Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
|
|
- Βηθεσδά Ἀθήνη Μπουκουβαλαίοι
- 6 χρόνια πριν
- Προβολές:
Transcript
1 1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, NTT, 3-1, a) nakamura@hil.t.u-tokyo.ac.jp b) kameoka@hil.t.u-tokyo.ac.jp CWT Fourier short-time Fourier transform, STFT 5 STFT [7] STFT STFT STFT STFT STFT STFT STFT Griffin [8] CWT Griffin STFT [8] Irino CWT [9] CWT CWT CWT CWT c 1959 Information Processing Society of Japan 1
2 CWT CWT 1 CWT CWT CWT CWT [10] CWT CWT CWT l [0, L 1] t [0, T 1] L s l := [s l,0, s l,1,, s l,t 1 ] C T s := [s 0, s 1,, s L 1 ] CLT s f = [ f 0, f 1,, f T 1 ] F, (F := {f C T ; t f t = 0}) CWT CWT W C LT T W := W 0 W 1.. W L 1 s = Wf (1) ψ l,0 ψ l,1 ψ l,t 1 ψ l,t 1 ψ l,0 ψ l,t 2, W l := (2).. ψ l,1 ψ l,2 ψ l,0 W l C T T CWT l CWT ψ l,t := ψ(t /a l )/a l a l t ψ( ) C CWT W W + f = W + s, W + := (W H W) 1 W H (3) H W + W + s = argmin s W f 2 2 (4) f F 2 l 2 (1) CWT T LT CWT 1 CWT W LT C LT CWT CWT CWT CWT CWT 0 LT = s WW + s (5) 0 LT LT W (5) s W STFT STFT [7]. 2.2 CWT CWT CWT 1 CWT CWT CWT CWT 2.3 CWT (5) Fourier discrete Fourier transform, DFT Ŵ = Ŵ 0 Ŵ 1.. Ŵ L 1 0 = ŝ ŴŴ + ŝ, (6), Ŵ l = F T W l F 1 T, Ŵ+ = (Ŵ H Ŵ) 1 Ŵ H (7) F T C T T DFT ˆ DFT W l F T FT 1 Ŵ l l k [0, T 1] c 1959 Information Processing Society of Japan 2
3 0 = ŝ l,k 1 C k l ˆψ l,k ˆψ l,kŝl,k (8) C k ( l l, ˆψ l,k ˆψ l,k 0) CWT (5) CWT (5) Morlet [3] auditory wavelet transform [6] CWT STFT STFT [7] CWT CWT CWT CWT a [0, ) LT CWT CWT ϕ [ π, π) LT CWT I(ϕ) 0 ϕ I(ϕ) := s(a, ϕ) WW + s(a, ϕ) 2 2, (9) s(a, ϕ) := a e jϕ 0 e jϕ 1. e jϕ LT 1 (10) s(a, ϕ) CWT I(ϕ) s(a, ϕ) I(ϕ) 0 s(a, ϕ) 3.2 I(ϕ) ϕ (9) 2 2 CWT CWT CWT (14) (15) ϕ [11] I(ϕ) I(ϕ) s I + (ϕ, s) I(ϕ) I + (ϕ, s) ϕ s I(ϕ) I(ϕ) I(ϕ) (4) s W I + (ϕ, s) I(ϕ) = min s(a, ϕ) W f 2 2 (11) f F = min s W s(a, ϕ) s 2 2 (12) s(a, ϕ) s 2 2 =: I+ (ϕ, s) (13) (13) s = WW + s(a, ϕ) I + (ϕ, s)/ ϕ = 0 LT s WW + s(a, ϕ), (14) ϕ s (15) [ π, π) LT (14) (15) s(a, ϕ) CWT CWT s(a, ϕ) s Irino [6] W STFT STFT [7] STFT CWT Lopes [9] c 1959 Information Processing Society of Japan 3
4 3 Fourier [3] (i) (ii) FFTŴ lˆf k [B, B+D 1] T D [2πB/D, 2πB/D + 2π] (ii) [0, 2π] DFT n := (B + D)/D n (ii) 4 [2πB/D, 2πn] FFT D CWT l B, D CWT 0 CWT CWT CWT CWT FFT (ii) 0 CWT 4 [10] CWT STFT CWT [10] 2.3 CWT 3 CWT Morlet [3] l { ˆψ l,k } k k [B, B + D 1] (0 B, 0 < D T) CWT k [B, B + D 1] (0 B, 0 < D T) { ˆψ l,k } k CWT l D 2 CWT CWT CWT CWT CWT f Fourier fast Fourier transform, FFT 2 (i) l 4.2 (i) (ii) K := 0 B 0 (D B 0 ) I B0 I D B0 0 (D B0 ) B 0 } {{ } (ii) [ ] 0D B I D 0 D (T D B) } {{ } (i) (16) B 0 := B (n 1)D I D D D 0 D B D B CWT CWT l š l C D K š l = F 1 D KŴ l F T f (17) CWT CWT 3 CWT CWT CWT CWT 4.3 T CWT CWT FFT FFT O(T log 2 T) CWT O(T log 2 T +LT log 2 T) CWT l D l T O(T log 2 T + L 1 l=0 D l log 2 D l ) Irino [6] CWT c 1959 Information Processing Society of Japan 4
