Bayesian Variable Order n-gram Language Model based on Hierarchical Pitman-Yor Processes
|
|
- Φῆλιξ Αλαφούζος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Vol. 0 No Pitman-Yor n-gram,, n-gram Pitman-Yor,, n-gram,,, n,,, Bayesian Variable Order n-gram Language Model based on Hierarchical Pitman-Yor Processes Daichi Mochihashi? and Eiichiro Sumita? This paper proposes a variable order n-gram language model by extending a recently proposed model based on the hierarchical Pitman-Yor processes. Introducing a stochastic process on an infinite depth prediction suffix tree, we can infer the hidden n-gram context from which each word originated. Experiments on standard large corpora showed validity and efficiency of the proposed model. Our architecture is also applicable to general Markov models to estimate their variable orders of generation. 1. n, Shannon 1),,, n, (n 1) (n 1),, V V n 1, n 1,,, n=3 () n = 4, 5, ATR / ATR Spoken Language Communication Research Laboratories / National Institute of Communications Technology NTT Presently with NTT Communication Science Laboratories, The United States of America,,,,,, n,, longer than n, n 3, n,, n, n, 2),, 1
2 2 2007, 3)4), 5) MDL,,, 6) 7),,, n, 10) 11), Pitman-Yor, n 0-gram 1- gram 2-gram, Pitman-Yor n, n, n, n n,, n,,, 2, Pitman-Yor n, 3 Suffix Tree, 4 LDA, 5 6, 7 2. Pitman-Yor n-gram Pitman-Yor n (HPYLM) 10)11), n, 4), n 8), 9), 10), she sing sing like cry will he like it ɛ and butter bread model is language = = ( ) 1 CRP Suffix Tree, Fig. 1 Suffix tree representation of a hierarchical Chinese Restaurant Process. Each customer corresponds to a count in the model.,, Kneser- Ney 12), Pitman-Yor, 2- = 13) Pitman-Yor, 14),, CRP ( ) 15),, 1, 2 Prediction Suffix Tree () 25), she will sing, ɛ, ɛ will she, she will, p(sing she will), (ɛ she will),,, Prediction Suffix Tree Suffix Tree HPYLM,,, 1 1 (CRP, =, ) 1, 2 n, 1,, 1-, 2-,,
3 Vol. 0 No. 0 Pitman-Yor n-gram 3,,,, ( ), she will like, he will like, will, p(like she will) 3-gram p(like she will) ( 0), 2- gram p(like will), like, 2-gram 1-gram,, HPYLM, h = w t n w t 1 w, p(w h) = c(w h) d t hw θ+c(h), + θ+d t h θ+c(h) p(w h ) (1) c(w h) h w, c(h)= w c(w h), h = w t n+1 w t 1 1 t hw w p(w h), p(w h ), w t hw = t h d, θ Pitman-Yor, Suffix Tree,, 10), ( ),,, MCMC 16),, 4 (1), c(w h) 1, t hw 1, Kneser-Ney, Kneser-Ney 1 qk 1 qj k 1 qi j 2 Suffix Tree (1 q i ) i Fig. 2 A stochastic process to add a customer to the suffix tree. (1 q i ) means a penetration probability of node i.,, 1, (n 1), Suffix Tree,, 2, n, 3. Pitman-Yor 3.1 Suffix Tree, Suffix Tree i, q i (, (1 q i) i ), q i [0, 1], i q i Be(α, β) (2), Be(α, β) = Γ(α+β)/(Γ(α)+Γ(β)) q α 1 (1 q) β 1 q, E[q] = α/(α+β) 3, (α, β) h=w t w t 2 w t 1 w t, Suffix Tree ɛ, (0.5,0.5): Jeffrey s (1,1): Uniform (4,1) (2,4) (1), 1-gram, 0-gram ( 1/V ) Fig Examples of Beta distributions with different hyperparameters.
