Lecture 27. Relativity of transverse waves and 4-vectors

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Lecture 27. Relativity of transverse waves and 4-vectors"

Transcript

1 Lecture 27. Relativity of transverse waves and 4-vectors (Ch. 2-5 of Unit ) Introducing per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation Reviewing the stellar aberration angle σ vs. rapidity ρ in Epstein s cosmic speedometer Reviewing Sin-Tan Rosetta geometry Reviewing relativistic quantum Lagrangian-Hamiltonian contact relations Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Time contraction-dilation revisited Length contraction-dilation revisited Twin-paradox revisited Velocity addition revisited Lorentz symmetry effects How it makes momentum and energy be conserved Lewis Carroll Epstein, Relativity Visualized Insight Press, San Francisco, CA 9417 See also: L. C. Epstein, Thinking Physics Press, Insight Press, San Francisco, CA

2 Reviewing the stellar aberration angle σ vs. rapidity ρ Together, rapidity ρ=ln b and stellar aberration angle σ are parameters of relative velocity The rapidity ρ=ln b is based on The stellar aberration angle σ is based on the longitudinal wave Doppler shift b=e ρ transverse wave rotation R=e iσ defined by u/c=tanh(ρ). defined by u/c=sin(σ). At low speed: u/c~ρ. At low speed: u/c~ σ. (a) Fixed Observer x (b) Moving Observer S S u=c sin σ c δδ c 1-u 2 /c 2 =c/cosh ρ σ c k( ) k( ) z Fig. 5.6 Epstein s cosmic speedometer with aberration angle σ and transverse Doppler shift coshυz. 2

3 Reviewing the Sin-Tan Rosetta geometry NOTE: Angle φ is now called stellar aberration angle σ Fig. C.2-3 and Fig. 5.4 in Unit 2 3

4 (a) Geometry of relativistic transformation and wave based mechanics H=E (b) Tangent geometry (u/c=3/5) Velocity aberration angle φ 4 H ρ 3 -L B p-circle g-circle 2 b-circle 1 B sech ρ B B cosh ρ Rest Energy B =Mc 2 -Lagrangian -L =B sech ρ -2-1 B e -ρ Red shift 1 2 B e +ρ Blue shift (c) Basic construction given u/c=45/53 3 cp 4 Hamiltonian =H =B cosh ρ (d) u/c=3/5 ρ H =53/28 H =5/ L =4/5 u/c =3/5 u/c =1 -L=28/45 e -ρ =2/7 1 cp =45/28 e -ρ =1/2 cp =3/4 1 4

5 Reviewing classical quantum Lagrangian-Hamiltonian relations (a) Lagrangian plot L(v)= v p - H(p) Hamiltonian plot (b) H(p)=p v-l(v) Unit 1 Fig L(v) H(p) velocity v is p-slope velocity v = 1. v-slope=p dl/dv = Lagrangian L(v) = 1. v-slope is momentum p -1 v-slope +1-1 intercept velocity -H = -.6 p-slope v intercept -L = Lagrangian L(v) is -p-slope intercept -v-slope intercept is Hamiltonian H(p) +1 Hamiltonian H(p) =.6 p-slope=v dh/dp= momentum p = momentum p 5

6 Reviewing relativistic quantum Lagrangian-Hamiltonian relations Start with phase Φ and set k= to get product of proper frequency µ = Mc2 / and proper time τ dφ = kdx ω dt= µ dτ = -(Mc 2 / ) dτ. (a) Hamiltonian slope: H p = q = u H H H -L -L -L ds = Ldt = p dx H dt = k dx ω dt = dφ Differential action: is Planck scale times differential phase: ds = dφ O H(q,p) P H P H P H Light cone u=1=c has infinite H and zero L Momentum p dτ = dt (1-u 2 /c 2 )=dt sech ρ For constant u the Lagrangian is: L = µτ = -Mc 2 (1-u 2 /c 2 )= -Mc 2 sech ρ = -Mc 2 cos σ...with Poincare invariant: L= p x H = p u H (b) Lagrangian radius = Mc 2 L L L -H -H -H O L(q,q) Fig Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian Q Velocity u=q Q slope: Q L q = p 6

7 Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) k( ) k( ) ω coshρ of k( ) x-axis k( ) k( ) k( ) CW Laser-pair wavevectors e ρ k( ) sinh ρ z e ρ =,,, Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck y ω of k( ) z-axis South 7