5 Irino LT l D l : Irino [6] CWT ATR A [12] faf 115 mht 113 CWT FFT [3] Fourier ) (log ω)2 exp ( (ω > 0) ˆψ(ω) := 4σ 2 0 (ω 0) (18) ω σ σ cent Hz ±3σ Intel Xeon CPU E31245 (3.3 GHz) 32 GB RAM perceptual evaluation of speech quality (PESQ) [13] PESQ PESQ Irino 4.20 ± ± 0.1 *1. 5 Irino 100 Irino 15 s 10 s/iteration 0.1 s/iteration 5.2 2: RWC [14] khz *1 nakamura/ demo/fastcwt.html [s/iteration] Objective difference grade [s] [Irino1993] ([ Pσ, Pσ] (P = 1, 2, 3, 5)) Irino [6] Perceptual evaluation of audio quality Objective difference grade objective difference grades [Irino1993] [s] ([ Pσ, Pσ] (P = 1, 2, 3, 5)) Irino [6] Perceptual evaluation of audio quality objective difference grades 30 s 35 s CWT σ = 0.02 (i) ±Pσ (P = 1, 2, 3, 5) 500 Irino c 1959 Information Processing Society of Japan 5
6 8 Perceptual evaluation of speech quality [s] ([ Pσ, Pσ] (P = 1, 2, 3, 5)) Irino [6] Perceptual evaluation of speech quality 100 Intel Core i CPU (3.30 GHz) 8GB RAM perceptual evaluation of audio quality (PEAQ) [15] objective differential grade (ODG) 4 0 ODG ODG P = 3, 5 ODG *2 Irino P 3 Irino P 7 RWC-MDB-G-2001 No. 1 ODG ODG ATR [12] A fafsc110 7 s 8 P = 3 6. Irino [6] CWT [10] *2 c.f.) MPEG kbps ODG 3.68 ± 0.03 Irino 100 JSPS [1] [ ] Vol. 39, No. 6, pp (2009). [2] Schmidt, M. N. and Mørup, M.: Nonnegative matrix factor 2- D deconvolution for blind single channel source separation, Independent Component Analysis and Blind Signal Separation, Springer, pp (2006). [3] Kameoka, H.: Statistical Approach to Multipitch Analysis, PhD Thesis, The University of Tokyo (2007). [4] Muller, M., Ellis, D. P. W., Klapuri, A. and Richard, G.: Signal processing for music analysis, IEEE J. Sel. Topics. Signal Process., Vol. 5, No. 6, pp (2011). [5] de León, J. P., Beltrán, F. and Beltrán, J. R.: A complex wavelet based fundamental frequency estimator in singlechannel polyphonic signals, Proc. Digital Audio Effects (2013). [6] Irino, T. and Kawahara, H.: Signal reconstruction from modified auditory wavelet transform, IEEE Trans. Signal Process., Vol. 41, No. 12, pp (1993). [7] Le Roux, J., Kameoka, H., Ono, N. and Sagayama, S.: Fast Signal Reconstruction from Magnitude STFT Spectrogram Based on Spectrogram Consistency, Proc. Int. Conf. Digital Audio Effects, pp (2010). [8] Griffin, D. and Lim, J.: Signal estimation from modified short-time Fourier transform, IEEE Trans. Acoust., Speech, Signal Process., Vol. 32, No. 2, pp (1984). [9] Lopes, D. M. and White, P. R.: Signal reconstruction from the magnitude or phase of a generalised wavelet transform, Proc. Eur. Signal Process. Conf., pp (2000). [10] (2008) [11] Ortega, J. M. and Rheinboldt, W. C.: Iterative solution of nonlinear equations in several variables, No. 30 (2000). [12] Kurematsu, A., Takeda, K., Sagisaka, Y., Katagiri, S., Kuwabara, H. and Shikano, K.: ATR Japanese Speech Database as a Tool of Speech Recognition and Synthesis, Speech Commun., Vol. 9, No. 4, pp (1990). [13] ITU-T: Recommendation P.862, Perceptual Evaluation of Speech Quality (PESQ): An Objective Method for End-To- End Speech Quality Assessment of Narrow-Band Telephone Networks and Speech Codecs (2001). [14] Goto, M.: Development of the RWC Music Database, Proc. Int. Congress Acoust., pp. l (2004). [15] ITU-T: Recommendation BS , Perceptual Evaluation of Audio Quality (PEAQ): Method for Objective measurements of perceived audio quality (2001). c 1959 Information Processing Society of Japan 6
Non-negative Matrix Factorization, NMF [5] NMF. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1,2,b) NTT
