(KKLVFF) = 26 µl V(KKLVFF) = 3 µl [KKLVFF]/[1a] [nm] K a [M -1 ] = ± 1 % K d [µm] =4 ± 1 % 27

28 Titration of KKLVFF and tweezer 1b in phosphate buffer (2 mm, ph 7.64) λ exc = 28 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1b Guest KKLVFF Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 336 ) I obs E-5.E E E E E E E E E E E E E E-5 1.4E E E E E E-5 1.7E E E E E E E I calc V(KKLVFF) = µl V(KKLVFF) = 1 µl V(KKLVFF) = 2 µl V(KKLVFF) = 3 µl V(KKLVFF) = 4 µl V(KKLVFF) = 6 µl V(KKLVFF) = 8 µl V(KKLVFF) = 1 µl V(KKLVFF) = 12 µl V(KKLVFF) = 15 µl V(KKLVFF) = 18 µl V(KKLVFF) = 22 µl V(KKLVFF) = 26 µl V(KKLVFF) = 3 µl [KKLVFF]/[1b] [nm] K a [M -1 ] = 1448 ± 1% K d [µm] = 71 ± 1 28

29 Fluorescence titration of KKLVFFAK and tweezer 1a in phosphate buffer (2 mm, ph 7.64) λ exc = 28 nm Tweezer1a KKLVFFAK Amount [mg]: Volume [ml]: Concentration [mol/l]:.172 ( mmol) ( mmol) V Guest V total [1a] [KKLVFFAK] [KKLVFFAK]/ I [ L] [ L] [mol/l] [mol/l] [1a] 334 nm I obs I calc V(KKLVFFAK) = µl V(KKLVFFAK) = 5 µl V(KKLVFFAK) = 1 µl V(KKLVFFAK) = 15 µl V(KKLVFFAK) = 2 µl V(KKLVFFAK) = 25 µl V(KKLVFFAK) = 3 µl V(KKLVFFAK) = 4 µl V(KKLVFFAK) = 6 µl V(KKLVFFAK) = 8 µl V(KKLVFFAK) = 1 µl V(KKLVFFAK) = 12 µl V(KKLVFFAK) = 15 µl V(KKLVFFAK) = 18 µl V(KKLVFFAK) = 22 µl V(KKLVFFAK) = 26 µl V(KKLVFFAK) = 3 µl [KKLVFFAK]/[1a] [nm] K a [M -1 ] = ± 1 % K d [µm] = 7 ± 1 % 29

30 Fluorescence titration of H-KKKK-H and tweezer 1a in phosphate buffer (2 mm, ph 7.64) λ exc = 28 nm Tweezer1a H-KKKK-H Amount [mg]: Volume [ml]: Concentration [mol/l]:.172 ( mmol) ( mmol) V Guest V total [1a] [KKKK] [KKKK]/ I [ L] [ L] [mol/l] [mol/l] [1a] 334 nm I obs I calc I V(H-KKKK-H) = µl V(H-KKKK-H) = 5 µl V(H-KKKK-H) = 1 µl V(H-KKKK-H) = 15 µl V(H-KKKK-H) = 2 µl V(H-KKKK-H) = 25 µl V(H-KKKK-H) = 3 µl V(H-KKKK-H) = 35 µl V(H-KKKK-H) = 4 µl V(H-KKKK-H) = 6 µl V(H-KKKK-H) = 8 µl V(H-KKKK-H) = 1 µl V(H-KKKK-H) = 12 µl V(H-KKKK-H) = 15 µl V(H-KKKK-H) = 18 µl V(H-KKKK-H) = 22 µl V(H-KKKK-H) = 26 µl V(H-KKKK-H) = 3 µl [H-KKKK-H]/[1a] [nm] K a [M -1 ] = 9661 ± 7 % K d [µm] = 1 ± 7 % 3

31 Fluorescence titrations for Ac ArgMe Titration of AcArgMe and tweezer 1a in phosphate buffer (2mM, ph 7.6) λ exc = 285 nm λ em = 335 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1a Guest AcArgMe HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 335 nm ) I obs I calc E-5.E E E E-5 7.9E E-5 1.5E E E E-5 2.1E E E E E E E E-5 4.5E E E E-5 6.1E E E E E l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 12 l 15 l 18 l 22 l 26 l 3 l [AcArgMe]/[1a] [nm] K a [M -1 ] = 164 ± 2 % K d [µm] = 6± 2 % 31

32 Titration of AcArgMeand tweezer 1c in phosphate buffer (2mM, ph 7.6) λ exc = 285 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest Ac ArgMe HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 337 ) I obs I calc E-5.E E-5 3.6E E-5 7.1E E-5 1.5E E E E-5 2.2E E E E E E E E E E E E E E E E E l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 12 l 15 l 18 l 22 l 26 l 3 l [AcArgMe]/[1c] [nm] K a [M -1 ] = 56 ± 4 % K d [µm] = 178 ± 4 % 32

33 Titration of AcArgMe and tweezer 1a in phosphate buffer (1mM, ph 7.6) λ exc = 285 nm λ em = 334 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1a Guest AcArgMe HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 334 nm ) I obs I calc E-5.E E E E E E E E E E E E E E E E E E E E E E-5 1.5E l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 14 l 18 l 24 l 34 l [nm] [AcArgMe]/[1a] K a [M -1 ] = 56 ± 5 % K d [µm] = 2 ± 5 % ΔI max = 282 (47 %) 33

34 Titration of AcArgMe and tweezer 1c in phosphate buffer (1mM, ph 7.2) λ exc = 285 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest Ac ArgMe HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 338 ) I obs I calc E-5.E E E E-5 7.9E E-5 1.5E E E E-5 2.1E E E E E E E E-5 4.5E E E E-5 6.1E E E E E [nm] l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 12 l 15 l 18 l 22 l 24 l 3 l [AcArgMe]/[1c] K a [M -1 ] = 13 ± 5 % K d [µm] = 77 ± 5 % I max = 274 (3 %) 34

35 Titration of AcArgMe and tweezer 1d in phosphate buffer (2mM, ph 7.6) λ exc = 285 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1d Guest Ac ArgMe HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 348 ) I obs I calc 7 9.7E-5.E E E E E E-5 8.1E E-5 1.5E E E E-5 2.E E E E E E E E E E E E E E E I I V(Ac-Arg-Me) = L V(Ac-Arg-Me) = 1 L V(Ac-Arg-Me) = 2 L V(Ac-Arg-Me) = 3 L V(Ac-Arg-Me) = 4 L V(Ac-Arg-Me) = 6 L V(Ac-Arg-Me) = 8 L V(Ac-Arg-Me) = 1 L V(Ac-Arg-Me) = 12 L V(Ac-Arg-Me) = 15 L V(Ac-Arg-Me) = 18 L V(Ac-Arg-Me) = 22 L V(Ac-Arg-Me) = 26 L V(Ac-Arg-Me) = 3 L [AcLysMe]/[1d] [nm] K a [M -1 ] = 1134 ± 26% K d [µm] = 882 ± 26% 35