8 Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) ω coshρ of k( ) x-axis k( ) k( ) k( ) CW Laser-pair wavevectors k( ) e ρ k( ) West k( ) ( e ρ ) =,,, along -z-axis : ω,ck x,ck y,ck z sinh ρ z =,,, Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω of k( ) z-axis South 8

9 Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship =,+,, k( ) ω coshρ up +x-axis : ω,ck x,ck y,ck z of k( ) x-axis North k( ) k( ) k( ) CW Laser-pair wavevectors k( ) e ρ k( ) West along -z-axis : ω,ck x,ck y,ck z sinh ρ z k( ) ( e ρ ) =,,, =,,, Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω of k( ) z-axis South 9

10 Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation (a) Laser frame k( ) k( ) k( ) (Lighthouse frame) k( ) CW Laser-pair wavevectors (b) z-( Moving) ship =,+,, k( ) k( ) e ρ k( ) ω coshρ up +x-axis : ω,ck x,ck y,ck z sinh ρ z k( ) =,,, Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z of k( ) =,,,+ along +z-axis : ω,ck x,ck y,ck z West along -z-axis : ω,ck x,ck y,ck z ( e ρ ) =,,, ω of k( ) x-axis z-axis South North East 1

11 Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) k( ) k( ) ω coshρ of k( ) x-axis k( ) k( ) k( ) CW Laser-pair wavevectors e ρ k( ) sinh ρ z Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z +ρ z -rapidity ship frame sees starlight Lorentz transformed to : e ρ ω of k( ) z-axis =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z 11

12 Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) k( ) k( ) ω coshρ of k( ) x-axis k( ) k( ) Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z k( ) +ρ z -rapidity ship frame sees starlight Lorentz transformed to : ω c k x c k y c k z = CW Laser-pair wavevectors sinh ρ z 1 1 sinh ρ z ω ck x ck y ck z e ρ k( ) = sinh ρ z e ρ ω =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z sinh ρ z 1 1 sinh ρ z of k( ) = z-axis sinh ρ z 12

13 Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation k( ) (Lighthouse frame) (a) Laser frame (b) z-( Moving) ship k( ) ω coshρ of k( ) x-axis k( ) k( ) Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω c k x c k y c k z = k( ) CW Laser-pair wavevectors +ρ z -rapidity ship frame sees starlight Lorentz transformed to : sinh ρ z 1 1 sinh ρ z k( ) ω ck x ck y ck z e ρ k( ) = sinh ρ z =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z sinh ρ z 1 1 sinh ρ z k( ) e ρ After the 4-vector transformation, =ω is transverse Doppler shifted to, while ckz= becomes ckz' = - sinh ρ z. (The x-component is unchanged: ckx' = - = ckx and so is y-component: cky' = - = cky.) ω of k( ) = z-axis sinh ρ z sinh ρ z 13

14 Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation (a) Laser frame k( ) k( ) k( ) ω c k x c k y c k z = (Lighthouse frame) k( ) CW Laser-pair wavevectors sinh ρ z 1 1 sinh ρ z (b) z-( Moving) ship Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω k( ) k( ) +ρ z -rapidity ship frame sees starlight Lorentz transformed to : ck x ck y ck z e ρ k( ) = ω coshρ =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z sinh ρ z 1 1 sinh ρ z k( ) After the 4-vector transformation, =ω is transverse Doppler shifted to, while ckz= becomes ckz' = - sinh ρ z. (The x-component is unchanged: ckx' = - = ckx and so is y-component: cky' = - = cky.) σ sinh ρ z e ρ ω of k( ) of k( ) x-axis = z-axis sinh ρ z = secσ = sinσ σ sinh ρ z = tanσ secσ tanσ cosσ σ 14