1,a) 1,2,b) 1. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1 7-3-1 113-0033 2 NTT 3-1 243-0198 a) Tomohio Naamura@ipc.i.u-toyo.ac.jp b) ameoa@hil.t.u-toyo.ac.jp/ameoa.hiroazu@lab.ntt.co.jp
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4//,a) Vocoder (F) F F. PSOLA [] sinusoidal model [] phase vocoder Vocoder [3] (F) F 3 [4], [5], [6], [7], [8], [9] [], [], [], [3], [4] [5], [6] [7], [8], University
( ) (Harmonic-Temporal Clustering; HTC) [1], [2] ( ) ( ) [4] HTC. (Non-negative Matrix Factorization; NMF) [3] [5], [6] [7], [8]
1 1 1 1, Product of ExpertsPoE) 1. ) Harmonic-Temporal Clustering; HTC) [1], [] ) ) HTC Non-negative Matrix Factorization; NMF) [3] 1 Graduate School of Information Science and Technology, The University
SNR F0 [2], [3], [4] F0 F0 F0 F0 F0 TUSK F0 TUSK F0 6 TUSK 6 F0 2. F0 F0 [5] [6] [7] p[8] Cepstrum [9], [10] [11] [12] [13] F0 [14] F0 [15] DIO[16] [1
1,a) 2 F0 TUSK F0 F0 F0 F0 TUSK TUSK F0 Prototype of a framework for overviewing the performance of F0 estimators Morise Masanori 1,a) Kawahara Hideki 2 Abstract: This article represents a framework for
Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]
Query by Phrase: a 2 2 Query by Phrase QBP QBP GaP-NMF GaP-NMF GaP-NMF QBP. Music Information Retrieval MIR [ 2] [3 4]Query-by-Humming QBH MIDI [5 6] [7] Waseda University 2 National Institute of Advanced
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI Selective Amplifier of Periodic and Non-periodic Components in Concurrent Audio Signals with Spectral Control Envelopes Hirokazu Kameoka
Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters
Vol.21-SLP-83 No.9 21/1/29 1 Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters Takanobu Nishiura 1 We study on estimation, evaluation
VOCODER VOCODER Vocal
Vol.1-MUS-95 No.3 1/6/ VOCODER 1,a) 1,b) 1,c) 1,d) VOCODER VOCODER Vocal VOCODER Cross synthesis VOCODER which preserves linguistic information and characteristic timbre of musical instruments and animal
Spectrum Representation (5A) Young Won Lim 11/3/16
Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic
ITU-R BT.1908 (2012/01) !" # $ %& '( ) * +, - ( )
(2012/01)!" # $ %& '( ) * +, - 0 1 "'./ ( ) BT ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA RS S SA
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
1.8 Paul Mother Wavelet Real Part Imaginary Part Magnitude.6.4 Amplitude.2.2.4.6.8 1 8 6 4 2 2 4 6 8 1 t .8.6 Real Part of Three Scaled Wavelets a = 1 a = 5 a = 1 1.2 1 Imaginary Part of Three Scaled Wavelets
Parameter Estimation of Mixture Model of Multiple Instruments and Application to Musical Instrument Identification
Vol.009-MUS-81 No.13 009/7/30 1 1 1 1 10 81.6% Parameter Estimation of Mixture Model of Multiple Instruments and Application to Musical Instrument Identification KATSUTOSHI ITOYAMA, 1 MASATAKA GOTO, KAZUNORI
Acoustic Signal Adjustment by Considering Musical Expressive Intention Using a Performance Intension Function
1,a) 2 MOS Acoustic Signal Adjustment by Considering Musical Expressive Intention Using a Performance Intension Function Yuma Koizumi 1,a) Katunobu Itou 2 Abstract: We propose an estimation method for
Fundamentals of Signals, Systems and Filtering