4 ɛ w t 1 w t 2,, (n 1), q i q 0, q 1, q 2,..., l 1 p(n=l h) = q l (1 q i ) (3) i=0 l, ( 2),, q i (, ) n,, q i ( ) (3), n n,, 3.2 n-gram, Suffix Tree q i, q i,, w = w 1 w 2 w T, n n = n 1 n 2 n T,, w p(w) = p(w, n, s) (4) n s = s 1 s 2 s T, s t, w t 10) n, s,, HPYLM, w t n n t, n t p(n t w, n t, s t ) (5) (s t, ) n t, s t, n, s n t, s t (5) n t, () Suffix Tree n t, i a i, b i s, q i, E[q i] = a i+α a i+b i+α+β, (5) (6) p(n t w, n t, s t ) p(w t w t, n, s t ) p(n t w t, n t, s t ) (7), n n t w t n, (1), n t, (3) (6), p(n t = l w t, n t, s t ) l 1 a l +α b i+β = a l +b l +α+β a i+b i+α+β i=0 (8), n, Pitman- Yor (VPYLM) ( 4) HPYLM, w t Suffix Tree order[t],, a i b i 1 n, a i b i 1, order[t] order[t], (n 1), n HPYLM (7) n t,, n max, n t (8) ɛ, n n,, n - 3.3, n, n, h = w w 2 w 1 p(w h) = p(w, n h) (9) n = p(w n, h)p(n h) (10) n (2)(3), Suffix Tree, Beta two-parameter process Stick-breaking process 15),, / (s t )
5 Vol. 0 No. 0 Pitman-Yor n-gram 5 For j = 1 N { For t = randperm(1 T ) { } if (j >1) then remove customer (order[t], w t, w 1:t 1 ); order[t] = add customer (w t, w 1:t 1); } 4 VPYLM Fig. 4 The Gibbs sampler of VPYLM. h n, (8) n HPYLM, (1), Kneser-Ney, VPYLM, HPYLM n n = 0, 1,, (10), w n, s N Gibbs 3.4, Suffix Tree, 5), 18) O(log n),, Power Law, 5, Suffix Tree n 4. n-gram n,, 4.1 Latent Dirichlet Allocation (LDA), LDA 19) LDA,,, Gibbs, 17), CRP, struct ngram { /* n-gram node */ ngram *parent; /* parent node */ splay *children; /* = (ngram **) */ splay *words; /* = (restaurant **) */ int stop; /* a h */ int through; /* b h */ int ncounts; /* c(h) */ int ntables; /* t h */ int id; /* word id */ }; 5 n Fig. 5 Data structure of a n-gram node. θ d = (θ 1, θ 2,..., θ M ), θ θ Dir(γ) = Γ(Mγ) M θ γ 1 Γ(γ) M t (11) t=1, γ, d = w 1 w 2 w N, ( 1 ) θ d Dir(γ) ( 2 ) For n = 1... N, a. t Mult(θ d ) b. w n p(w t), p(w t) 19), LDA,, VPYLM, VPYLM,, LDA, n, n, 4.2, VPYLM, ( Pitman-Yor ) LDA θ d, n, Pitman-Yor n, n h,, w t hw
6 6 2007,,,, VPYLM LDA (VPYLDA), 6 draw topic, w t k p(k w t, w 1:t 1 ) p(w t w 1:t 1, k) p(t θ d ) (12) p(w t w 1:t 1, k) (n d t,k +γ) (13) k, n order[t] ( table[t] Suffix Tree, ), topic[t], VPYLM, p(w h, k) k VPYLM (10), n d t,k d k (w t ) VPYLM on Text Corpora , 21) 22) NAB (North American Business News) WSJ 409,246, 10,007,108, 10,000,, 10 For j = 1 N { For t = randperm(1 T ) { d = document(w t); k = topic[t]; if (j >1) then remove customer (table[t]); k = draw topic (w t,w 1:t 1,d); table[t] = add customer (w t,w 1:t 1,k); topic[t] = k; } } 6 VPYLDA Fig. 6 The Gibbs sampler of VPYLDA., Sinica 20), (n = ) 1 N/A Table 1 Test-set perplexities with the number of nodes in the model in English and Japanese corpora. N/A means a memory overflow. (a) (NAB ) n HPYLM VPYLM Nodes(H) Nodes(V) ,417K 1,344K ,699K 7,466K 7 N/A N/A 10,182K 8 N/A N/A 10,434K ,392K (b) () n HPYLM VPYLM Nodes(H) Nodes(V) ,341K 1,243K ,140K 6,705K 7 N/A N/A 9,134K 8 N/A N/A 9,490K ,561K 26, ( 150 ) 520,000, 10,079,410, 10,000 MeCab 23), 10, 32, , HPYLM, VPYLM N =200, 50 Suffix Tree (α, β) = (4, 1), (1, 1) (α, β), 6 Xeon 3.2GHz, 4GB Linux , HPYLM VPYLM n n, n max, VPYLM HPYLM 40 %, HPYLM n = 7, 8 n 1, Modified Kneser-Ney SRILM 24), n = 3, 5, 7, , , , , HPYLM VPYLM