15 Per-spacetime 4-vector (ω,ωx,ωy,ωz) =(ω,ckx,cky,ckz) transformation (a) Laser frame k( ) k( ) k( ) ω c k x c k y c k z = (Lighthouse frame) k( ) CW Laser-pair wavevectors sinh ρ z 1 1 sinh ρ z (b) z-( Moving) ship Suppose starlight in lighthouse frame is straight down x-axis : ω,ck x,ck y,ck z ω k( ) k( ) +ρ z -rapidity ship frame sees starlight Lorentz transformed to : ck x ck y ck z e ρ k( ) = ω coshρ =,,, ( ω,c k,c k,c k ) x y z =,,, sinh ρ z sinh ρ z 1 1 sinh ρ z k( ) e ρ of k( ) of k( ) After the 4-vector transformation, =ω is transverse Doppler shifted to, while ckz= becomes ckz' = - sinh ρ z. (The x-component is unchanged: ckx' = - = ckx and so is y-component: cky' = - = cky.) = sinh ρ z Recall hyperbolic invariant to Lorentz transform: ω 2 -c 2 k 2 =ω 2 -c 2 k 2 (= for 1-CW light) The 4-vector form of this is: ω 2 -c 2 k k=ω 2 -c 2 k k (= ) σ sinh ρ z ω x-axis z-axis = secσ = sinσ σ sinh ρ z = tanσ secσ tanσ cosσ σ 15

16 Fig. 5.1 CW cosmic speedometer. Geometry of Lorentz boost of counter-propagating waves. 16

17 Fig. 5.1 CW cosmic speedometer. Geometry of Lorentz boost of counter-propagating waves. If starlight is horizontal right-moving k wave then ship going u along z-axis sees : ω sinh ρ z ω c k x cosh ρ z sinh ρ z ω e ρ z 1 = = ω c k y 1 = c k z sinh ρ z + sinh ρ z + e ρ z If starlight is horizontal left-moving k wave then ship going u along z-axis sees : ω + sinh ρ z e +ρ z c k x c k y c k z = sinh ρ z 1 1 sinh ρ z The usual longitudinal Doppler blue shifts e +ρ z or Doppler red shifts e ρ z appear on both k-vector and frequency ω. = ω sinh ρ z = e +ρ z 17

18 Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Time contraction-dilation revisited This is also proportional to Lagrangian L= -Mc 2 (1-u 2 /c 2 ) cτ (Age) Proper time cτ= (ct) 2 -x 2 ο Coordinate x=(u/c) ct P σ Coordinate time ct= (cτ) 2 +x 2 Light (never ages) x=ct Particle going u in (x,ct) is going speed c in (x, cτ) γ x (Distance) Fig. 5.8 Space-proper-time plot makes all objects move at speed c along their cosmic speedometer. 18

19 Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Length contraction-dilation revisited A cute Epstein feature is that Lorentz-Fitzgerald contraction of a proper length L to L=L 1-u 2 /c 2 is simply rotational projection onto the x-axis of a length L rotated by σ. cτ Proper time cτ= (ct) 2 -x 2 ο Coordinate x=(u/c) ct P σ σ ct Proper length L Contracted length L=L 1-u 2 /c 2 Particle P going u in (x,ct) is going speed c in (x, cτ) L Comoving particle P ct P x 19

20 Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Twin-paradox revisited τ B way older than A τ B stationary A inbound B older than A A outbound B stationary A outbound x B x B 2

21 Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Twin-paradox revisited τ B way older than A τ τ B way older than A B stationary A inbound B older than A B younger than A A outbound B stationary A outbound x B x B x A 21

22 Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Velocity addition revisited cτ-axis Geometry of relativistic velocity addition tanh(ρ u +ρ v )= tanhρ u +tanhρ v where:tanhρ=sinσ 1+tanhρ u tanhρ v σ u σ v u/c=1/2=tanhρ u =sinσ u u/c=1/2=tanhρ u =sinσ u v/c=2/3=tanhρ v =sinσ v unit circle x-axis 22

23 Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Velocity addition revisited cτ-axis ship1 Geometry of relativistic velocity addition tanh(ρ u +ρ v )= tanhρ u +tanhρ v where:tanhρ=sinσ 1+tanhρ u tanhρ v ship2 ship1 2/ 5=sinhρ v =tanσ v 3/ 5=coshρ v =secσ v 1/ 3=sinhρ u =tanσ u σ u 2/ 3=coshρ u =secσ u σ v ship2 1 u/c=1/2=tanhρ u =sinσ u 3 2 u/c=1/2=tanhρ u =sinσ u v/c=2/3=tanhρ v =sinσ v 3/2=sechρ u =1/coshρ u unit circle In ships frame: Bullet going u= c/2 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 1 x-axis In frame where ships go v=2c/3: Bullet going Vu(+)v=?? from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 23