36 Titration of AcArgMe and tweezer 1d in phosphate buffer (1mM, ph 7.2) λ exc = 285 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1d Guest Ac ArgMe HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 348 ) I obs I calc E-5.E E E E E E E E E E E E E E E E E E E E E E-5 1.6E E-5 2.1E I I 8 V(Ac-Arg-Me) = L V(Ac-Arg-Me) = 1 L V(Ac-Arg-Me) = 2 L V(Ac-Arg-Me) = 3 L V(Ac-Arg-Me) = 4 L 6 V(Ac-Arg-Me) = 6 L V(Ac-Arg-Me) = 8 L V(Ac-Arg-Me) = 1 L V(Ac-Arg-Me) = 12 L V(Ac-Arg-Me) = 15 L 4 V(Ac-Arg-Me) = 18 L V(Ac-Arg-Me) = 22 L V(Ac-Arg-Me) = 26 L V(Ac-Arg-Me) = 3 L [AcArgMe]/[1d] [nm] K a [M -1 ] = 3558 ± 18% K d [µm] = 281 ± 18% I max = 91 (13 %) 36

37 Fluorescence titrations for HArgH Titration of HArgH and tweezer 1c in phosphate buffer (1mM, ph 7.6) λ exc = 285 nm λ em = 338 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest H Arg H HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 338 ) I obs I calc E-5.E E E E-5 7.7E E-5 1.5E E E E-5 2.1E E E E E E E E E E-5 6.5E E E l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 14 l 18 l 24 l 3 l [HArgH]/[1c] [nm] K a [M -1 ] = 143 ± 15 % K d [µm] = 699 ± 15 % 37

38 Titration of HArgH and tweezer 1d in phosphate buffer (1mM, ph 7.2) λ exc = 285 nm λ em = 348 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1d Guest H Arg H HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 338 ) I obs I calc E-5.E E E E E E E E E E E E E E E E E E-5 8.1E E E E-5 1.1E E E E E I I V(H-Arg-H) = L V(H-Arg-H) = 1 L V(H-Arg-H) = 2 L V(H-Arg-H) = 3 L V(H-Arg-H) = 4 L V(H-Arg-H) = 6 L V(H-Arg-H) = 8 L V(H-Arg-H) = 1 L V(H-Arg-H) = 12 L V(H-Arg-H) = 15 L V(H-Arg-H) = 18 L V(H-Arg-H) = 22 L V(H-Arg-H) = 26 L V(H-Arg-H) = 3 L [HArgH]/[1d] [nm] K a [M -1 ] = 1643 ± 27% K d [µm] = 69 ± 27% 38

39 Fluorescence titrations for HArgMe Titration of HArgMe and tweezer 1c in phosphate buffer (1mM, ph 7.6) λ exc = 285 nm λ em = 338 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest H ArgMe 2HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 338 nm ) I obs I calc 7 2,33E-5,E+, 668,334,, ,33E-5 3,59E-5 1,54 68,912 59,422 51, ,33E-5 7,9E-5 3,4 571,524 96,81 88, ,33E-5 1,5E-4 4,5 552, ,99 115, ,33E-5 1,38E-4 5,92 536, ,74 136, ,33E-5 2,1E-4 8,64 55, , , ,33E-5 2,62E-4 11,23 482, , , ,33E-5 3,19E-4 13,68 47,43 198,291 21, ,33E-5 4,25E-4 18,25 451, ,1 221, ,33E-5 5,22E-4 22,39 435, , , ,33E-5 6,51E-4 27,95 418, , , ,33E-5 7,65E-4 32,84 411,15 257, , l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 14 l 18 l 24 l 3 l [HArgMe]/[1c] [nm] K a = 626 ± 6 % K d [µm] = 16 ± 6 % 39

40 Titration of RGD and tweezer 1a in phosphate buffer (2mM, ph 7.6) λ exc = 28 nm Tweezer 1a H ArgGly Asp H Amount [mg]: Volume [ml]: Concentration [mol/l]:.164 ( mmol) ( mmol) V Guest V t [75] [RGD] [RGD]/ I [ L] [ L] [mol/l] [mol/l] [1a] 334 nm I obs I calc [RGD]/[1a] V(NAD + ) = µl 4 V(NAD + ) = 1 µl V(NAD + ) = 2 µl V(NAD + ) = 3 µl V(NAD + ) = 4 µl V(NAD + ) = 6 µl 35 V(NAD + = 8 µl V(NAD + ) = 1 µl V(NAD + ) = 12 µl V(NAD + ) = 15 µl 3 V(NAD + ) = 18 µl V(NAD + ) = 22 µl V(NAD + ) = 26 µl V(NAD + ) = 3 µl [nm] K a [M -1 ] = 1166 ± 1 % K d [µm] = 86 ± 1 % 4

41 Titration of crgdfl and tweezer 1a in phosphate buffer (1 mm, ph 7.4) Receptor Tweezer1a Solvent Phosphate buffer ph 7.4 T [ C] 25 Substrate cgrgdfl m R [mg].12 m S [mg].25 [R] [M] [S] [M] V R [ml] 4. V S [ml].4 V Guest [ L] V Total [ L] [R][mol/L] [S][mol/L] [S]/[R] I335 nm I obs E-5.E E E E E E E E E E E E E E-5 1.1E E E E E E E E E E E E E I [S]/[R] I obs [nm] V s = µl V s = 1 µl V s = 2 µl V s = 3 µl V s = 4 µl V s = 6 µl V s = 8 µl V s = 1 µl V s = 12 µl V s = 15 µl V s = 18 µl V s = 22 µl V s = 26 µl V s = 3 µl [cgrgdfl]/[1a] K a = 3876 ±3125 K d [µm] =26 ± 8 % 41

42 Titration of crgdfv and tweezer 1ain phosphate buffer (1mM, ph 7.4) Receptor 1a Solvent Phosphate buffer ph 7.4 T [ C] 25 Substrate crgdfv m R [mg].892 m S [mg] 4.97 [R] [M] [S] [M] V R [ml] 11. V S [ml] 7.6 V Guest [ L] V Total [ L] [R][mol/L] [S][mol/L] [S]/[R] I334 nm I obs I [S]/[R] I obs [nm] V S = µl V S = 1 µl V S = 2 µl V S = 3 µl V S = 5 µl V S = 1 µ V S = 15 µ V S = 25 µ V S = 3 µ V S = 45 µ V S = 55 µ V S = 65 µ V S = 75 µ V S = 85 µ V S = 95 µ V S = 15 [crgdfv][1a] K a = ± 1817, K d [µm] = 59 ± 11 % 42

43 Fluorescence titrations of the tweezers and the amino acid guests in methanol and mixture of methanol-buffer Fluorescence titration of the tweezer 1a with AcLysMe in methanol λ exc = 285 nm λ em = 322 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1a Guest Ac Lys Me HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 322 ) - I obs - I calc E-5.E E E E E E E E E E E E-5 2.E E E E E E E l 1 l 2 l 3 l 4 l 6 l 1 l 18 l 22 l 26 l [AcLysMe]/[1a] [nm] K a [M -1 ] = 152 ± 11 % K d [µm] = 66 ± 11 % ΔI max = -37 (6 %) 43

44 Fluorescence titration of the tweezer 1a with AcArgMe in 1:9 mixture of methanol/buffer (1 mm, ph 7.6) λ exc = 285 nm λ em = 322 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1a Guest Ac ArgMe HCl Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 329 ) I obs I calc E-5.E E E E E E E E E E E E E E E E E E E E-5 4.6E E E l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 14 l 18 l 24 l 3 l [AcArgMe]/[1a] [nm] K a [M -1 ] = 638 ± 8 % K d [µm] = 157 ± 8 % ΔI max = 158 (27 %) 44