7 Vol. 0 No. 0 Pitman-Yor n-gram 7,,, () n, VPYLM HPYLM 20%, VPYLM n, 7, 8- VPYLM n,,, n = 3, Suffix Tree, (9) p(w, n h) h = w w 2 w 1 n w n w 1 w,, w n w 1 w, america the united states of, the united states of america, (, ) w, w 1 w 2 w n w, w n w 1w, Suffix Tree, 8, 8- VPYLM, 7 # of occurrences n 8 VPYLM n n = 0, n = 1,... (1), n Fig. 7 Global n-gram context length distribution inferred by a 8-gram VPYLM. n = 0 is a unigram, n = 1 is a bigram, and so on. Each n-gram is further interpolated by lower-order n-grams recursively through the equation (1). p(w, n) Stochastic phrases in the suffix tree primary new issues ˆ at the same time american telephone & is a unit of to # % from # % from # % in # to # % in a number of in new york stock exchange composite trading a merrill lynch & co mechanism of the european monetary increase as a result of tiffany & co. : 8 Fig. 8 NAB 8 VPYLM Suffix Tree, Stochastic phrases computed from the suffix tree of 8-gram VPYLM that is trained on the NAB corpus. 5.3 VPYLDA on 20news n LDA(VPYLDA), 20news ), 20 4,000, 400 NAB, 801,580, 10,477 N = 250, h = w 1 w n 1 w n, p(w n h) = p(w n h, t) p(t h) (n = 1... N) t (14) p(w n h, t) t n (10), p(t h) h t,, LDA EM 19) , M VPYLDA M =1, VPYLM,,,, 1 CRP, t,,
8 8 2007, 1,,,, 6., Context Tree Weighting 27), Pereira 5),, n, Witten-Bell,,, Pitman-Yor n,,, PPM*, PPM*,, Witten-Bell,,,,, 5, Suffix Tree (α, β) = (4, 1),, (6) q i 2 20news VPYLDA Table 2 VPYLDA test-set perplexities on the 20news dataset. Model PPL VPYLDA (M = 5) (M = 10) (M = 20) VPYLM PPL α β VPYLM (α, β) Fig. 9 Relationship between the VPYLM hyperparameters (α, β) and test-set perplexities. 10 VPYLM, n = 5. Fig. 10 Random walk generation from the language model trained on Maihime. 28) Newton, 1M NAB, (0.85, 0.57), VPY 9, (α, β) (0.1 10) (0.1 10) β α,, 10 5-gram VPYLM,, n = 5, (8),,, (0.856), (0.803), (0.398), (0.199), 10, mixture of Gaussians mixture of flour,,
9 Vol.0 No.0 Pitman-Yor n-gram 9 7., n Pitman-Yor, n n Suffix Tree,, n,,, n,, Suffix Tree,,, Suffix Tree,, 29),,, 1) Shannon, C. E.: A mathematical theory of communication, Bell System Technical Journal, Vol.27, pp , (1948). 2) NLP-2005 (2005). 3) Siu, M. and Ostendorf, M.: Variable n-grams and extensions for conversational speech language modeling, IEEE Trans. on Speech and Audio Processing, Vol.8, pp (2000). 4) Stolcke, A.: Entropy-based Pruning of Backoff Language Models, Proc. of DARPA Broadcast News Transcription and Understanding Workshop, pp (1998). 5) Pereira, F., Singer, Y. and Tishby, N.: Beyond Word N-grams, Proc. of the Third Workshop on Very Large Corpora, pp (1995). 6) Leonardi, F.G.: A generalization of the PST algorithm: modeling the sparse nature of protein sequences, Bioinformatics, Vol.22, No.11, pp (2006). 