24 Epstein s space-proper-time (x,cτ) plots ( c-tau plots) Velocity addition revisited cτ-axis Geometry of relativistic velocity addition tanh(ρ u +ρ v )= tanhρ u +tanhρ v where:tanhρ=sinσ 1+tanhρ u tanhρ v 2/ 5=sinhρ v =tanσ v 3/ 5=coshρ v =secσ v 1/ 3=sinhρ u =tanσ u σ u σ v σ uv 2/ 3=coshρ u =secσ u tanhρ u sinhρ u =sinσ u tanσ u tanhρ u =sinσ u 1 u/c=1/2=tanhρ u =sinσ u tanhρ u coshρ u =sinσ u secσ u 3 2 u/c=1/2=tanhρ u =sinσ u sechρ u =1/coshρ u v/c=2/3=tanhρ v =sinσ v unit circle V/c=7/8=tanh(ρ uv )=sinσ uv =tanh(ρ u +ρ v ) In ships frame: Bullet going u= c/2 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 1 x-axis In frame where ships go v=2c/3: Bullet going Vu(+)v=7c/8 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 24

25 sinh(ρ u +ρ v ) Velocity addition revisited cosh(ρ u +ρ v ) cτ-axis Geometry of relativistic velocity addition tanh(ρ u +ρ v )= tanhρ u +tanhρ v where:tanhρ=sinσ 1+tanhρ u tanhρ v 2/ 5=sinhρ v =tanσ v 1/ 3=sinhρ u =tanφ u 3/ 5=coshρ v =secσ v tanhρ u sinhρ u =sinσ u tanσ u σ u σ v σ uv 2/ 3=coshρ u =secφ u tanhρ u =sinσ u 1 u/c=1/2=tanhρ u =sinσ u tanhρ u coshρ u =sinσ u secσ u 3 2 u/c=1/2=tanhρ u =sinσ u sechρ u =1/coshρ u v/c=2/3=tanhρ v =sinσ v unit circle V/c=7/8=tanh(ρ uv )=sinσ uv =tanh(ρ u +ρ v ) 1/2+2/3 1+(1/2)(2/3) =7/8 In ships frame: Bullet going u= c/2 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u coshρ u sinhρ v +sinhρ v coshρ v =sinh(ρ u +ρ v )=7/ 15 1 x-axis (coshρ v +tanhρ u sinhρ v ) (coshρ v +tanhρ u sinhρ v )coshρ u =coshρ u coshρ v +sinhρ v sinhρ v =cosh(ρ u +ρ v )=8/ 15 In frame where ships go v=2c/3: Bullet going Vu(+)v=7c/8 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 25

26 tanhρ u =u/c=1/2=sinφ u tanhρ v =v/c=2/3=sinφ u tanhρ uv =u/c=7/8=sinφ uv φ u =sin -1 (tanhρ u )=.5236=3 φ v =sin -1 (tanhρ)=.7297=41.8 φ uv =sin -1 (tanhρ uv )=1.6543=61.4 sinh(ρ u +ρ v ) cosh(ρ u +ρ v ) ρ u =tanh -1 (1/2)=.5493 ρ v =tanh(2/3)=.8472 ρ uv =tanh(7/8)= =ρ u +ρ v cτ-axis 2/ 5=sinhρ v =tanφ v 3/ 5=coshρ v =secφ v 1/ 3=sinhρ u =tanφ u φ u φ v φ uv 2/ 3=coshρ u =secφ u tanhρ u sinhρ u =sinφ u tanφ u tanhρ u =sinφ u 1 u/c=1/2=tanhρ u =sinφ u tanhρ u coshρ u =sinφ u secφ u 3 2 u/c=1/2=tanhρ u =sinφ u 5 3 v/c=2/3=tanhρ v =sinφ v unit circle 3/2=sechρ u =1/coshρ u 4 V/c=7/8=tanh(ρ uv )=sinφ uv 5 =tanh(ρ u +ρ v ) In ships frame: Bullet going u= c/2 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u coshρ u sinhρ v +sinhρ v coshρ v =sinh(ρ u +ρ v )=7/ 15 1 x-axis (coshρ v +tanhρ u sinhρ v ) (coshρ v +tanhρ u sinhρ v )coshρ u =coshρ u coshρ v +sinhρ v sinhρ v =cosh(ρ u +ρ v )=8/ 15 In frame where ships go v=2c/3: Bullet going Vu(+)v=7c/8 from ship1 passes ship2 at ship2-time τ=1 and at bullet-time τ= 3/2=sechρ u 26