45 Fluorescence titration of the tweezer 1c with AcLysMe in methanol λ exc = 285 nm λ em = 32 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest Ac Lys Me Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 32 ) - I obs - I calc E-5.E E E E-5 7.8E E-5 1.5E E E E-5 2.1E E E E E E E E E E E E E l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 14 l 18 l 24 l 3 l [AcLysMe]/[1c] [nm] K a [M -1 ] = 498 ± 6 % K d [µm] = 2 ± 6 % ΔI max = -27 (44 %) 45

46 Fluorescence titration of the tweezer 1c with AcArgMe in methanol λ exc = 285 nm λ em = 32 nm Amount [mg]: Volume [ml]: Concentration [mol/l]: Receptor 1c Guest Ac ArgMe Guest Receptor [Receptor] [Guest] [Guest]/ F I V (µl) V (µl) [mol/l] [mol/l] [Receptor] (I 32 ) - I obs - I calc E-5.E E E E-5 7.9E E-5 1.5E E E E-5 2.2E E E E E E E E E E E E E l 1 l 2 l 3 l 4 l 6 l 8 l 1 l 14 l 18 l 24 l 3 l [AcArgMe]/[1c] [nm] K a [M -1 ] = 362 ± 7 % K d [µm] = 276 ± 7 % ΔI max = -91 (22 %) 46

47 1.4 1 H NMR titrations NMR titrations of the phosphate tweezer 1a Titration of tweezer 1a andaclysme in phosphate buffer (7 mm, ph 7.2) Receptor 1a M R [g/mol] 1a.19 Solvent Phosphate buffer M S [g/mol] T [ C] 25 m R [mg] 3.61 Substrat Ac Lys Me m S [mg] 1.39 H 3 N X HN CH 3 CH 3 δ (2-H) [ppm] = δ (6-H) [ppm] = 2.98 δ (-NAc) [ppm] = 2.31 δ (-CMe) [ppm] = V [ml] 2 [R] [mm] 2.41 [S] [mm] 2.49 X - 2- : im Phosphate buffer HP 3 [R] [mm] [S] [mm] obs (NAc-H) obs calc obs [ppm] K a [M -1 ] = 5835 ± * δ max (2-H) [ppm] =.51 δ max (6-H) [ppm] = 3.91 δ max (-NAc) [ppm] = -.32 δ max (-CMe) [ppm]= [R] [M] * Limit of 95% - confidence interval from the nonlinear regression of the signals of the Protons NAc-H. 47

48 Titration of tweezer 1a and HLysH in phosphate buffer (7 mm, ph 7.2) Receptor 1a M R [g/mol] 1a.19 Solvent Phosphate buffer M S [g/mol] T [ C] 25 m R [mg] 5. Substrat H Lys H m S [mg] 1.39 H 3 N NH 3 X - : in Phosphate buffer HP 3 2- X δ (2-H) [ppm] = δ (3-H) [ppm] = δ (5-H) [ppm] = δ (6-H) [ppm] = 3.9 V [ml] 2 [R] [mm] 2.82 [S] [mm] 3.24 [R] [mm] [S] [mm] obs (2-H) obs calc c obs [ppm] K a [M -1 ] = 256 ± 189* δ max (2-H) [ppm] =.24 δ max (3-H) [ppm] =.76 δ max (5-H) [ppm] = 4.47 δ max (6-H) [ppm] = [R] [M] * Limit of 95% - confidence interval from the nonlinear regression of the signals of the Protons 2-H. 48

49 Titration of tweezer 1a and KAA in phosphate buffer (7 mm, ph 7.2) Receptor 1a M R [g/mol] 1a.19 Solvent Phosphate buffer M S [g/mol] T [ C] 25 m R [mg] 3.57 Substrat KAA m S [mg] 1.75 H 3 N 5 H 6 7 N H CH 3 H 4 H N 2 H CH 3 1 X δ (1-H) [ppm] = δ (3-H) [ppm] = δ (4-H) [ppm] = 4.97 δ (5-H) [ppm] = δ (6-H) [ppm] = 1.95 δ (7-H) [ppm] = δ (8-H) [ppm] = δ (9-H, 9 -H) [ppm] = 3.13 V [ml] 2 [R] [mm] 2.38 [S] [mm] 2.13 NH 3 X - 2- : im Phosphate buffer HP 3 [R] [mm] [S] [mm] obs (5-H) obs calc obs [ppm] [R] [M] K a [M -1 ] = 983 ± 8423 δ max (1-H) [ppm] = -.13 δ max (3-H) [ppm] = -. δ max (4-H) [ppm] = -.17 δ max (5-H) [ppm] =.2 δ max (6-H) [ppm] = 1.9 δ max (7-H) [ppm] = 2.28 δ max (8-H) [ppm] = 3.22 δ max (9-H, 9 -H) [ppm] = 5.82, 5.92 * Limit of 95% - confidence interval from the nonlinear regression of the signals of the Protons 5-H. 49

50 Titration of tweezer 1a and AcArgMe in phosphate buffer (1 mm, ph 7.2) Receptor 1a M R [g/mol] Solvent Phosphate buffer M S [g/mol] T[ o C] 25 m R [mg].8 Substrate Ac ArgMe m S [mg].511 H 2 N X NH 2 C N H 5 X : HP HN CH 3 CH 3 δ (2-H) [ppm] = δ (5-H) [ppm] = δ (4-H) [ppm] = δ (-NAc) [ppm] = 2.52 δ (-C 2 Me) [ppm] = [R] [mm] [S] [mm] δ (5-H) [ppm] Δδ obs [ppm] Δδ calc [ppm] obs [ppm] 3 2 1,,5,1,15,2,25,3,35 [R] [mol/l] K a [M -1 ] = ± 265 K d [µm] = 22 ± 4 % Δδ max (5-H) [ppm] = ±.16 Δδ max (4-H) [ppm] = 2.54 ±.5 Δδ max (3-H) [ppm] = ±.7 Δδ max (2-H) [ppm] =.63 ±.2 * Limit of 95% - confidence interval from the nonlinear regression of the signals of the Protons 5-H. 5

51 NMR titrations of sulfate tweezer 1c Titration of tweezer 1c andaclysme in phosphate buffer (1 mm, ph 7.2) Receptor 1c M R [g/mol] Solvent Phosphate buffer M S [g/mol] T[ o C] 25 m R [mg].672 Substrate AcLysMe m S [mg].41 5 H 3 N 6 4 X X : HP HN CH 3 CH 3 δ (2-H) [ppm] = V [ml] 3. δ (6-H) [ppm] = [S ][mm].5725 δ (-NAc) [ppm] = 2.5 δ (-C 2 Me) [ppm] = 3.77 V [ml] [R][mM] δ (2-H) [ppm] Δδ obs [ppm] Δδ calc [ppm] ,4,3 K a [M -1 ] = ± 8889 [ppm],2,1 K d [µm] = 12 ± 11 % Δδ max (2-H) [ppm] =.37 Δδ max (3-H) [ppm] = 1.29 Δδ max (4-H) [ppm] = 2.64,,,2,4,6,8,1,12,14,16 [R][mol/l] Δδ max (6-H) [ppm] = 3.75 Δδ max (5-H) [ppm] = 4.41 * Limit of 95% - confidence interval from the nonlinear regression of the signals of the Protons 2-H. 51