Fundamentals of Signals, Systems and Filtering Brett Ninness c 2000-2005, Brett Ninness, School of Electrical Engineering and Computer Science The University of Newcastle, Australia. 2 c Brett Ninness
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Signal processing for handling singing voice texture
1 TANDEM-STRAIGHT Signal processing for handling singing voice texture Hideki Kawahara 1 Singers explore vocal expressions to the limit. Conventional speech processing algorithms, which were designed to
: TANDEM-STRAIGHT. Make singing voice tangible: TANDEM-STRAIGHT and temporally variable morphing as substrate. Hideki Kawahara 1 and Masanori Morise 2
Vol.1-MUS-86 No.6 1/7/8 1. : TANDEM-STRAIGHT 1 STRAIGHT TANDEM-STRAIGHT STRAIGHT TANDEM-STRAIGHT SNR 3 db Make singing voice tangible: TANDEM-STRAIGHT and temporally variable morphing as substrate Hideki
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 1η: Ψηφιακή Επεξεργασία Σήματος Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture 1: Discrete-Time
F0 Estimation of Melody and Bass Lines in Real-world Musical Audio Signals
99-MUS-31-16, Vol.99, No.68, August 1999. 31 16 goto@etl.go.jp CD EM F0 Estimation o Melody and Bass Lines in Real-world Musical Audio Signals Masataka Goto Electrotechnical Laboratory 1-1-4 Umezono, Tsukuba,
Sampling Basics (1B) Young Won Lim 9/21/13
Sampling Basics (1B) Copyright (c) 2009-2013 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any
BiCG CGS BiCGStab BiCG CGS 5),6) BiCGStab M Minimum esidual part CGS BiCGStab BiCGStab 2 PBiCG PCGS α β 3 BiCGStab PBiCGStab PBiCG 4 PBiCGStab 5 2. Bi
BiCGStab 1 1 2 3 1 4 2 BiCGStab PBiCGStab BiCG CGS CGS PBiCGStab BiCGStab M PBiCGStab An improvement in preconditioned algorithm of BiCGStab method Shoji Itoh, 1 aahiro Katagiri, 1 aao Saurai, 2 Mitsuyoshi
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Speech Recognition using Phase Information based on Long-Term Analysis
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. 441 8580 1 1 E-mail: {kyama,sueyoshi,nakagawa}@slp.cs.tut.ac.jp MFCC Liu 2 1 1 90% MFCC 20% Abstract Speech
1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models
HMM 1,a 1,b 3 Sakriani Sakti 1 Graham Neubig 1 1 Hidden Markov Model HMM HMM HMM HMM HMM A Study on HMM-Based Speech Synthesis Using Rich Context Models Shinnosuke Takamichi 1,a Toda Tomoki 1,b Shiga Yoshinori
ΣΧΟΛΗ Σχολή Τεχνολογικών Εφαρμογών ΤΜΗΜΑ Ηλεκτρονικών Μηχανικών Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5
ΣΧΟΛΗ Σχολή Τεχνολογικών Εφαρμογών ΤΜΗΜΑ Ηλεκτρονικών Μηχανικών Τ.Ε. ΕΠΙΠΕΔΟ ΣΠΟΥΔΩΝ Προπτυχιακό ΚΩΔΙΚΟΣ ΜΑΘΗΜΑΤΟΣ ΕΞΑΜΗΝΟ ΣΠΟΥΔΩΝ 5 ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ Ψηφιακή Επεξεργασία Σήματος ΑΥΤΟΤΕΛΕΙΣ ΔΙΔΑΚΤΙΚΕΣ ΔΡΑΣΤΗΡΙΟΤΗΤΕΣ
FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD
FX,a),b),c) Bailey Double-Double [] FMA FMA [6] FX FMA SIMD Single Instruction Multiple Data 5 4.5. [] Bailey SIMD SIMD 8bit FMA (SpMV Sparse matrix and vector product) FX. DD Bailey Double-Double a) em49@ns.kogakuin.ac.jp
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
2 ICA. (ICA, Independent Component Analysis) (PCA, Principal Compoenent Analysis) x(t) =(x 1 (t),...,x m (t)) T t =0, 1, 2,... PCA 2 ICA.