27 Lorentz symmetry effects How it makes momentum and energy be conserved A strength (and also, weakness) of CW axioms (1.1-2) is that they are symmetry principles due to the Lorentz-Poincare isotropy of space-time (invariance to space-time translation T(δ,τ ) in the vacuum). T ψ k,ω = Ae i(kx ω t) e Operator has plane wave eigenfunctions with roots-of-unity eigenvalues. ψ k,ω T i(k δ ω τ ) = ψ k,ω e (5.18a) T ψ k,ω = e i(k δ ω τ ) ψ k,ω i(k δ ω τ ) (5.18b) This also applies to 2-part or 2-particle product states Ψ K,Ω = ψ k1,ω 1 ψ k2,ω 2 where exponents add (k,ω)-values of each constituent to K=k1+k2 and Ω=ω1+ω2, and -eigenvalues also have that form. Ψ K, T(δ,τ ) e i(k δ Ω τ ) Matrix Ω U Ψ K,Ω of T-symmetric evolution U is zero unless K = k 1 + k 2 = K and Ω = ω 1 + ω 2 = Ω. Ψ K, Ω U Ψ K,Ω = Ψ K, Ω T (δ,τ )UT(δ,τ ) Ψ K,Ω (if UT = TU for all δ and τ ) = e i( K δ Ω τ ) e i(k δ Ω τ ) Ψ K, Ω U Ψ K,Ω = unless: K = K and: Ω = Ω That s momentum (P=hK) and energy (E=hW) conservation! 27

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Geodesic Equations for the Wormhole Metric

Geodesic Equations for the Wormhole Metric Geodesic Equations for the Wormhole Metric Dr R Herman Physics & Physical Oceanography, UNCW February 14, 2018 The Wormhole Metric Morris and Thorne wormhole metric: [M S Morris, K S Thorne, Wormholes

Διαβάστε περισσότερα

4.4 Superposition of Linear Plane Progressive Waves

4.4 Superposition of Linear Plane Progressive Waves .0 Marine Hydrodynamics, Fall 08 Lecture 6 Copyright c 08 MIT - Department of Mechanical Engineering, All rights reserved..0 - Marine Hydrodynamics Lecture 6 4.4 Superposition of Linear Plane Progressive

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Rectangular Polar Parametric

Rectangular Polar Parametric Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

CURVILINEAR COORDINATES

CURVILINEAR COORDINATES CURVILINEAR COORDINATES Cartesian Co-ordinate System A Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a pair of numerical coordinates, which are the

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane. upplement on Radiation tress and Wave etup/et down Radiation tress oncerned wit te force (or momentum flu) eerted on te rit and side of a plane water on te left and side of te plane. plane z "Radiation

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3 Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION X-Y COUPLING GENERATION WITH AC/PULSED SEW QUADRUPOLE AND ITS APPLICATION # Takeshi Nakamura # Japan Synchrotron Radiation Research Institute / SPring-8 Abstract The new method of x-y coupling generation

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

1 Lorentz transformation of the Maxwell equations

1 Lorentz transformation of the Maxwell equations 1 Lorentz transformation of the Maxwell equations 1.1 The transformations of the fields Now that we have written the Maxwell equations in covariant form, we know exactly how they transform under Lorentz

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Cosmological Space-Times

Cosmological Space-Times Cosmological Space-Times Lecture notes compiled by Geoff Bicknell based primarily on: Sean Carroll: An Introduction to General Relativity plus additional material 1 Metric of special relativity ds 2 =

Διαβάστε περισσότερα

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering Dan Censor Ben Gurion University of the Negev Department of Electrical and Computer Engineering Beer Sheva,

Διαβάστε περισσότερα

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2 Math 209 Riemannian Geometry Jeongmin Shon Problem. Let M 2 R 3 be embedded surface. Then the induced metric on M 2 is obtained by taking the standard inner product on R 3 and restricting it to the tangent

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing

Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Navigation Mathematics: Kinematics (Coordinate Frame Transformation) EE 565: Position, Navigation and Timing Lecture Notes Update on Feruary 20, 2018 Aly El-Osery and Kevin Wedeward, Electrical

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Relativistic particle dynamics and deformed symmetry

Relativistic particle dynamics and deformed symmetry Relativistic particle dynamics and deformed Poincare symmetry Department for Theoretical Physics, Ivan Franko Lviv National University XXXIII Max Born Symposium, Wroclaw Outline Lorentz-covariant deformed

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

SPECIAL FUNCTIONS and POLYNOMIALS

SPECIAL FUNCTIONS and POLYNOMIALS SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Orbital angular momentum and the spherical harmonics

Orbital angular momentum and the spherical harmonics Orbital angular momentum and the spherical harmonics March 8, 03 Orbital angular momentum We compare our result on representations of rotations with our previous experience of angular momentum, defined

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in cylindrical, spherical coordinates (Sect. 15.7) Integrals in clindrical, spherical coordinates (Sect. 5.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3. Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (, 1,0). Find a unit vector in the direction of A. Solution: A = ˆx( 1)+ŷ( 1 ( 1))+ẑ(0 ( 3)) = ˆx+ẑ3, A = 1+9 = 3.16, â = A A = ˆx+ẑ3 3.16

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Symmetric Stress-Energy Tensor

Symmetric Stress-Energy Tensor Chapter 3 Symmetric Stress-Energy ensor We noticed that Noether s conserved currents are arbitrary up to the addition of a divergence-less field. Exploiting this freedom the canonical stress-energy tensor

Διαβάστε περισσότερα

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola Universit of Hperbolic Functions The trigonometric functions cos α an cos α are efine using the unit circle + b measuring the istance α in the counter-clockwise irection along the circumference of the

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

CORDIC Background (2A)

CORDIC Background (2A) CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

Graded Refractive-Index

Graded Refractive-Index Graded Refractive-Index Common Devices Methodologies for Graded Refractive Index Methodologies: Ray Optics WKB Multilayer Modelling Solution requires: some knowledge of index profile n 2 x Ray Optics for

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4 Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

For a wave characterized by the electric field

For a wave characterized by the electric field Problem 7.9 For a wave characterized by the electric field E(z,t) = ˆxa x cos(ωt kz)+ŷa y cos(ωt kz+δ) identify the polarization state, determine the polarization angles (γ, χ), and sketch the locus of

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική

PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική PP #6 Μηχανικές αρχές και η εφαρµογή τους στην Ενόργανη Γυµναστική Υπολογισµός Γωνιών (1.2, 1.5) (2.0, 1.5) θ 3 θ 4 θ 2 θ 1 (1.3, 1.2) (1.7, 1.0) (0, 0) " 1 = tan #1 2.0 #1.7 1.5 #1.0 $ 310 " 2 = tan #1

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3)

PHYS606: Electrodynamics Feb. 01, Homework 1. A νµ = L ν α L µ β A αβ = L ν α L µ β A βα. = L µ β L ν α A βα = A µν (3) PHYS606: Electrodynamics Feb. 01, 2011 Instructor: Dr. Paulo Bedaque Homework 1 Submitted by: Vivek Saxena Problem 1 Under a Lorentz transformation L µ ν, a rank-2 covariant tensor transforms as A µν A

Διαβάστε περισσότερα

Differentiation exercise show differential equation

Differentiation exercise show differential equation Differentiation exercise show differential equation 1. If y x sin 2x, prove that x d2 y 2 2 + 2y x + 4xy 0 y x sin 2x sin 2x + 2x cos 2x 2 2cos 2x + (2 cos 2x 4x sin 2x) x d2 y 2 2 + 2y x + 4xy (2x cos

Διαβάστε περισσότερα

Example of the Baum-Welch Algorithm

Example of the Baum-Welch Algorithm Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Σχετικότητα. Από τους μετασχηματισμούς Galileo στον τετραδιάστατο χωροχρόνο. Παπαδημητρίου X. Γιώργος. Ναύπακτος 2012 A B.

Σχετικότητα. Από τους μετασχηματισμούς Galileo στον τετραδιάστατο χωροχρόνο. Παπαδημητρίου X. Γιώργος. Ναύπακτος 2012 A B. Σχετικότητα Από τους μετασχηματισμούς Galileo στον τετραδιάστατο χωροχρόνο ct ct A B x. x Παπαδημητρίου X. Γιώργος Ναύπακτος 2012 GPLv3 License Αφιερώνεται σε όλα τα, ενεργά και μή, μέλη του ylikonet.gr

Διαβάστε περισσότερα