7) Buhlmann, P. and Wyner, A. J.: Variable Length Markov Chains, The Annals of Statistics, Vol.27, No.2, pp (1999). 8) Kawabata, T. and Tamoto, M.: Back-off Method for N-gram Smoothing based on Binomial Posteriori Distribution, ICASSP-96, Vol.I, pp (1996). 9) Cowans, P.: Probabilistic Document Modelling, PhD Thesis, University of Cambridge (2006). pjc51/thesis/index.html. 10) Teh, Y. W.: A Bayesian Interpretation of Interpolated Kneser-Ney, Technical Report TRA2/06, School of Computing, NUS (2006). 11) Teh, Y.W.: A Hierarchical Bayesian Language Model based on Pitman-Yor Processes, Proc. of COLING/ACL 2006, pp (2006). 12) Kneser, R. and Ney, H.: Improved backing-off for m-gram language modeling, Proceedings of ICASSP, Vol.1, pp (1995). 13) Pitman, J. and Yor, M.: The Two-Parameter Poisson-Dirichlet Distribution Derived from a Stable Subordinator, Annals of Probability, Vol.25, No.2, pp (1997). 14) Teh, Y.W., Jordan, M.I., Beal, M.J. and Blei, D.M.: Hierarchical Dirichlet Processes, Technical Report 653, Department of Statistics, University of California at Berkeley (2004). 15) Ghahramani, Z.: Non-parametric Bayesian Methods, UAI 2005 Tutorial (2005). uai05tutorial-b.pdf. 16) Gilks, W.R., Richardson, S. and Spiegelhalter, D.J.: Markov Chain Monte Carlo in Practice, Chapman & Hall / CRC (1996). 17) Daumé III, H.: Fast search for Dirichlet process mixture models, AISTATS 2007 (2007). 18) Sleator, D. and Tarjan, R.: Self-Adjusting Binary Search Trees, JACM, Vol. 32, No. 3, pp (1985). 19) Blei, D.M., Ng, A.Y. and Jordan, M.I.: Latent Dirichlet Allocation, Journal of Machine Learning Research, Vol.3, pp (2003). 20) Huang, C.-R. and Chen, K.-j.: A Chinese Corpus for Linguistics Research, Proc. of COLING 1992, pp (1992). 21) Chen, S. F. and Goodman, J.: An Empirical Study of Smoothing Techniques for Language Modeling, Proc. of ACL 1996, pp.310
10 (1996). 22) Goodman, J.T.: A Bit of Progress in Language Modeling, Extended Version, Technical Report MSR TR , Microsoft Research (2001). 23) Kudo, T.: MeCab: Yet Another Part-of- Speech and Morphological Analyzer. 24) Stolcke, A.: SRILM An Extensible Language Modeling Toolkit, Proc. of ICSLP, Vol.2, pp (2002). 25) Ron, D., Singer, Y. and Tishby, N.: The Power of Amnesia, Advances in Neural Information Processing Systems, Vol.6, pp (1994). 26) Lang, K.: Newsweeder: Learning to filter netnews, Proceedings of the Twelfth International Conference on Machine Learning, pp (1995). 27) Willems, F., Shtarkov, Y. and Tjalkens, T.: The Context-Tree Weighting Method: Basic Properties, IEEE Trans. on Information Theory, Vol.41, pp (1995). 28) Minka, T. P.: Estimating a Dirichlet distribution (2000). minka/papers/dirichlet/. 29) Pitman, J.: Combinatorial Stochastic Processes, Technical Report 621, Department of Statistics, University of California, Berkeley (2002). (??? ) (??? ) ( ) 2003 ATR /2007, NTT, ,ATR. NiCT,, ATR-Langue., e. IEICE, NLP, ASJ, ACL, IEEE, ACM/TSLP Associate Editor.