s T (ICA, Independent Component Analysis) (PCA, Principal Compoenent Analysis) x =(x,...,x m ) T t =,,,... PCA ICA m m n s x PCA x =As, () ICA ICA ICA Blind Source Separation A m n BSS s A x n n m n m
Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors
1 Av=λBv [a, b] subspace subspace B- subspace B- [a, b] B- Filter Diagonalization Method which Constructs an Approximation of Orthonormal Basis of the Invariant Subspace from the Filtered Vectors Hiroshi
μ μ μ s t j2 fct T () = a() t e π s t ka t e e j2π fct j2π fcτ0 R() = ( τ0) xt () = α 0 dl () pt ( lt) + wt () l wt () N 2 (0, σ ) Time-Delay Estimation Bias / T c 0.4 0.3 0.2 0.1 0-0.1-0.2-0.3 In-phase
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT -
ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER - Discrete Fourier Transform - DFT - Α. ΣΚΟΔΡΑΣ ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΙΙ (22Y603) ΕΝΟΤΗΤΑ 4 ΔΙΑΛΕΞΗ 1 ΔΙΑΦΑΝΕΙΑ 1 Διαφορετικοί Τύποι Μετασχηµατισµού Fourier Α. ΣΚΟΔΡΑΣ
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών. Σήματα διακριτού χρόνου
HMY 429: Εισαγωγή στην Επεξεργασία Ψηφιακών Σημάτων Διάλεξη 1: Εισαγωγή Διάλεξη 1: Εισαγωγή Σήματα διακριτού χρόνου Γενικές πληροφορίες Διδάσκων: Γεώργιος Μήτσης Γραφείο: 41 Πράσινο Άλσος Ώρες γραφείου:
Fundamentals of Signal Processing for Communications Systems
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE 606-8501 E-mail: kazunori@ikyoto-uacjp ZFMMSE Abstract Fundamentals of Signal Processing for Communications
Ηλεκτρονικοί Υπολογιστές IV
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ηλεκτρονικοί Υπολογιστές IV Εισαγωγή στα δυναμικά συστήματα Διδάσκων: Επίκουρος Καθηγητής Αθανάσιος Σταυρακούδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
1181 (real-timespeechdriven) 1 1 ( ) D FAP FAP (voiceactivationdetectionvad) D FaceGen 3- D XfaceEd MPEG-4 1 FAP 66 FAP ( ) FAP 84
ISSN1000-0054 CN11-2223/N ( ) 2011 51 9 JTsinghuaUniv(Sci& Tech) 2011Vol.51 No.9 5/33 1180-1186 ( 710129) [1-2] 2 [1] MPEG-4 3-D MOS MOS 3.42 3.50 TP391 1000-0054(2011)09-1180-07 A Real-timespeechdriventalkingavatar
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Δρ. ΣΩΤΗΡΙΟΣ Α. ΔΑΛΙΑΝΗΣ
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Δρ. ΣΩΤΗΡΙΟΣ Α. ΔΑΛΙΑΝΗΣ ΗΛΕΚΤΡΟΛΟΓΟΣ ΜΗΧΑΝΙΚΟΣ KAI ΜΗΧΑΝΙΚΟΣ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΔΑΚΤΩΡ ΨΗΦΙΑΚΗΣ ΕΠΕΞΕΡΓΑΣΙΑΣ ΣΗΜΑΤΩΝ ΚΑΙ ΔΥΝΑΜΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ Institute of Sound
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface Hiroya SAITO Kenji NAKAYAMA Akihiro HIRANO Graduate School of Natural Science and Technology,Kanazawa Univ. E-mail:
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
(hidden Markov model: HMM) FUNDAMENTALS OF SPEECH SYNTHESIS BASED ON HMM. Keiichi Tokuda. Department of Computer Science
HMM 466-8555 (hidden Markov model: HMM) HMM HMM HMM HMM FUNDAMENTALS OF SPEECH SYNTHESIS BASED ON HMM Keiichi Tokuda Department of Computer Science Nagoya Institute of Technology Gokiso-cho, Shouwa-ku,
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 5η: Ημιτονοειδής Ανάλυση και Τροποποίηση Φωνής Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture
ITU-R BT.2033 (2013/01) / 0) ( )
ITU-R BT. (/) & ' ( & " #$%! - ".,(UHF) ) * + (VHF) ( / ) ( ) BT ITU-R BT.8-9 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) ( ) () BO
GPU DD Double-Double 3 4 BLAS Basic Linear Algebra Subprograms [3] 2