52 Titration of tweezer 1c and AcArgMe in phosphate buffer (1 mm, ph 7.2) Receptor 1c M R [g/mol] Solvent Phosphate buffer M S [g/mol] T[ o C] 25 m R [mg].8 Substrate AcArgMe m S [mg].511 H 2 N X NH 2 C N H 5 X : HP HN CH 3 CH 3 δ (2-H) [ppm] = V [ml] 3.42 δ (5-H) [ppm] = [S] [mm].562 δ (4-H) [ppm] = δ (-NAc) [ppm] = 2.52 δ (-C 2 Me) [ppm] = V [ml] [R] [mm] δ (5-H) [ppm] Δδ obs [ppm] Δδ calc [ppm] ppm 3 2 1,,2,4,6,8,1,12,14,16,18,2 [R][mol/l] K a [M -1 ] = ± 561 K d [µm] = 88 ± 5 % Δδ max (2-H) [ppm] =.42 Δδ max (3-H) [ppm] = 1.32 Δδ max (4-H) [ppm] = 2.51 Δδ max (5-H) [ppm] = 3.86 * Limit of 95% - confidence interval from the nonlinear regression of the signals of the Protons 5-H. 52

53 NMR titrations of the carboxymethyl tweezer 1d Titration of tweezer 1d andaclysme in phosphate buffer (1 mm, ph 7.2) Receptor 1d M R [g/mol] Solvent Phosphate buffer (74 mm) M S [g/mol] T[ o C] 25 m R [mg].91 Substrate AcLysMe m S [mg] H 3 N 2 CH HN CH 3 X X : HP 4 2- δ (3b-H) [ppm] = V [ml] 3. δ (6-H) [ppm] = [S ][mm].771 δ (-NAc) [ppm] = 2.38 δ (-C 2 Me) [ppm] = V [ml] [R][mM] δ (3b-H) Δδ obs [ppm] Δδ calc [ppm] [ppm] ,5,4 ppm],3,2,1,,,5,1,15,2,25 [R][mol/L] K a [M -1 ] = 859 ± 11% Δδ max (3a-H) [ppm] =.52 Δδ max (3b-H) [ppm] =.77 Δδ max (4-H) [ppm] =.4 Δδ max (5-H) [ppm] =.54 Δδ max (6-H) [ppm] =.94 * Limit of 95% - confidence interval from the nonlinear regression of the signals of the Protons 3b-H. 53

54 Titration of tweezer 1d and AcArgMe in phosphate buffer (1 mm, ph 7.2) Receptor 1d M R [g/mol] Solvent Phosphate buffer (74 mm) M S [g/mol] T[ o C] 25 m R [mg].77 Substrate AcArgMe m S [mg].552 H 2 N X NH 2 C N H 5 X : HP HN CH 3 CH 3 δ (2-H) [ppm] = V [ml] 3. δ (5-H) [ppm] = [S] [mm].6898 δ (3-H) [ppm] = δ (-NAc) [ppm] = 2.41 δ (-C 2 Me) [ppm] = V [ml] [R] [mm] δ (5-H) [ppm] Δδ obs [ppm] Δδ calc [ppm] ,6,5 ppm,4,3,2,1 K a [M -1 ] = 718 ± 18% Δδ max (5-H) [ppm] =.96 Δδ max (4b-H) [ppm] =.62 Δδ max (4a-H) [ppm] =.48 Δδ max (3-H) [ppm] =.52,,,2,4,6,8,1,12,14,16,18,2 [R][mol/L] * Limit of 95% - confidence interval from the nonlinear regression of the signals of the Protons 5-H. 54

55 1.5 Solvent-dependent 1 H NMR spectra of the complexes Figure S2. 1 H-NMR spectra of 1:1 mixture of the phosphate tweezer 1a and AcLysMe in different polarity medium methanol/phosphate buffer (1mM, ph 7.2) mixture. Lysine side-chain protons are assigned by numbers. 1:1 complex in CD3D:PB (2:1) 1:1 complex in CD3D:PB (1:2) 1:1 complex in CD3D:PB (1:9) 1:1 complex in PB Figure S3. 1 H-NMR spectra of 1:1 mixture of the phosphate tweezer 1a and AcArgMeeach at 1. mm concentration in different polarity medium methanol/phosphate buffer (PB, 1mM, ph 7.2) mixture. The spectrum in methanol/buffer (1:9) was measured at.5 mm concentration of both host and guest. Arginine side chain protons are assigned by numbers. 55

56 Figure S4. 1 H-NMR spectra of 1:1 mixture of the sulfate tweezer 1c and AcLysMe, each at 1. mm concentration.signals of lysine side-chain are shifted upfieldin the similar range both in buffer and in methanol. 6-H protons of lysine shifted upfield by ~ 3.4 ppm in phosphate buffer (1 mm, ph 7.2) and by ~ 3. ppm in methanol. 1:1 complex in PB Figure S5. 1 H-NMR spectra of 1:1 ratio of the sulfate tweezer 1c and AcArgMe, each at 1. mm concentration.signals of the arginine side chain protons areshifted upfield strongly in buffer but only weakly in methanol. The signal of the arginine protons 5-H is shifted upfield by ~ 2.7 ppm in buffer and by ~.7 ppm in methanol. 56

57 1.6 Isothermal titration calorimetry (ITC) studies of thehost-guest complex formation of tweezers 1a and 1c. ITC experiments of the phosphate tweezer 1a complexes ITC titration of the tweezer 1a (.1 mm) with AcLysMe (1. mm) in phosphate buffer (1 mm, ph 7.6) Nr. K a [M -1 ] n H[kcal/mol] -T S[kcal/mol] G[kcal/mol] ± ± ± ± ± ± Time (min) Time (min) µcal/sec µcal/sec kcal/mole of injectant -2 kcal/mole of injectant Molar Ratio Molar Ratio ITC titration of the tweezer 1a (.1 mm) with AcArgMe (1. mm) in phosphate buffer (1 mm, ph 7.6) Nr. K a [M -1 ] n H[kcal/mol] -T S[kcal/mol] G[kcal/mol] ± ± ± ± ± ±

58 .2 Time (min) Time (min) µcal/sec µcal/sec kcal/mole of injectant -2 kcal/mole of injectant Molar Ratio Molar Ratio ITC titration of the tweezer 1a (.1 mm) with KLVFF (.65 mm) in phosphate buffer (1 mm, ph 7.6) Nr. K a [M -1 ] n H[kcal/mol] -T S[kcal/mol] G[kcal/mol] ± ± ± ± ± ± Time (min) Time (min) µcal/sec -.6 µcal/sec kcal/mole of injectant -2-4 kcal/mole of injectant Molar Ratio Molar Ratio 58

59 ITC experiments of the sulfate tweezer 1c complexes ITC titration of the tweezer 1c (.1 mm) with AcLysMe (1. mm) in phosphate buffer (1 mm, ph 7.6) Nr. K a [M -1 ] n H[kcal/mol] -T S[kcal/mol] G[kcal/mol] ± ± ± ± ± ± µcal/sec Time (min) µcal/sec Time (min) -2-2 kcal/mole of injectant -4 kcal/mole of injectant Molar Ratio Molar Ratio The ITC titration of the tweezer 1c (.1 mm) with AcArgMe (1. mm) in phosphate buffer (1 mm, ph 7.6) Nr. K a [M -1 ] n H[kcal/mol] -T S[kcal/mol] G[kcal/mol] ± 1.94 ± ± ± ± ±