A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis
1 1 n n n n n n A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis Kazuyoshi Yoshii 1 and Masataka Goto 1 This paper presents a novel nonparametric Bayesian n-gram model as a statistical
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)
1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 1. [11], [15] 1 Nara Institute of Science and Technology a) akabe.koichi.zx8@is.naist.jp b) neubig@is.naist.jp c) ssakti@is.naist.jp d) tomoki@is.naist.jp
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) 2.3. 2.2 Jiang [6] (word lattice reranking)
1,a) 1 2 10 1. [6] [1], [6], [8], [10], [11] 2 n n+1 C 2 O(n 2 ) 1 153-8505 4-6-1 a) kaji@tkl.iis.u-tokyo.ac.jp [10] [19], [23] [6] [6] (3 ) 10 (1) (2) 3 c 2012 Information Processing Society of Japan
Schedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;
ISSN1000-0054 CN11-2223/N ( ) 2014 54 12 JTsinghuaUniv(Sci& Technol), 2014,Vol.54, No.12 4/20 1529-1533,, (,, (), 100084) [1-2] :,,,,,,,, :, 0.3~ [3] 0.8BLEU,, : ; ; [4], ; :TP391.2 :A, :1000-0054(2014)12-1529-05,
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Study of urban housing development projects: The general planning of Alexandria City
Paper published at Alexandria Engineering Journal, vol, No, July, Study of urban housing development projects: The general planning of Alexandria City Hisham El Shimy Architecture Department, Faculty of
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS
Pa J Statist 2009 Vol 25(2), 135-140 ON NEGTIVE MOMENTS OF CERTIN DISCRETE DISTRIBUTIONS Masood nwar 1 and Munir hmad 2 1 Department of Maematics, COMSTS Institute of Information Technology, Islamabad,
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks
P2P 1,a) 1 1 1 P2P P2P P2P P2P A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks NARISHIGE Yuki 1,a) ABE Kota 1 ISHIBASHI Hayato 1 MATSUURA Toshio 1
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
SocialDict. A reading support tool with prediction capability and its extension to readability measurement
SocialDict 1 2 2 2 Web SocialDict A reading support tool with prediction capability and its extension to readability measurement Yo Ehara, 1 Takashi Ninomiya, 2 Nobuyuki Shimizu 2 and Hiroshi Nakagawa
Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment
18 2 JOURNAL OF CHINESE INFORMATION PROCESSING Vol118 No12 :1003-0077 (2004) 02-0073 - 07 Ξ 1,2, 1, 1 (11, 215006 ;21, 210000) : ISO/ IEC 10646,,,,,, 9919 % : ; ; ; ; : TP39111 :A Research of Han Character
Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30
476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1
2008 10 Chinese Journal of Applied Probability and Statistics Vol.24 No.5 Oct. 2008 (,, 1000871;,, 100044) (,, 100875) (,, 100871). EM, Wishart Jeffery.,,,,. : :,,, EM, Wishart. O212.7. 1.,. 1894, Pearson.
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.
c 1. SNS Social Networking Service [3,5,12] 3 1 CM 190 8562 10 3 E-mail: eiji.motohashi@gmail.com 141 6009 2 1 1 190 8562 10 3 12.5.3 12.7.24 Yahoo 2 1 2 3 1 1 2 574 32 Copyright c by ORSJ. Unauthorized
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. y y yy y 1565 0871 2 1 yy 525 8577 1 1 1 E-mail: yfmakihara,shiraig@cv.mech.eng.osaka-u.ac.jp, yyshimada@ci.ritsumei.ac.jp
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Διαχείριση Web Περιεχομένου & Γλωσσικά Εργαλεία
Διαχείριση Web Περιεχομένου & Γλωσσικά Εργαλεία Μάθημα7 ο N-grams Σοφία Στάμου Άκ.Έτος 2008-09 Acknowledgement: McCoy, http://www.cis.udel.edu/~mccoy/courses/cisc882.03f/lectures/lect5-ngrams.ppt Μια μική
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
Bayesian Discriminant Feature Selection
1,a) 2 1... DNA. Lasso. Bayesian Discriminant Feature Selection Tanaka Yusuke 1,a) Ueda Naonori 2 Tanaka Toshiyuki 1 Abstract: Focusing on categorical data, we propose a Bayesian feature selection method
Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής κρίσης και τα προσφερόμενα προϊόντα του στην κοινωνία.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡMΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ & ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Γεωργία Χ. Κιάκου ΑΜ : 718 Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΙΛΟΛΟΓΙΑΣ Π.Μ.Σ: «Σύγχρονες Προσεγγίσεις στη γλώσσα και στα κείμενα» ΚΑΤΕΥΘΥΝΣΗ ΓΛΩΣΣΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ Το φωνηεντικό
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems
2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems Multiple User Interfaces MobileSoft'16, Multi-User Experience (MUX) S1: Insourcing S2: Outsourcing S3: Responsive design
Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΟΡΦΟΛΟΓΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΣΥΝΘΕΣΗΣ ΥΠΟ ΤΟ ΠΡΙΣΜΑ ΤΩΝ ΑΠΣ: ΜΙΑ ΚΡΙΤΙΚΗ ΘΕΩΡΗΣΗ
Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΟΡΦΟΛΟΓΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΣΥΝΘΕΣΗΣ ΥΠΟ ΤΟ ΠΡΙΣΜΑ ΤΩΝ ΑΠΣ: ΜΙΑ ΚΡΙΤΙΚΗ ΘΕΩΡΗΣΗ Κωνσταντίνα Ειρήνη ΚΟΥΦΟΥ, Υποψήφια Διδάκτωρ Π.Τ.Π.Ε. Κρήτης, εκπαιδευτικός Δευτεροβάθμιας
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΙΤΑΛΙΚΗΣ ΦΙΛΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΚΥΚΛΟΣ ΣΠΟΥΔΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΛΟΓΟΤΕΧΝΙΑ-ΠΟΛΙΤΙΣΜΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΦΙΛΟΣΟΦΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΙΤΑΛΙΚΗΣ ΦΙΛΟΛΟΓΙΑΣ ΜΕΤΑΠΤΥΧΙΑΚΟΣ ΚΥΚΛΟΣ ΣΠΟΥΔΩΝ ΚΑΤΕΥΘΥΝΣΗ: ΛΟΓΟΤΕΧΝΙΑ-ΠΟΛΙΤΙΣΜΟΣ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Η διερεύνηση των αξιών στα σχολικά
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΑΤΡΙΒΗ ΤΟΥ ΕΥΘΥΜΙΟΥ ΘΕΜΕΛΗ ΤΙΤΛΟΣ Ανάλυση
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
IMES DISCUSSION PAPER SERIES
IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
Ψηφιακό Μουσείο Ελληνικής Προφορικής Ιστορίας: πώς ένας βιωματικός θησαυρός γίνεται ερευνητικό και εκπαιδευτικό εργαλείο στα χέρια μαθητών
Μ. Τζακώστα, Α. Σφακιανάκη & Α. Πατσιάς Ψηφιακό Μουσείο Ελληνικής Προφορικής Ιστορίας: πώς ένας βιωματικός θησαυρός γίνεται ερευνητικό και εκπαιδευτικό εργαλείο στα χέρια μαθητών Abstract In this paper
ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΝ. ΜΑΚΕΔΟΝΙΑΣ ΚΑΙ ΘΡΑΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A
Test Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining
1,a) 1,b) J-POP 100 The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining Shinohara Toru 1,a) Numao Masayuki 1,b) Abstract: Chord is an important element of music
Βιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος
Βιογραφικό Σημείωμα (τελευταία ενημέρωση 20 Ιουλίου 2015) Προσωπικές Πληροφορίες Όνομα Δημήτρης Φουσκάκης Ημερομηνία γέννησης Τόπος γέννησης Οικογενειακή κατάσταση 14 Ιουλίου 1973 Αθήνα Έγγαμος Εθνικότητα
Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,
DEIM Forum 2014 A5-2 Twitter 565 0871 1 5 E-mail: {shirakawa.masumi,hara,nishio}@ist.osaka-u.ac.p 9 24 Twitter,,, Wikipedia, Explicit Semantic Analysis, 1. political leaning Twitter Cision 2013 1 90% 9
y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max
2006 2006 Workshop on Information-Based Induction Sciences (IBIS2006) Osaka, Japan, October 31- November 2, 2006. [ ] Introduction to statistical models for populational optimization Λ Shotaro Akaho Abstract:
Reading Order Detection for Text Layout Excluded by Image
19 5 JOURNAL OF CHINESE INFORMATION PROCESSING Vol119 No15 :1003-0077 - (2005) 05-0067 - 09 1, 1, 2 (11, 100871 ; 21IBM, 100027) :,,, PMRegion,, : ; ; ; ; :TP391112 :A Reading Order Detection for Text
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
Biostatistics for Health Sciences Review Sheet
Biostatistics for Health Sciences Review Sheet http://mathvault.ca June 1, 2017 Contents 1 Descriptive Statistics 2 1.1 Variables.............................................. 2 1.1.1 Qualitative........................................
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις επίσημες θέσεις των εξεταστών. i ΠΡΟΛΟΓΟΣ ΕΥΧΑΡΙΣΤΙΕΣ Η παρούσα
Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
Topic Modeling with Latent Dirichlet Allocation
Topic Modeling with Latent Dirichlet Allocation Vineet Mehta University of Massachusetts - Lowell Vineet Mehta (UML) Topic Modeling 1 / 34 Contents 1 Introduction 2 Preliminaries 3 Modeling Text with Latent
Η Διδακτική Ενότητα «Γνωρίζω τον Υπολογιστή», στα πλαίσια των Προγραμμάτων Σπουδών της Πληροφορικής: μια Μελέτη Περίπτωσης.
6 ο Πανελλήνιο Συνέδριο «Διδακτική της Πληροφορικής» Φλώρινα, 20-22 Απριλίου 2012 Η Διδακτική Ενότητα «Γνωρίζω τον Υπολογιστή», στα πλαίσια των Προγραμμάτων Σπουδών της Πληροφορικής: μια Μελέτη Περίπτωσης.
ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ
: : : NEA 2013 1 : : : (4507) :29-10-2013 2 Περιεχόμενα... 5 ABSTRACT... 6... 7 1:... 8 1.1 :... 8 1.2... 8 1.3... 9 1.4... 10 1.5... 11 1.5.1... 12 1.6... 13 1.6.1... 13 1.6.2 µ... 16 2:... 19 2.1 µ µ...
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ
ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Τομέας Περιβαλλοντικής Υδραυλικής και Γεωπεριβαλλοντικής Μηχανικής (III) Εργαστήριο Γεωπεριβαλλοντικής Μηχανικής TECHNICAL UNIVERSITY OF CRETE SCHOOL of
AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΙΔΙΚΕΥΣΗΣ ΠΡΟΣΤΑΣΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΒΙΩΣΙΜΗ ΑΝΑΠΤΥΞΗ ΔΙΕΡΕΥΝΗΣΗ ΤΩΝ ΠΙΕΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ
(String-to-Tree ) KJ [11] best 1-best 2. SMT 2. [9] Brockett [2] Mizumoto [10] Brockett [2] [10] [15] ê = argmax e P(e f ) = argmax e M m=1 λ
1,a) 1,b) 2 2 Shared Task 4 n-best 1-best 1. Web SNS Lang-8 *1 GIN- GER *2 2 HOO 2011 2012 [7], [8] CoNLL Shared Task 2013 [14] 2014 CoNLL Shared Task 1 Rozovskaya and Roth [16] Tajiri [19] Rozovskaya
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών
Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo
Bull. Earthq. Res. Inst. Univ. Tokyo Vol. 2.,**3 pp.,,3,.* * +, -. +, -. Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo Kunihiko Shimazaki *, Tsuyoshi Haraguchi, Takeo Ishibe +, -.
Simplex Crossover for Real-coded Genetic Algolithms
Technical Papers GA Simplex Crossover for Real-coded Genetic Algolithms 47 Takahide Higuchi Shigeyoshi Tsutsui Masayuki Yamamura Interdisciplinary Graduate school of Science and Engineering, Tokyo Institute
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΣΤΑ ΠΛΑΙΣΙΑ ΤΟΥ ΜΕΤΑΠΤΥΧΙΑΚΟΥ ΔΙΠΛΩΜΑΤΟΣ ΕΙΔΙΚΕΥΣΗΣ ΕΠΙΣΤΗΜΗ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ του Γεράσιμου Τουλιάτου
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE
Conjoint Conjoint The Problems of Price Attribute by Conjoint Analysis Akihiko SHIMAZAKI * Nobuyuki OTAKE +, Conjoint - Conjoint. / 0 PSM Price Sensitivity Measurement Conjoint 1 2 + Conjoint Luce and
Optimization Investment of Football Lottery Game Online Combinatorial Optimization
27 :26788 (27) 2926,2, 2, 3 (, 76 ;2, 749 ; 3, 64) :, ;,,, ;,, : ; ; ; ; ; : TB4 : A Optimization Investment of Football Lottery Game Online Combinatorial Optimization HU Mao2lin,2, XU Yin2feng 2, XU Wei2jun
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC
Μπεϋζιανή Στατιστική και MCMC Μέρος 2 ο : MCMC Δημήτρης Φουσκάκης, Επίκουρος Καθηγητής, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Τομέας Μαθηματικών, Τηλέφωνο: (210) 772-1702, Φαξ: (210) 772-1775.