GPU 4 1,a) 2,b) 1 GPU Tesla M2050 Double-Double DD 4 BiCGStab GPU 4 BiCGStab 1 1.0 2.2 4 GPU 4 1. IEEE754-2008[1] 128bit binary128 CG Conjugate Gradient [2] 1 1 2 a) mukunoki@hpcs.cs.tsukuba.ac.jp b) daisuke@cs.tsukuba.ac.jp
Εξάλειψη αντήχησης από ηχητικά σήματα με υποκειμενικά / ψυχοακουστικά κριτήρια
Εξάλειψη αντήχησης από ηχητικά σήματα με υποκειμενικά / ψυχοακουστικά κριτήρια Θωμάς Ζαρούχας Διπλ. Ηλ/γος Μηχανικός thozar@wcl.ee.upatras.gr Παναγιώτης Χατζηαντωνίου Δρ. Ηλ/γος Μηχανικός hagianto@wcl.ee.upatras.gr
ΚΑΝΟΝΙΣΜΟΣ ΕΚΠΟΝΗΣΗΣ ΕΡΓΑΣΙΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΠΕΞΕΡΓΑΣΙΑ ΨΗΦΙΑΚΟΥ ΣΗΜΑΤΟΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΥΛΙΚΟΥ»
Πρόγραμμα Μεταπτυχιακών Σπουδών «Τεχνολογίες και Συστήματα Ευρυζωνικών Εφαρμογών και Υπηρεσιών» ΚΑΝΟΝΙΣΜΟΣ ΕΚΠΟΝΗΣΗΣ ΕΡΓΑΣΙΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΠΕΞΕΡΓΑΣΙΑ ΨΗΦΙΑΚΟΥ ΣΗΜΑΤΟΣ ΚΑΙ ΣΧΕΔΙΑΣΜΟΣ ΥΛΙΚΟΥ» Ακαδημαϊκό
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)
1,a) 1,b) 2,c) 1,d) Gait motion descriptors 1. 12 1 Osaka University 2 Drexel University a) higashiyama@am.sanken.osaka-u.ac.jp b) makihara@am.sanken.osaka-u.ac.jp c) kon@drexel.edu d) yagi@am.sanken.osaka-u.ac.jp
! : ;, - "9 <5 =*<
ITU-R M.473- (00/0)! (TDMA/FDMA) ""# $ %!& ' " ( ) 34 --./ 0, (MSS) * * )! +, 56 78 89 : ;, - "9
Sinsy: HMM. Sinsy An HMM-based singing voice synthesis system which can realize your wish I want this person to sing my song
. Sinsy: HMM 2 (hidden Markov model; HMM) 2009 2 HMM : Sinsy Sinsy 70 Sinsy Sinsy An HMM-based singing voice synthesis system which can realize your wish I want this person to sing my song Keiichiro Oura,
Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
ITU-R SA (2010/01)! " # $% & '( ) * +,
(010/01)! " # $% & '( ) * +, SA ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R 1 1 http://www.itu.int/itu-r/go/patents/en. (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS BT F M P RA S RS SA SF SM SNG TF V
HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA
DEIM Forum 2010 D1-4 HOSVD 191-0065 6-6 E-mail: j.morigaki@gmail.com, katayama@tmu.ac.jp Lathauwer (HOSVD) (Tensor) HOSVD Savas HOSVD Sun HOSVD,, Higher Order Data Classification Method with Autocorrelation
Περιεχόµενα. ΕΠΛ 422: Συστήµατα Πολυµέσων. Μέθοδοι συµπίεσης ηχητικών. Βιβλιογραφία. Κωδικοποίηση µε βάση την αντίληψη.
Περιεχόµενα ΕΠΛ 422: Συστήµατα Πολυµέσων Συµπίεση Ήχου Μέθοδοι συµπίεσης ηχητικών σηµάτων DPCM Συµπίεση σηµάτων οµιλίας Κωδικοποίηση µε βάση την αντίληψη Χαρακτηριστικά και εφαρµογές Ψυχοακουστική (psychoacoustics)
University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing
University of Illinois at Urbana-Champaign ECE : Digital Signal Processing Chandra Radhakrishnan PROBLEM SET : SOLUTIONS Peter Kairouz Problem Solution:. ( 5 ) + (5 6 ) + ( ) cos(5 ) + 5cos( 6 ) + cos(
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect
NMF 1 1,a) 1 AED NMF DNN IEEE D-CASE 2012 20% DNN NMF 1. Computational Auditory Scene Analysis: CASA [1] [2] [3] [4] [5] Non-negative Matrxi Factorization (NMF) NMF 2. CASA IEEE 1 Dept. Computer Science
Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System
(MIRU2008) 2008 7 SIFT 572-8572 26-12 599-8531 1-1 E-mail: umemoto@ipc.osaka-pct.ac.jp, kise@cs.osakafu-u.ac.jp SIFT 1 ANN 3 1 SIFT 1 Speeding up the Detection of Scale-Space Extrema in SIFT Based on the
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
ΣΤΗΑ ΨΕΣ 2012-13 22/5/2013 2:27 µµ. Θυµηθείτε τον ορισµό του Περιοδικού Σήµατος ιακριτού Χρόνου: την ακολουθία σηµάτων: jk n N ( ) sagri@di.uoa.