60 Time (min) Time (min) µcal/sec -.4 µcal/sec kcal/mole of injectant -2 kcal/mole of injectant Molar Ratio Molar Ratio 2. Computational Section: 2.1 Calculation of host-guest complex structures by QM/MM: Material and Methods The models of the inclusion complexes between the anionic tweezers 1a -d and amino acids or short peptides were built by using the VMD program. 1 Since the phosphate tweezers 1a is partially protonated in buffered aqueous solution at almost neutral ph value, we also used the mono- and diprotonated structures 1a and 1a for the calculations (Figure 7). The neutralized initial structures were then submitted to energy minimizations with the CHARMM c33b1 program. 2 After that, the system was placed in a water sphere of 3 Å of radii centered on one of the central carbon atoms of the tweezers. To ensure a correct water distribution twelve hydration-minimization cycles were performed. To prevent the water molecules from vaporing off, a four order polynomial potential was applied to all water oxygen atoms. After this, the hydrated systems were submitted to 1 ns MD simulations at 3 K for which the program CHARMM c33b1 with the CHARMM22 force field and the TIP3P model for water were used. 3,4 The parameters for the tweezers and tosyl terminal group were generated using the Swissparam server and tested by us (unpublished data). 5 Randomly selected snapshots from the MD simulations were then submitted to QM/MM optimization. The QM/MM optimizations were performed with the program ChemShell v The Turbomole 5.1 program was used to handle the QM region and DL_PLY, as driver of the 6

61 CHARMM22force field, to treat the MM part. 7,8 The QM part which includes all atoms of the tweezers and part of the lateral chain of Lys or Arg (see Figure S) was described using the B3LYP density functional with empirical dispersive energy correction (B3LYP-D2) and the SVP basis set from the Turbomole basis set library. 9,1,11 pen valencies at the QM/MM border were saturated using hydrogen link atoms. 12 An electrostatic embedding scheme was used for the interactions between QM and MM regions. 13 To avoid overpolarization of the QM region at the boundary a charge shift scheme was applied. 14 No electrostatic cutoffs were used. The optimization was performed with the HDLC optimizer. 15 The active region consisted of a water sphere of 13 Å of radii centered on one of the central carbon atoms of the tweezers. All atoms within the active region were allowed to move in each optimization step. The optimization was finished when the maximum gradient component was below.45 a.u. Figure S6. A Distances (black dotted lines) and angle (blue dotted line) used to describe the interaction between the molecular tweezers and the amino acid and peptides models (Y = P, S, or C atom of the CH 2 C - 2 group of the tweezers, X = the N atom or the central C atom of the guanidinium moiety in the lateral chain of Lys or Arg respectively). B Atoms of the lateral chains of Arg and Lys included in the QM region used for the QM/MM optimizations are highlighted with a sphere representation. Table S1. Representative distances and the C 1 -C 2 -X angle for the isolated tweezers and the inclusion complexes between the tweezers and different Lys/Arg/peptide models (o stands for the guest not inserted in the tweezers cavity and i when the guest is threaded inside the tweezers). Depending on the systems X is the P, S or the C atom of the carboxylate group of the tweezers, while Y is the N or the central C atom of the guanidinium moiety in the lateral chain of Lys or Arg respectively. π H-cis the distance between the orto hydrogen atom of the last benzene ring and the center of the opposite benzene ring (see Figure 6). Values in 61

62 parentheses are for QM/MM optimized structures. All distances are in Å and the angle in degrees. System C p -C p C m -C m X-Y C 1 -C 2 -X π H-c 1a 5.51 ± ± ± (5.24) (3.51) (3.81) 1a 5.71 ± ± ± (5.43) (3.8) (4.13) 1a H Lys H 5.51 ± ± ± ± 3 (5.24) (3.71) (3.39) (88) - 1a KAA 5.8 ± ± ±.1 92 ± 3 (5.32) (3.85) (3.29) (89) - 1a Ac Lys Me 6.24 ± ± ±.1 95 ± 3 (5.63) (4.24) (3.91) (98) - 1a Ac ArgMe 5.62 ± ± ±.7 91 ± 3 (5.52) (3.76) (4.) (89) - 1b 1b Ac Lys Me 1b TsArgMe 6.49 ±.24 (5.94) 7.23 ±.22 (7.83) 5.53 ±.18 (5.33) 4.96 ±.26 (4.33) 6.29 ±.21 (6.82) 3.86 ±.17 (3.83) ±.12 (4.6) 3.88 ±.1 (3.95) 65 ± 3 (65) 86 ± 3 (82) 5.66 ±.31 (4.76) - - 1c 1c Ac Lys Me 1c Ac ArgMe 5.81 ±.22 (5.49) 5.69 ±.22 (5.48) 5.58 ±.17 (5.16) 3.96 ±.2 (3.89) 4.82 ±.22 (4.52) 3.72 ±.15 (3.48) ±.1 (4.6) 4.1 ±.1 (4.28) 64 ± 3 (62) 82 ± 3 (78) 4.14 ±.25 (4.5) - - 1d 1d Ac Lys Me (i) 1d Ac Lys Me (o) 1d Ac ArgMe (i) 1d Ac Arg Me (o) 5.54 ±.2 (5.25) 5.3 ±.19 (4.97) 5.48 ±.19 (5.54) 5.55 ±.18 (5.2) 5.67 ±.22 (5.4) 3.73 ±.17 (3.51) 3.77 ±.16 (3.53) 3.78 ±.18 (3.68) 3.79 ±.16 (3.42) 3.97 ±.21 (3.67) ±.19 (3.48) 3.32 ±.14 (3.2) 3.64 ±.1 (3.6) 3.84 ±.1 (3.9) 74 ± 3 (72) 64 ± 3 (62) 77 ± 3 (77) 69 ± 3 (65) 4.38 ±.25 (3.87) References (1) Humphrey, W., A. Dalke, and K. Schulten, VMD: Visual Molecular Dynamics. J. Mol. Graphics, : p (2) Brooks, B.R., et al., CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem (2): p

63 (3) Jorgensen, W.L., et al., Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, (2): p (4) Mackerell, A.D., Jr, M. Feig, and C.L. Brooks, III, Extending the Treatment of Backbone Energetics in Protein Force Fields: Limitations of Gas-Phase Quantum Mechanics in Reproducing Protein Conformational Distributions in Molecular Dynamics Simulations. J. Comput. Chem., : p (5) Zoete, V., et al., SwissParam: A Fast Force Field Generation Tool for Small rganic Molecules. J. Comp. Chem., : p (6) Chemshell, a Computational Chemistry Shell ( (7) Ahlrichs, R., et al., Electronic Structure calculation on workstation computers: The program system TURBMLE. Chem. Phys. Lett., : p (8) Smith, W. and T.R. Forester, DL-PLY _2.: a general-purpose parallel molecular dynamics simulation package. J. Mol. Graphics, (3): p (9) Lee, C., W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, : p (1) Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J ComputChem, (15): p (11) Schäfer, A., H. Horn, and R. Ahlrichs, Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys., : p (12) Antes, I. and W. Thiel, n the treatment of link atoms in hybrid methods. ACS Symp. Ser., (Combined Quantum Mechanical and Molecular Mechanical Methods): p (13) Bakowies, D. and W. Thiel, Hybrid Models for Combined Quantum Mechanical and Molecular Mechanical Approaches. J. Phys. Chem., : p (14) de Vries, A.H., et al., Zeolite Structure and Reactivity by Combined Quantum-Chemical- Classical Calculations. J. Phys. Chem. B, (29): p (15) Billeter, S.R., A.J. Turnera, and W. Thiel, Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates.phys. Chem. Chem. Phys.2. 2: p