ΣΤΗΑ ΨΕΣ -3 /5/3 :7 µµ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΣΗΜΑΤΩΝ ΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ ΣΕΙΡΕΣ FOYRIER ΠΕΡΙΟ ΙΚΩΝ ΙΑΚΡΙΤΩΝ ΣΕ ΧΡΟΝΟ ΣΗΜΑΤΩΝ (DISCRETE TIME FOURIER SERIES-DTFS) ΠΕΡΙΟ ΙΚΑ ΣΗΜΑΤΑ ΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ Θυµηθείτε
Analysis of prosodic features in native and non-native Japanese using generation process model of fundamental frequency contours
THE INSTITUTE O ELECTRONICS, INORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT O IEICE. 277 8562 5 1 5 113 3 7 3 1 6 817 17 8 E-mail: {hiran,wtgu,hirose,mine}@gavo.t.u-tokyo.ac.jp, goh@kawai.com
6.003: Signals and Systems. Modulation
6.003: Signals and Systems Modulation May 6, 200 Communications Systems Signals are not always well matched to the media through which we wish to transmit them. signal audio video internet applications
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις
Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις επίσημες θέσεις των εξεταστών. i ΠΡΟΛΟΓΟΣ ΕΥΧΑΡΙΣΤΙΕΣ Η παρούσα
Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices
No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by
Detection and Recognition of Traffic Signal Using Machine Learning
1 1 1 Detection and Recognition of Traffic Signal Using Machine Learning Akihiro Nakano, 1 Hiroshi Koyasu 1 and Hitoshi Maekawa 1 To improve road safety by assisting the driver, traffic signal recognition
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
Anomaly Detection with Neighborhood Preservation Principle
27 27 Workshop on Information-Based Induction Sciences (IBIS27) Tokyo, Japan, November 5-7, 27. Anomaly Detection with Neighborhood Preservation Principle Tsuyoshi Idé Abstract: We consider a task of anomaly
Higher-Order Correlation Analysis of Pitch Fluctuations in Sustained Normal Vowels by the Method of Surrogate Data
a) Higher-Order Correlation Analysis of Pitch Fluctuations in Sustained Normal Vowels by the Method of Surrogate Data Isao TOKUDA a), Takaya MIYANO, and Kazuyuki AIHARA 2 3 3 2 3 1. [1] [3] Department
Wavelet based matrix compression for boundary integral equations on complex geometries
1 Wavelet based matrix compression for boundary integral equations on complex geometries Ulf Kähler Chemnitz University of Technology Workshop on Fast Boundary Element Methods in Industrial Applications
Mining Syntactic Structures from Text Database
IBM {tku-kumtsu}@isist-nrjp korux@gsrikengojp yuutt@jpimom PrefixSpn : PrefixSpn Mining Syntti Strutures from Text Dtse Tku Kuo Koru Ymmoto Yut Tsuoi Yuji Mtsumoto Grute Shool of Informtion Siene Nr Institute
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Θωμά Σ. Ζαρούχα
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ του Θωμά Σ. Ζαρούχα Δρ. Ηλεκτρολόγο Μηχανικό και Τεχνολογίας Υπολογιστών Νοέμβριος 2010 ΠΕΡΙΕΧΟΜΕΝΑ 1. ΑΤΟΜΙΚΑ ΣΤΟΙΧΕΙΑ...3 2. ΕΚΠΑΙΔΕΥΣΗ...3 3. ΞΕΝΕΣ ΓΛΩΣΣΕΣ...3 4. ΑΔΕΙΕΣ ΑΣΚΗΣΕΩΣ
8 th Lecture. M.Sc. Bioinformatics and Neuroinformatics Brain signal recording and analysis
8 th Lecture M.Sc. Bioinformatics and Neuroinformatics Brain signal recording and analysis Εισαγωγή Για αναλυθεί ένα φυσικό σήμα, είναι απαραίτητο να στηριχθεί σε ένα μαθηματικό μοντέλο, δηλαδή να περιγράφει
An Efficient Calculation of Set Expansion using Zero-Suppressed Binary Decision Diagrams
22 27 2 SP-C 2012 2011 Short Paper ZDD An Eicient Calculation o Set Expansion using Zero-Suppressed Binary Decision Diagrams Masaaki Nishino Norihito Yasuda Toru Kobayashi NTT Cyber Solutions Laboratories,
ΗΜΥ Διακριτός Μετασχηματισμός Fourier
1 ΗΜΥ 480 5. Διακριτός Μετασχηματισμός Fourier ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Μετασχηματισμός Fourier MF: μιγαδικός αριθμός που δείχνει πώς: 1 συγκεκριμένες συχνότητες συμβάλλουν στο σήμα πραγματικό μέρος πώς
ITU-R P (2012/02) khz 150
(0/0) khz 0 P ii (IPR) (ITU-T/ITU-R/ISO/IEC) ITU-R http://www.itu.int/itu-r/go/patents/en http://www.itu.int/publ/r-rec/en BO BR BS BT F M P RA RS S SA SF SM SNG TF V ITU-R 0 ITU 0 (ITU) khz 0 (0-009-00-003-00-994-990)
n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. y y yy y 1565 0871 2 1 yy 525 8577 1 1 1 E-mail: yfmakihara,shiraig@cv.mech.eng.osaka-u.ac.jp, yyshimada@ci.ritsumei.ac.jp
HMY 799 1: Αναγνώριση Συστημάτων
HMY 799 : Αναγνώριση Συστημάτων Διάλεξη 5 Εκτίμηση φάσματος ισχύος Συνάφεια Παραδείγματα Στοχαστικά Διανύσματα Autoregressive model with exogenous inputs (ARX y( t + a y( t +... + a y( t n = bu( t +...