64 2.2 Calculation of 1 H NMR shifts of the guest signals by ab initio methods The solvent effects were modelled using optimized QM/MM structures with an explicit, static 4-Å water layer around both (the host-guest complex and the pure guest molecule as well). Figure S7 shows the compexstructures used for the computation of 1 H NMR shifts without the water layer: 1a H Lys H, 1 1a H Lys H, 2 1a H Lys H 1a H Lys H 1a H Lys H 1a Ac Lys Me, 1 64

65 1a Ac Lys Me, 2 1a Ac Lys Me 1a Ac Lys Me 1a KAA, 1 1a KAA, 2 1a KAA 65

66 1a KAA 1a H Arg H, 1 1a H Arg H, 2 1a H Arg H 1a H Arg H 1a Ac ArgMe, 1 66

67 1a Ac ArgMe, 2 1a Ac ArgMe 1a Ac ArgMe Figure S7. Host-guest complex structures of the differently protonated phosphate tweezers 1a ( 1: R 1 = P 2-3, R 2 = P(H) - 2 ), 1a ( 1: R 1 = R 2 = P(H) - 2 ), 1a ( 1: R 1 = R 2 = P 2-3 ) with lysine and arginine derivatives (without counterions) optimized by QM/MM calculations, each structure contains a 4Å water layer. In each host-guest complex of the tweezer1a there are two conformers, one with the positively charged lysine ammonium or arginine guanidinium end group pointing toward the doubly negatively charged phosphate group (1) and the other one pointing away from the doubly negatively charged phosphate group (2). 67

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Cucurbit[7]uril host-guest complexes of the histamine H 2 -receptor antagonist ranitidine Ruibing Wang and Donal H. Macartney* Department of Chemistry, Queen s University,

Διαβάστε περισσότερα

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPORTING INFORMATION Heronamides A C, new polyketide macrolactams from an Australian marine-derived Streptomyces sp. A biosynthetic case for synchronized tandem electrocyclization. Ritesh Raju, Andrew

Διαβάστε περισσότερα

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics Supporting Information (SI) Heterobimetallic Pd-Sn Catalysis: Michael Addition Reaction with C-, N-, -, S- Nucleophiles and In-situ Diagnostics Debjit Das, a Sanjay Pratihar a,b and Sujit Roy c * a rganometallics

Διαβάστε περισσότερα

Supplementary Information

Supplementary Information Electronic upplementary Material (EI) for Photochemical & Photobiological ciences. This journal is The Royal ociety of Chemistry and wner ocieties 214 upplementary Information elective and sensitive fluorescence-shift

Διαβάστε περισσότερα

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 16 Supporting Information Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Διαβάστε περισσότερα

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin

Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin Supporting Information Rec. Nat. Prod. 10:2 (2016) 207-213 Phenylpropanoids, Sesquiterpenoids and Flavonoids from Pimpinella tragium Vill. subsp. lithophila (Schischkin) Tutin Hilal Özbek 1, Zühal Güvenalp

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Aluminum Complexes of N 2 O 2 3 Formazanate Ligands Supported by Phosphine Oxide Donors Ryan R. Maar, Amir Rabiee Kenaree, Ruizhong Zhang, Yichen Tao, Benjamin D. Katzman, Viktor

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information On the Ambiguity of 1,3,2-Benzodiazaboroles as Donor/Acceptor unctionalities in Luminescent Molecules Lothar Weber *[a], Johannes Halama [a], Kenny Hanke [a], Lena Böhling [a], Andreas

Διαβάστε περισσότερα

Supplementary Data. Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith

Supplementary Data. Department of Biochemistry and Molecular Biology, Department of Chemistry, and Michael Smith Supplementary Data ph-dependent random coil 1 H, 13 C, and 15 N chemical shifts of the ionizable amino acids: a guide for protein pk a measurements Gerald Platzer #, Mark Okon 2, and Lawrence P. McIntosh

Διαβάστε περισσότερα

difluoroboranyls derived from amides carrying donor group Supporting Information

difluoroboranyls derived from amides carrying donor group Supporting Information The influence of the π-conjugated spacer on photophysical properties of difluoroboranyls derived from amides carrying donor group Supporting Information Anna Maria Grabarz a Adèle D. Laurent b, Beata Jędrzejewska

Διαβάστε περισσότερα

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Supporting Information Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Shohei Shimokawa, Yuhsuke Kawagoe, Katsuhiko Moriyama, Hideo Togo* Graduate

Διαβάστε περισσότερα

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Synthesis and Electroactive Properties of Poly(amidoamine) Dendrimers with an Aniline Pentamer Shell Wei-I Hung a, Chih-Bing Hung a, Ya-Han Chang a, Jiun-Kuang Dai a, Yan Li b, Hai

Διαβάστε περισσότερα

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data. ; doi:10.3390/molecules22020254 S1 of S23 Supplementary Materials: Reaction of 3-Amino-1,2,4-Triazole with Diethyl Phosphite and Triethyl Orthoformate: Acid-Base Properties and Antiosteoporotic Activities

Διαβάστε περισσότερα

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes SUPPORTING INFORMATION Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes Eric J. Uzelac, Casey B. McCausland, and Seth C. Rasmussen*

Διαβάστε περισσότερα

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information The preferred all-gauche conformations in 3-fluoro-1,2-propanediol Laize A. F. Andrade, a Josué M. Silla, a Claudimar J. Duarte, b Roberto Rittner, b Matheus P. Freitas*,a

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1

Διαβάστε περισσότερα

Divergent synthesis of various iminocyclitols from D-ribose

Divergent synthesis of various iminocyclitols from D-ribose Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 205 Divergent synthesis of various iminocyclitols from D-ribose Ramu Petakamsetty,

Διαβάστε περισσότερα

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information NbCl 3 -catalyzed [2+2+2] intermolecular cycloaddition of alkynes and alkenes to 1,3-cyclohexadiene derivatives Yasushi Obora,* Keisuke Takeshita and Yasutaka Ishii*

Διαβάστε περισσότερα

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran 1 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, a Peter Langer* a,b a Institut für Chemie, Universität Rostock,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supporting Information Phosphorescent Pt(II) complexes bearing a monoanionic C^N^N luminophore

Διαβάστε περισσότερα

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory

Διαβάστε περισσότερα

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2014 A Family of Click Nucleosides for Metal-Mediated Base Pairing: Unravelling the Principles of Highly Stabilizing Metal-Mediated

Διαβάστε περισσότερα

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section

Διαβάστε περισσότερα

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016 Novel electroluminescent donor-acceptors

Διαβάστε περισσότερα

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Supporting Information for Substituent Effects on the Properties of Borafluorenes Supporting Information for Substituent Effects on the Properties of Borafluorenes Mallory F. Smith, S. Joel Cassidy, Ian A. Adams, Monica Vasiliu, Deidra L. Gerlach, David Dixon*, Paul A. Rupar* Department

Διαβάστε περισσότερα

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPRTING INFRMATIN Per(-guanidino--deoxy)cyclodextrins: Synthesis, characterisation and binding behaviour toward selected small molecules and DNA. Nikolaos Mourtzis, a Kyriaki Eliadou, a Chrysie Aggelidou,

Διαβάστε περισσότερα

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Διαβάστε περισσότερα

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure, Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure, Thermal

Διαβάστε περισσότερα

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek

Malgorzata Korycka-Machala, Marcin Nowosielski, Aneta Kuron, Sebastian Rykowski, Agnieszka Olejniczak, Marcin Hoffmann and Jaroslaw Dziadek Molecules 2017, 21, 154; doi:10.3390/molecules22010154 Supplementary Materials: Naphthalimides Selectively Inhibit the Activity of Bacterial, Replicative DNA Ligases and Display Bactericidal Effect against

Διαβάστε περισσότερα

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity Jian-Long Li 1,a, Wei Zhao 1,a, Chen Zhou 1,a, Ya-Xuan

Διαβάστε περισσότερα

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces Highly enantioselective cascade synthesis of spiropyrazolones Alex Zea a, Andrea-Nekane R. Alba a, Andrea Mazzanti b, Albert Moyano a and Ramon Rios a,c * Supporting Information NMR spectra and HPLC traces

Διαβάστε περισσότερα

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long

Διαβάστε περισσότερα

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides Electronic Supplementary Material (ESI for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2016 Electronic Supporting Information

Διαβάστε περισσότερα

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3 Supplementary Information Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3 Lewis Pairs: Structures of Intermediates, Kinetics, and Mechanism Qianyi Wang, Wuchao Zhao,

Διαβάστε περισσότερα

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Supporting Information for: Room Temperature Highly Diastereoselective Zn-Mediated Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Stereoselectivity Reversal

Διαβάστε περισσότερα

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information. Synthesis and biological evaluation of nojirimycin- and Supporting Information for Synthesis and biological evaluation of nojirimycin- and pyrrolidine-based trehalase inhibitors Davide Bini 1, Francesca Cardona 2, Matilde Forcella 1, Camilla Parmeggiani 2,3,

Διαβάστε περισσότερα

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Supplementary information for the paper Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Yang Xue, Ling-Po Li, Yan-Hong He * & Zhi Guan * School of Chemistry and Chemical Engineering,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State

Διαβάστε περισσότερα

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based

Διαβάστε περισσότερα

Supporting information

Supporting information Electronic upplementary Material (EI) for New Journal of Chemistry. This journal is The Royal ociety of Chemistry and the Centre National de la Recherche cientifique 7 upporting information Lipase catalyzed,-addition

Διαβάστε περισσότερα

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides

Supporting Information. Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides Supporting Information Route to benzo- and pyrido-fused 1,2,4-triazinyl radicals via N'-(het)aryl- N'-[2-nitro(het)aryl]hydrazides Andrey A. Berezin, Georgia Zissimou, Christos P. Constantinides, Yassine

Διαβάστε περισσότερα

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2017 ELECTRONIC SUPPLEMENTARY INFORMATION

Διαβάστε περισσότερα

The Free Internet Journal for Organic Chemistry

The Free Internet Journal for Organic Chemistry The Free Internet Journal for Organic Chemistry Paper Archive for Organic Chemistry Arkivoc 2018, part iii, S1-S6 Synthesis of dihydropyranones and dihydropyrano[2,3- d][1,3]dioxine-diones by cyclization

Διαβάστε περισσότερα

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 A new route to enantiopure b-aryl-substituted b-amino acids and 4-aryl-substituted b-lactams through lipase-catalyzed

Διαβάστε περισσότερα

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4 Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is The Royal Society of Chemistry 2015 Supporting information An unusual bifunctional Tb-MOF for highly sensing

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a

Διαβάστε περισσότερα

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 05 Supporting Information Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Anhydrous solvents were transferred by

Διαβάστε περισσότερα

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions This journal is The Royal Society of Chemistry 213 Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions Wenjing Cui, a Bao Zhaorigetu,* a Meilin Jia, a and Wulan

Διαβάστε περισσότερα

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang* Facile construction of the functionalized 4H-chromene via tandem benzylation and cyclization Jinmin Fan and Zhiyong Wang* Hefei National Laboratory for Physical Science at Microscale, Joint- Lab of Green

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Wiley-VC 007 9 Weinheim, Germany ew ear Infrared Dyes and Fluorophores Based on Diketopyrrolopyrroles Dipl.-Chem. Georg M. Fischer, Dipl.-Chem. Andreas P. Ehlers, Prof. Dr. Andreas

Διαβάστε περισσότερα

College of Life Science, Dalian Nationalities University, Dalian , PR China.

College of Life Science, Dalian Nationalities University, Dalian , PR China. Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2018 Postsynthetic modification

Διαβάστε περισσότερα

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors Andrea Trabocchi a, icolino Pala b, Ilga Krimmelbein c, Gloria Menchi a, Antonio Guarna a, Mario Sechi b, Tobias Dreker c, Andrea Scozzafava

Διαβάστε περισσότερα

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands

SUPPLEMENTARY MATERIAL. In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine Ligands 10.1071/CH16555_AC CSIRO 2017 Australian Journal of Chemistry 2017, 70(5), 546-555 SUPPLEMENTARY MATERIAL In Situ Spectroelectrochemical Investigations of Ru II Complexes with Bispyrazolyl Methane Triarylamine

Διαβάστε περισσότερα

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2015 Supporting Information A single probe to sense Al(III) colorimetrically and Cd(II) by

Διαβάστε περισσότερα

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes 1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,

Διαβάστε περισσότερα

Table of Contents 1 Supplementary Data MCD

Table of Contents 1 Supplementary Data MCD Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2017 Supporting Information for Magnetic circular dichroism and density functional theory

Διαβάστε περισσότερα

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation

Διαβάστε περισσότερα

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information For A Highly Sensitive ESIPT Based Ratiometric Fluorescence Sensor for Selective Detection of Al 3+ Sanghamitra Sinha, Bijit Chowdhury and Pradyut Ghosh* Department of Inorganic

Διαβάστε περισσότερα

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with Supporting Information for A Selective, Sensitive, Colorimetric and Fluorescence Probe for Relay Recognition of Fluoride and Cu (II) ions with OFF-ON-OFF Switching in Ethanol-Water Solution Yu Peng,* Yu-Man

Διαβάστε περισσότερα

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants

Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants S1 of S12 Supplementary Materials: Development of Amyloseand β-cyclodextrin-based Chiral Fluorescent Sensors Bearing Terthienyl Pendants Tomoyuki Ikai, Changsik Yun, Yutaka Kojima, Daisuke Suzuki, Katsuhiro

Διαβάστε περισσότερα

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,

Διαβάστε περισσότερα

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings ickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings Braulio M. Puerta Lombardi, Rudy M. Braun, Chris Gendy, Chia Yun Chang,

Διαβάστε περισσότερα

SUPPORTING INFORMATION

SUPPORTING INFORMATION SUPPRTING INFRMATIN Dihydroxylation of lefins Catalyzed by Zeolite-Confined smium Nanoclusters: A Novel, Effective, Reusable and Eco-Friendly Method for Preparation of 1,2-cis-Diols Önder Metin,*,a Nurdan

Διαβάστε περισσότερα

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Polymer hemistry This journal is The Royal Society of hemistry 2011 Phosphoric and Phosphoramidic Acids as Bifunctional atalysts for the Ring-pening Polymerization

Διαβάστε περισσότερα

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on Supporting Information for Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on folding and bioactivity Marta De Zotti 1, Barbara Biondi 1, Cristina Peggion 1, Matteo De Poli 1, Haleh

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General

Διαβάστε περισσότερα

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of novel 1,2,3-triazolyl derivatives of

Διαβάστε περισσότερα

Supporting Information. Synthesis and in vitro pharmacological evaluation of N-[(1-benzyl-1,2,3-triazol-4-

Supporting Information. Synthesis and in vitro pharmacological evaluation of N-[(1-benzyl-1,2,3-triazol-4- Supporting Information Synthesis and in vitro pharmacological evaluation of N-[(1-benzyl-1,2,3-triazol-4- yl)methyl]-carboxamides on D-secoestrone scaffolds Johanna Szabó a, Ildikó Bacsa a, János Wölfling

Διαβάστε περισσότερα

Supporting Information

Supporting Information Chloromethylhalicyclamine B, a Marine-Derived Protein Kinase CK1δ/ε Inhibitor Germana Esposito, Marie-Lise Bourguet-Kondracki, * Linh H. Mai, Arlette Longeon, Roberta Teta, Laurent Meijer, Rob Van Soest,

Διαβάστε περισσότερα

Supporting Information for: electron ligands: Complex formation, oxidation and

Supporting Information for: electron ligands: Complex formation, oxidation and Supporting Information for: The diverse reactions of PhI(OTf) 2 with common 2- electron ligands: Complex formation, oxidation and oxidative coupling Thomas P. Pell, Shannon A. Couchman, Sara Ibrahim, David

Διαβάστε περισσότερα

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged Supporting Information C H Activation of Cp* Ligand Coordinated to Ruthenium Center: Synthesis and Reactivity of a Thiolate-Bridged Diruthenium Complex Featuring Fulvene-like Cp* Ligand Xiaoxiao Ji, Dawei

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Biomimetic total syntheses of borreverine and flinderole alkaloids. Dattatraya. Dethe,* Rohan D. Erande and Alok Ranjan Department of Chemistry, Indian Institute of Technology-Kanpur,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2016 Supporting Information Abnormal N-Heterocyclic Carbene Based Nickel Complex for Catalytic

Διαβάστε περισσότερα

3018 Σύνθεση του 3-φαινυλοβενζοϊκού οξέος από 3-ιωδο βενζοϊκό οξύ

3018 Σύνθεση του 3-φαινυλοβενζοϊκού οξέος από 3-ιωδο βενζοϊκό οξύ 3018 Σύνθεση του 3-φαινυλοβενζοϊκού οξέος από 3-ιωδο βενζοϊκό οξύ COOH COOH + PhB(OH) 2 NaOH/PdCl 2 I Ph C 7 H 5 IO 2 (248.0) C 6 H 7 BO 2 (121.9) NaOH PdCl 2 (40.0) (177.3) C 13 H 10 O 2 (198.2) Βιβλιογραφία

Διαβάστε περισσότερα

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h. Supporting Information [NH 3 CH 3 ] [In SbS 9 SH]: A novel methylamine-directed indium thioantimonate with Rb + ion-exchange property Kai-Yao Wang a,b, Mei-Ling Feng a, Jian-Rong Li a and Xiao-Ying Huang

Διαβάστε περισσότερα

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions Supplementary Information for Phosphorus xychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions u Chen,* a,b Xunfu Xu, a Liu Liu, a Guo Tang,* a

Διαβάστε περισσότερα

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Tuning the photophysical properties of 4 -subsituted terpyridines - experimental

Διαβάστε περισσότερα

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols D. Bradley G. Williams* and Michelle Lawton a Department of Chemistry, University of Johannesburg, P.O. Box 524,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Crotonols A and B, Two Rare Tigliane Diterpenoid

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Molecular Cage Impregnated Palladium Nanoparticles: Efficient, Additive-Free Heterogeneous Catalysts for Cyanation of Aryl Halides. Bijnaneswar Mondal, Koushik Acharyya, Prodip Howlader

Διαβάστε περισσότερα

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:

Διαβάστε περισσότερα

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic

Διαβάστε περισσότερα

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL 10.1071/CH16014_AC The Authors 2016 Australian Journal of Chemistry 2016, 69(9), 1049-1053 SUPPLEMENTARY MATERIAL A Green Approach for the Synthesis of Novel 7,11-Dihydro-6H-chromeno[3,4- e]isoxazolo[5,4-b]pyridin-6-one

Διαβάστε περισσότερα

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Sensitivity of [Ru(phen) 2 dppz] 2+ Light Switch Emission to Ionic Strength, Temperature, and DNA Sequence and Conformation Andrew W. McKinley, Per Lincoln and Eimer M. Tuite* SUPPLEMENTARY INFORMATION

Διαβάστε περισσότερα

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is The Royal Society of Chemistry 2018 Electronic Supplementary Information Proton coupled electron transfer from Co

Διαβάστε περισσότερα

phase: synthesis of biaryls, terphenyls and polyaryls

phase: synthesis of biaryls, terphenyls and polyaryls Supporting Information for Studies on Pd/NiFe 2 O 4 catalyzed ligand-free Suzuki reaction in aqueous phase: synthesis of biaryls, terphenyls and polyaryls Sanjay R. Borhade and Suresh B. Waghmode* Address:

Διαβάστε περισσότερα

Supporting Information

Supporting Information SUPPORTING INFORMATION FOR: Trialkylstibine complexes of boron, aluminium, gallium and indium trihalides: synthesis, properties and bonding Victoria K. Greenacre, William Levason and Gillian Reid Chemistry,

Διαβάστε περισσότερα

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2 Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan

Διαβάστε περισσότερα

Available online at shd.org.rs/jscs/

Available online at shd.org.rs/jscs/ J. Serb. Chem. Soc. 78 (1) S1 S8 (2013) Supplementary material SUPPLEMENTARY MATERIAL TO Metal complexes of N'-[2-hydroxy-5-(phenyldiazenyl)- benzylidene]isonicotinohydrazide. Synthesis, spectroscopic

Διαβάστε περισσότερα

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge Supporting Information Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge Małgorzata Domagała*, Aneta Lutyńska, Marcin Palusiak Theoretical and Structural Chemistry Group,

Διαβάστε περισσότερα

Supplementary!Information!

Supplementary!Information! Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015! Synthesis)and)characterisation)of)an)open1cage) fullerene)encapsulating)hydrogen)fluoride! Supplementary!Information!

Διαβάστε περισσότερα

Supporting Information: Expanding the Armory: Predicting and Tuning Covalent Warhead. Reactivity.

Supporting Information: Expanding the Armory: Predicting and Tuning Covalent Warhead. Reactivity. Supporting Information: Expanding the Armory: Predicting and Tuning Covalent Warhead Reactivity. Richard Lonsdale, Jonathan Burgess, Nicola Colclough, Nichola Davies, Eva M. Lenz, Alexandra L. Orton and

Διαβάστε περισσότερα

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin 2005 63 Vol. 63, 2005 23, 2169 2173 ACTA CHIMICA SINICA No. 23, 2169 2173 a,b a a a *,a ( a 130012) ( b 133002), 26 K A 1.98 10 4, 1.01 10 3, 1.38 10 3, 5.97 10 4 7.15 10 4 L mol 1, n 1.16, 0.86, 1.19,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information rigin of the Regio- and Stereoselectivity of Allylic Substitution of rganocopper Reagents Naohiko Yoshikai, Song-Lin Zhang, and Eiichi Nakamura* Department of Chemistry, The University

Διαβάστε περισσότερα

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is The Royal Society of Chemistry 2014 Electronic Supplementary Information Syntheses and structures of copper complexes of

Διαβάστε περισσότερα