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 4η: Γραμμική Πρόβλεψη: Ανάλυση και Σύνθεση Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture
X g 1990 g PSRB
e-mail: shibata@provence.c.u-tokyo.ac.jp 2005 1. 40 % 1 4 1) 1 PSRB1913 16 30 2) 3) X g 1990 g 4) g g 2 g 2. 1990 2000 3) 10 1 Page 1 5) % 1 g g 3. 1 3 1 6) 3 S S S n m (1/a, b k /a) a b k 1 1 3 S n m,
Assignment 1 Solutions Complex Sinusoids
Assignment Solutions Complex Sinusoids ECE 223 Signals and Systems II Version. Spring 26. Eigenfunctions of LTI systems. Which of the following signals are eigenfunctions of LTI systems? a. x[n] =cos(
Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία. Φοιτητής: ΤΣΟΥΛΑΣ ΧΡΗΣΤΟΣ
Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τμήμα Ηλεκτρονικών Μηχανικών Τ.Ε. Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία Φοιτητής:
Evolution of Novel Studies on Thermofluid Dynamics with Combustion
MEMOIRS OF SHONAN INSTITUTE OF TECHNOLOGY Vol. 42, No. 1, 2008 * Evolution of Novel Studies on Thermofluid Dynamics with Combustion Hiroyuki SATO* This paper mentions the recent development of combustion
Company. Patras, Greece
Company Patras, Greece Accusonus is start-up, focusing on innovative digital audio technologies. Our offices are located at the Patras Innovation Hub, Patras, Greece.The company s mission is to offer advanced
«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
ITU-R BT ITU-R BT ( ) ITU-T J.61 (
ITU-R BT.439- ITU-R BT.439- (26-2). ( ( ( ITU-T J.6 ( ITU-T J.6 ( ( 2 2 2 3 ITU-R BT.439-2 4 3 4 K : 5. ITU-R BT.24 :. ITU-T J.6. : T u ( ) () (S + L = M) :A :B :C : D :E :F :G :H :J :K :L :M :S :Tsy :Tlb
2
>? LC? >? CMOS?, >> > > >> - >> ebrahimi_emyahoo.com, nasehum.ac.ir ? > ()? LC? >? > .> > CMOS? > >? >.> >??? > >? > > > >? >. >> >? 0/5 E? >.>> > >?? >.> > > > >>> >.>??.?
SVM. Research on ERPs feature extraction and classification
39 1 2011 2 Journal of Fuzhou University Natural Science Edition Vol 39 No 1 Feb 2011 DOI CNKI 35-1117 /N 20110121 1723 008 1000-2243 2011 01-0054 - 06 ERPs 350108 - ERPs SVM ERPs SVM 90% ERPs SVM TP391
[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
Orthogonalization Library with a Numerical Computation Policy Interface
Vol. 46 No. SIG 7(ACS 10) May 2005 DGKS PC 10 8 10 14 4.8 Orthogonalization Library with a Numerical Computation Policy Interface Ken Naono, Mitsuyoshi Igai and Hiroyuki Kidachi We propose an orthogonalization
Voice Conversion based on Non-negative Matrix Factorization with Segment Features in Noisy Environments
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. NMF 657 8501 1 1 657 8501 1 1 E-ail: {fujii,aihara}@e.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor