1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)
|
|
- Ξένα Δράκος
- 9 χρόνια πριν
- Προβολές:
Transcript
1 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 1. [11], [15] 1 Nara Institute of Science and Technology a) akabe.koichi.zx8@is.naist.jp b) neubig@is.naist.jp c) ssakti@is.naist.jp d) tomoki@is.naist.jp e) s-nakamura@is.naist.jp 1 n-gram 1-gram 2-gram the 61 (BOS) the 42, 47. (EOS) 41 and 43, and 32 of 42 of the 27 : 42 in the 21 1 n-gram n-gram n-gram n-best [16] n-gram n-gram L1 c 2012 Information Processing Society of Japan 1
2 2 n-best n-best n-best 1-best n-best 2. n-gram n-gram n-gram n-gram n-gram n-gram ( 1 ) n-gram ( 2 ) n-gram 1-best 1 ( 3 ) n-gram ( 4 ) n-gram n-gram n-gram Ja En(Ref) kyo-chan -lrb- city bus -rrb- En(MT) kyoto chan -lrb- kyoto city bus -rrb- Rules SYMP ( x0:sym SYMP ( NP ( NN ( ) NN ( ) ) x1:sym ) ) x0 kyoto city bus x1 Eval n-gram 3 n-gram (x) p(x, c = e) p(x, c = c) p(x) p( x, c = e) p( x, c = c) p( x) p(c = e) p(c = c) best E k C k n-gram n-gram R k Ek n-best R k EV ( BLEU+1[5]) EV n-gram 1-best 3.1 n-gram F k F E k C k C k n-gram x E k # k (x) e k (x) # k (x) x / C k e k (x) = 0 (otherwise) e k ϕ e (x) = k e k(x) ϕ e n-gram 3.2 n-gram n-gram x n-gram c 2012 Information Processing Society of Japan 2
3 PMI PMI [1] P MI(x) = log p(x, c = e) p(x) p(c = e) p 3 p(x) n-gram x p(c = e) n-gram p(x, c = e) x PMI S(x) = p(x, c = e) log p(x, c = e) p(x) p(c = e) (1) n-gram (1) S(x) 3.3 n-gram n-gram F k F E k C k n-gram E k e k (x) C k c k (x) ϕ e(x) = k e k (x) ϕ c = k c k (x) n-gram n-gram p(c = e w = x) = ϕ e(x) ϕ e(x) + ϕ c(x) 1 n-gram 1 MacKay [6] n-gram x (2) S(x) n-gram S(x) = ϕ e(x) + αp e ϕ e(x) + ϕ c(x) + α x P e = ϕ e(x) x ϕ e(x) + x ϕ c(x) (2) α n-gram [13] (3) P = x c {e,c} #(w=x,c) k=0 (k + αp (c)) #(w=x) k=0 (k + α) (3) (3) P α P α P 4. n-gram [16] n-gram F = {F 1,..., F K } n-best Ê = {Ê 1,..., Ê K } R = {R 1,..., R K } Ê k = {Êk,1, Êk,2,..., Êk,I} ϕ(êk,i) w ϕ(êk,i) w n-best E k w 4.1 w [2] Ek Êk ϕ(êk) ϕ(ek ) w Ek Êk 0 F N 4.2 L1 [14] [12] L1 w L1 w 1 = i w i 0 L1 (FOBOS) [3] FOBOS 4.3 : ( 1 ) ϕ s : n-best ( 2 ) n-gram ϕ n : n-gram n-gram ( 3 ) ϕ l : c 2012 Information Processing Society of Japan 3
4 3 KFTT Train 330k 5.91M 6.09M Dev k 26.8k Test k 28.5k Ja En(Ref) En(MT) Eval he was the 1st seii taishogun of the muromachi shogunate. he was the first seii taishogun of the muromachi bakufu -lrb- japanese feudal government headed by a shogun -rrb-. 2 n-gram 4.4 n-best 1-best 1-best Êk R k {Êk, R k } n-best ϕ s 1-best n-gram x n-gram (4) W (x) = #(x, state = error) #(x) (4) #(x, state = error) n-gram #(x) n-gram n-gram 5.1 (KFTT)[7] 3 Travatar [8] Forest-to-String Nile *1 Egret *2 MERT [9] BLEU[10] 3 4 *1 *2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) 2 n-best n-best 4.2 FOBOS L KFTT BLEU n-gram 1-gram 3-gram n-best BLEU+1 RIBES[4] 2 n-gram n-gram n-gram 1 1 n-gram n-gram 1 n-gram 2 bakufu -lrb- japanese japanese feudal government 1 2 n-gram bakufu -lrb- japanese feudal government 1 n-gram 5.2 n-gram n-gram c 2012 Information Processing Society of Japan 4
5 4 n-gram 3 3 oracle ref oracle ref oracle ref n-best ref n-best 3 n-best 2 n-best n-gram n-best n-best n-gram n-best 1-best n-best 1-best n-best n-gram 5.3 n-gram n-gram 5 1-best 5 n-gram dev test oracle ref oracle ref oracle ref n-best ref n-gram 4 n-gram n-best n-gram n-best n-gram n-gram 1-best 1-best n-gram n-gram 5.4 n-best n-gram BLEU RIBES 2 n-gram 6 BLEU RIBES BLEU RIBES c 2012 Information Processing Society of Japan 5
6 6 +BLEU +RIBES RIBES BLEU 6. n-gram n-best n-gram n-best recall n-best 3 [7] Neubig, G.: The Kyoto Free Translation Task, (2011). [8] Neubig, G.: Travatar: A Forest-to-String Machine Translation Engine based on Tree Transducers, Proc. ACL (2013). [9] Och, F. J.: Minimum Error Rate Training in Statistical Machine Translation, Proc. ACL (2003). [10] Papineni, K., Roukos, S., Ward, T. and Zhu, W.-J.: BLEU: a method for automatic evaluation of machine translation, Proc. ACL, pp (2002). [11] Popovic, M. and Ney, H.: Towards automatic error analysis of machine translation output, Computational Linguistics, pp (2011). [12] Roark, B., Saraclar, M. and Collins, M.: Discriminative n-gram language modeling, Computer Speech & Language, Vol. 21, No. 2, pp (2007). [13] Teh, Y. W., Jordan, M. I., Beal, M. J. and Blei, D. M.: Hierarchical Dirichlet processes, Journal of the American Statistical Association, Vol. 101, No. 476 (2006). [14] Tsuruoka, Y., Tsujii, J. and Ananiadou, S.: Stochastic Gradient Descent Training for L1-regularized Log-linear Models with Cumulative Penalty, Proc. ACL, pp (2009). [15] Vilar, D., Xu, J., D Haro, L. F. and Ney, H.: Error analysis of statistical machine translation output, Proc. LREC, pp (2006). [16] Neubig, G. Sakti, S. 20 (NLP2014) pp (2014). [1] Church, K. W. and Hank, P.: Word association norms, mutual information, and lexicography, Computational Linguistics, Vol. 10, pp (1990). [2] Collins, M.: Discriminative Training Methods for Hidden Markov Models: Theory and Experiments with Perceptron Algorithms, Proc. EMNLP, pp. 1 8 (2002). [3] Duchi, J. and Singer, Y.: Efficient Online and Batch Learning using Forward Backward Splitting, Journal of Machine Learning Research, Vol. 10 (2009). [4] Isozaki, H., Hirao, T., Duh, K., Sudoh, K. and Tsukada, H.: Automatic Evaluation of Translation Quality for Distant Language Pairs, Proc. EMNLP, pp (2010). [5] Lin, C.-Y. and Och, F. J.: Orange: a method for evaluating automatic evaluation metrics for machine translation, Proc. COLING, pp (2004). [6] Mackay, D. J. and Petoy, L. C. B.: A Hierarchical Dirichlet Language Model, Natural Language Engineering, Vol. 1 (1995). c 2012 Information Processing Society of Japan 6
(Statistical Machine Translation: SMT[1]) [2]
1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 2 1. (Statistical Machine Translation: SMT[1]) [2] [3] [4][5][6] 2 1 (a) 3 approach 1 Nara Institute of Science and Technology a) miura.akiba.lr9@is.naist.jp
(Statistical Machine Translation: SMT [1])
1,a) Graham Neubig 1,b) Michael Paul 2,c) 1,d) n-gram 1. (Statistical Machine Translation: SMT [1]) (Active Learning) [2][3][4][5][6][7] [2] 1 Nara Institute of Science and Technology 2 ATR-Trek a) miura.akiba.lr9@is.naist.jp
[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) 2.3. 2.2 Jiang [6] (word lattice reranking)
1,a) 1 2 10 1. [6] [1], [6], [8], [10], [11] 2 n n+1 C 2 O(n 2 ) 1 153-8505 4-6-1 a) kaji@tkl.iis.u-tokyo.ac.jp [10] [19], [23] [6] [6] (3 ) 10 (1) (2) 3 c 2012 Information Processing Society of Japan
1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;
ISSN1000-0054 CN11-2223/N ( ) 2014 54 12 JTsinghuaUniv(Sci& Technol), 2014,Vol.54, No.12 4/20 1529-1533,, (,, (), 100084) [1-2] :,,,,,,,, :, 0.3~ [3] 0.8BLEU,, : ; ; [4], ; :TP391.2 :A, :1000-0054(2014)12-1529-05,
(String-to-Tree ) KJ [11] best 1-best 2. SMT 2. [9] Brockett [2] Mizumoto [10] Brockett [2] [10] [15] ê = argmax e P(e f ) = argmax e M m=1 λ
1,a) 1,b) 2 2 Shared Task 4 n-best 1-best 1. Web SNS Lang-8 *1 GIN- GER *2 2 HOO 2011 2012 [7], [8] CoNLL Shared Task 2013 [14] 2014 CoNLL Shared Task 1 Rozovskaya and Roth [16] Tajiri [19] Rozovskaya
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
,.,,., [1], [3], [4], [5] [6]. [2]. ,,, Tree-to-String. 1,f) input 1 (Python) : if x % 5 == 0: output 2 (Comment): # y x 5
1,a) 2,b) 1,c) 1,d) 1,) 1,f) Tr-to-String 1.,.,,., [1], [2].,,,, 1.,,,. 1, 1, 1 Nara Institut of Scinc and Tchnology 2 Shinshu Univrsity a) oda.yusuk.on9@is.naist.jp b) dlihiros@gmail.com c) nubig@is.naist.jp
An Analysis of Problems in Grammatical Error Correction of ESL Writings Using a Large Learner Corpus of English
1,a) 1,b) 1,c) 2,d) 1,e) An Analysis of Problems in Grammatical Error Correction of ESL Writings Using a Large Learner Corpus of English Abstract: English as a Second Language (ESL) learners writings contain
1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models
HMM 1,a 1,b 3 Sakriani Sakti 1 Graham Neubig 1 1 Hidden Markov Model HMM HMM HMM HMM HMM A Study on HMM-Based Speech Synthesis Using Rich Context Models Shinnosuke Takamichi 1,a Toda Tomoki 1,b Shiga Yoshinori
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
SocialDict. A reading support tool with prediction capability and its extension to readability measurement
SocialDict 1 2 2 2 Web SocialDict A reading support tool with prediction capability and its extension to readability measurement Yo Ehara, 1 Takashi Ninomiya, 2 Nobuyuki Shimizu 2 and Hiroshi Nakagawa
Automatic extraction of bibliography with machine learning
Automatic extraction of bibliography with machine learning Takeshi ABEKAWA Hidetsugu NANBA Hiroya TAKAMURA Manabu OKUMURA Abstract In this paper, we propose an extraction method of bibliography using support
Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,
DEIM Forum 2014 A5-2 Twitter 565 0871 1 5 E-mail: {shirakawa.masumi,hara,nishio}@ist.osaka-u.ac.p 9 24 Twitter,,, Wikipedia, Explicit Semantic Analysis, 1. political leaning Twitter Cision 2013 1 90% 9
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity
i-vector 1 1 1 1 i-vector CSJ i-vector Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity Fukuchi Yusuke 1 Tawara Naohiro 1 Ogawa Tetsuji 1 Kobayashi
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ
ΚΑΤΑΡΤΙΣΗ ΜΗΤΡΩΟΥ ΕΣΩΤΕΡΙΚΩΝ & ΕΞΩΤΕΡΙΚΩΝ ΜΕΛΩΝ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε., ΣΤΕΦ/ΤΕΙ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ Γνωστικό Αντικείμενο: Computer Aided Design (CAD) Computer
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ. 2004 2009 Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ ΔΙΕΥΘΥΝΣΗ Ινστιτούτο Έρευνας και Τεχνολογίας Θεσσαλίας (ΙΕΤΕΘ) Εθνικό Κέντρο Έρευνας και Τεχνολογικής Ανάπτυξης (ΕΚΕΤΑ) Δημητριάδος 95 και Παύλου Μελά 38333 Βόλος
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
Discriminative Language Modeling Based on Risk Minimization Training
1,a) 1 1 1 2 Bayes Dscrmnatve Language Modelng Based on Rsk Mnmzaton Tranng Kobayash Ako 1,a) Oku Takahro 1 Fujta Yuya 1 Sato Shoe 1 Nakagawa Sech 2 Abstract: Ths paper descrbes dscrmnatve language models
Faruqui [7] WordNet [15] FrameNet [2] PPDB [8]
1,a) 1,b) 1,c) 2,d) 2,e) word2vec WordNet fine-tuning fine-tuning 1. [10] Faruqui [7] WordNet[15] fine-tuning Retrofitting Retrofitting WordNet[11] 1 2 a) taguchi-y2@asahi.com b) tamori-h@asahi.com c)
Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]
Re-Pair 1 1 Re-Pair Re-Pair Re-Pair Re-Pair 1. Larsson Moffat [1] Re-Pair Re-Pair (Re-Pair) ( ) (highly repetitive text) [2] Re-Pair [7] Re-Pair Re-Pair n O(n) O(n) 1 Hokkaido University, Graduate School
Αντώνης Βεντούρης. Επίκουρος Καθηγητής Διδακτικής των Γλωσσών Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης
Αντώνης Βεντούρης Επίκουρος Καθηγητής Διδακτικής των Γλωσσών Τμήμα Ιταλικής Γλώσσας και Φιλολογίας Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Δυσκολία κειμένων Δυσκολία ερωτημάτων (items) Ίση βαρύτητα πιστοποιητικών
The State of the Art and Difficulties in Automatic Chinese Word Segmentation
138 Vol. 17 No. 1 JOURNAL OF SYSTEM SIMULATION 1 2 1, ( 1 100080 2 100039) 1004-731X (2005) 01-0138-06 TP391 A The State of the Art and Difficulties in Automatic Chinese Word Segmentation ZHANG Chun-xia
Bayesian Variable Order n-gram Language Model based on Hierarchical Pitman-Yor Processes
Vol. 0 No. 0 2007 Pitman-Yor n-gram,, n-gram Pitman-Yor,, n-gram,,, n,,, Bayesian Variable Order n-gram Language Model based on Hierarchical Pitman-Yor Processes Daichi Mochihashi? and Eiichiro Sumita?
: Active Learning 2017/11/12
: Active Learning 2017/11/12 Contents 0.1 Introduction............................................ 2 0.2..................................... 2 0.2.1 Membership Query Synthesis..............................
IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He
CS Activity 1,a) 2 2 3 CS Computer Science Activity Activity Actvity Activity Dining Eight-Headed Dragon CS Unplugged Activity for Learning Scheduling Methods Hisao Fukuoka 1,a) Toru Watanabe 2 Makoto
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Γενικά στοιχεία Όνομα Επίθετο Θέση E-mail Πέτρος Μαραβελάκης Επίκουρος καθηγητής στο Πανεπιστήμιο Πειραιώς, Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων με αντικείμενο «Εφαρμογές Στατιστικής
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]
Query by Phrase: a 2 2 Query by Phrase QBP QBP GaP-NMF GaP-NMF GaP-NMF QBP. Music Information Retrieval MIR [ 2] [3 4]Query-by-Humming QBH MIDI [5 6] [7] Waseda University 2 National Institute of Advanced
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Vol.7 No (Mar. 2014) Latent Dirichlet Allocation LDA Twitter LDA
Twitter 1,a) 1 1 2013 8 26, 2013 9 27 Latent Dirichlet Allocation LDA Twitter LDA 1 1 LDA 1 1 1 1 Twitter-LDA Twitter-LDA Twitter-LDA Twitter 2 Twitter-LDA 1 2 Topic Tracking Model TTM Twitter Twitter
A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis
1 1 n n n n n n A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis Kazuyoshi Yoshii 1 and Masataka Goto 1 This paper presents a novel nonparametric Bayesian n-gram model as a statistical
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ
ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΤΜ. ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ 2018-2019 Επιβλέπουσα: Μπίμπη Ματίνα Ανάλυση της πλατφόρμας ανοιχτού κώδικα Home Assistant Το Home Assistant είναι μία πλατφόρμα ανοιχτού
Bayesian Discriminant Feature Selection
1,a) 2 1... DNA. Lasso. Bayesian Discriminant Feature Selection Tanaka Yusuke 1,a) Ueda Naonori 2 Tanaka Toshiyuki 1 Abstract: Focusing on categorical data, we propose a Bayesian feature selection method
ER-Tree (Extended R*-Tree)
1-9825/22/13(4)768-6 22 Journal of Software Vol13, No4 1, 1, 2, 1 1, 1 (, 2327) 2 (, 3127) E-mail xhzhou@ustceducn,,,,,,, 1, TP311 A,,,, Elias s Rivest,Cleary Arya Mount [1] O(2 d ) Arya Mount [1] Friedman,Bentley
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)
1,a) 2,b) 1,c) 3,d) Quantum-Inspired Evolutionary Algorithm 0-1 Search Performance Analysis According to Interpretation Methods for Dealing with Permutation on Integer-Type Gene-Coding Method based on
DEIM Forum 2014 A8-1, 606 8501 E-mail: {tsukuda,ohshima,kato,tanaka}@dl.kuis.kyoto-u.ac.jp 1 2,, 1. Google 1 Yahoo 2 Bing 3 Web Web BM25 [1] HITS [2] PageRank [3] Web 1 [4] 1http://www.google.com 2http://www.yahoo.com
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης «Γλωσσικά μοντέλα μορφολογικά περίπλοκων γλωσσών» Δημήτρης
GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU
GPGPU Grover 1, 2 1 3 4 Grover Grover OpenMP GPGPU Grover qubit OpenMP GPGPU, 1.47 qubit On Large Scale Simulation of Grover s Algorithm by Using GPGPU Hiroshi Shibata, 1, 2 Tomoya Suzuki, 1 Seiya Okubo
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΣΤΟΝ ΠΑΓΚΟΣΜΙΟ ΙΣΤΟ & ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ 19/2/213 1 ο ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ Αντικείμενο του Μαθήματος 2 Εφαρμογές και εργαλεία ΓλωσσικήςΤεχνολογίας με στόχο τη βελτίωση της πρωτογενούς
ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ - ΒΙΟΓΡΑΦΙΚΟ
ΚΟΝΤΟΚΩΣΤΑΣ ΔΗΜΗΤΡΙΟΣ - ΒΙΟΓΡΑΦΙΚΟ Διεύθυνση : Λυγαριά 42100 Τρίκαλα Τηλ. σταθ.: 24310-62059 Τηλ. κιν.: 6947-258841 Email: dkodokostas@gmail.com ΕΡΕΥΝΗΤΙΚΑ ΕΝΔΙΑΦΕΡΟΝΤΑ Γεωμετρικές Απεικονιστικές Μέθοδοι.
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Η Διαδραστική Τηλεδιάσκεψη στο Σύγχρονο Σχολείο: Πλαίσιο Διδακτικού Σχεδιασμού
Η Διαδραστική Τηλεδιάσκεψη στο Σύγχρονο Σχολείο: Πλαίσιο Διδακτικού Σχεδιασμού Παναγιώτης Αναστασιάδης Πανεπιστήμιο Κρήτης panas@ edc.uoc.gr ΠΕΡΙΛΗΨΗ Οι προηγμένες τεχνολογίες σύγχρονης μετάδοσης και ιδιαίτερα
ΠΟΛΥΤΙΜΟ. Ερευνητικό έργο. της Ε. Γαλιώτου*
7 Ερευνητικό έργο ΠΟΛΥΤΙΜΟ «της Ε. Γαλιώτου* Σύστημα Επεξεργασίας, Δ ιαχείρισης και Παροχής Πρόσβασης στο Π εριεχόμενο Πολύτιμων Βιβλίων και Χειρογράφων της Ιεράς Μονής Ε υαγγελισμού της Θεοτόκου Σκιάθου.
ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»
ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΑΝΘΡΩΠΙΣΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΠΡΟΣΧΟΛΙΚΗΣ ΑΓΩΓΗΣ ΚΑΙ ΤΟΥ ΕΚΠΑΙ ΕΥΤΙΚΟΥ ΣΧΕ ΙΑΣΜΟΥ «ΠΑΙ ΙΚΟ ΒΙΒΛΙΟ ΚΑΙ ΠΑΙ ΑΓΩΓΙΚΟ ΥΛΙΚΟ» ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που εκπονήθηκε για τη
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΕΠΩΝΥΜΟ: ΡΟΜΠΟΛΗΣ ΟΝΟΜΑ: ΛΕΩΝΙΔΑΣ ΟΝΟΜΑ ΠΑΤΡΟΣ: ΣΑΒΒΑΣ ΧΡΟΝΟΛΟΓΙΑ ΓΕΝΝΗΣΗΣ: 16/1/1977 ΤΟΠΟΣ ΓΕΝΝΗΣΗΣ: ΑΘΗΝΑ ΔΙΕΥΘΥΝΣΗ ΚΑΤΟΙΚΙΑΣ: ΟΙΚΟΝΟΜΟΥ 29, 16122, ΑΘΗΝΑ ΔΙΕΥΘΥΝΣΗ
Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)
( ) 1 ( ) : : (Differential Evolution, DE) (Particle Swarm Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] 2 2.1 (P) (P ) minimize f(x) subject to g j (x) 0, j = 1,..., q h j (x) = 0, j
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ
Ε Λ Λ Η Ν Ι Κ Η Δ Η Μ Ο Κ Ρ Α Τ Ι Α ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΑΤΗΣΙΩΝ 76 104 34 ΑΘΗΝΑ ΤΗΛ. 2108203111 FAX: 2108230488 URL: http://www.statathens.aueb.gr ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΣ ΠΛΗΡΟΦΟΡΙΑΣ
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Probabilistic Approach to Robust Optimization
Probabilistic Approach to Robust Optimization Akiko Takeda Department of Mathematical & Computing Sciences Graduate School of Information Science and Engineering Tokyo Institute of Technology Tokyo 52-8552,
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
την τιμή της μέσης τιμής, μ, ή της διασποράς, σ, ενός πληθυσμού και σε στατιστικούς ελέγχους υποθέσεων για τη σύγκριση των μέσων τιμών, μ
Ανάλυση Διασποράς Ανάλυση Διασποράς (Analysis of Variance, ANOVA) είναι μέθοδος στατιστικού ελέγχου υποθέσεων που αναφέρονται σε περισσότερους από δύο πληθυσμούς. Στην προηγούμενη ενότητα αναφερθήκαμε
The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining
1,a) 1,b) J-POP 100 The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining Shinohara Toru 1,a) Numao Masayuki 1,b) Abstract: Chord is an important element of music
Βιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος
Βιογραφικό Σημείωμα (τελευταία ενημέρωση 20 Ιουλίου 2015) Προσωπικές Πληροφορίες Όνομα Δημήτρης Φουσκάκης Ημερομηνία γέννησης Τόπος γέννησης Οικογενειακή κατάσταση 14 Ιουλίου 1973 Αθήνα Έγγαμος Εθνικότητα
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Δομζσ επιλογήσ ςτο SCRATCH
Δομζσ επιλογήσ ςτο SCRATCH 1. ΣΙΣΛΟ ΔΙΔΑΚΣΙΚΟΤ ΕΝΑΡΙΟΤ Δηζαγσγή ζηε δνκή επηινγήο ζην πξνγξακκαηηζηηθό πεξηβάιινλ SCRATCH. 2. ΕΚΣΙΜΩΜΕΝΗ ΔΙΑΡΚΕΙΑ ΔΙΔΑΚΣΙΚΟΤ ΕΝΑΡΙΟΤ Πξνβιέπεηαη λα δηαξθέζεη ζπλνιηθά 4
Εικονικά Περιβάλλοντα Μάθησης για Παιδιά με Αυτισμό: Επισκόπηση Πεδίου και Προτάσεις Σχεδιασμού
Εικονικά Περιβάλλοντα Μάθησης για Παιδιά με Αυτισμό: Επισκόπηση Πεδίου και Προτάσεις Σχεδιασμού Χ. Βολιώτη 1, Θ. Τσιάτσος 1, Σ. Μαυροπούλου 2, Χ. Καραγιαννίδης 2 1 Τμήμα Πληροφορικής, Αριστοτέλειο Πανεπιστήμιο
HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332
,**1 The Japanese Society for AIDS Research The Journal of AIDS Research +,, +,, +,, + -. / 0 1 +, -. / 0 1 : :,**- +,**. 1..+ - : +** 22 HIV AIDS HIV HIV AIDS : HIV AIDS HIV :HIV AIDS 3 :.1 /-,**1 HIV
n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. y y yy y 1565 0871 2 1 yy 525 8577 1 1 1 E-mail: yfmakihara,shiraig@cv.mech.eng.osaka-u.ac.jp, yyshimada@ci.ritsumei.ac.jp
Η Αυτοματοποιημένη και μη-αυτοματοποιημένη αξιολόγηση συστήματος Στατιστικής Μηχανικής Μετάφρασης για το γλωσσικό ζεύγος Ελληνικά - Ιταλικά
111 Η Αυτοματοποιημένη και μη-αυτοματοποιημένη αξιολόγηση συστήματος Στατιστικής Μηχανικής Μετάφρασης για το γλωσσικό ζεύγος Ελληνικά - Ιταλικά Πολυξένη Κανελλιάδου* Κωνσταντίνος Χατζηθεοδώρου** Machine
ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.
ΤΕΙ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. Πτυχιακή εργασία του ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ Επιβλέπων καθηγητής:βέντζας Δημήτριος ΛΑΡΙΣΑ ΜΑΙΟΣ
Arbitrage Analysis of Futures Market with Frictions
2007 1 1 :100026788 (2007) 0120033206, (, 200052) : Vignola2Dale (1980) Kawaller2Koch(1984) (cost of carry),.,, ;,, : ;,;,. : ;;; : F83019 : A Arbitrage Analysis of Futures Market with Frictions LIU Hai2long,
The Study of Evolutionary Change of Shogi
Vol. 43 No. 1 Oct. 22 2 Temporal Difference The Study of Evolutionary Change of Shogi Nobusuke Sasaki and Hiroyuki Iida This study explores how the evolutionary changes of the rules affect the characteristics
Development of a Seismic Data Analysis System for a Short-term Training for Researchers from Developing Countries
No. 2 3+/,**, Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 2, pp.3+/,,**,. * * Development of a Seismic Data Analysis System for a Short-term Training for Researchers
Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters
Vol.21-SLP-83 No.9 21/1/29 1 Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters Takanobu Nishiura 1 We study on estimation, evaluation
«ΟΜΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΚΑΙ ΣΤΑΤΙΚΗ ΣΤΕΡΕΩΣΗ ΙΣΤΟΡΙΚΟΥ ΙΕΡΟΥ ΝΑΟΥ»
«ΟΜΙΚΗ ΑΠΟΚΑΤΑΣΤΑΣΗ ΚΑΙ ΣΤΑΤΙΚΗ ΣΤΕΡΕΩΣΗ ΙΣΤΟΡΙΚΟΥ ΙΕΡΟΥ ΝΑΟΥ» ΚΩΝΣΤΑΝΤΙΝΟΣ ΣΠΥΡΑΚΟΣ ρ ΠΟΛΙΤΙΚΟΣ ΜΗΧΑΝΙΚΟΣ ΚΑΘΗΓΗΤΗΣ ΕΜΠ ΙΕΥΘΥΝΤΗΣ ΕΡΓΑΣΤΗΡΙΟΥ ΑΝΤΙΣΕΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ Σηµαντικά ρήγµατα στη περιοχή της
Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες
Τοποθέτηση τοπωνυµίων και άλλων στοιχείων ονοµατολογίας στους χάρτες Miroshnikov & Tchepine 1999 Ahn & Freeman 1984 Ένας σηµαντικός παράγοντας που επηρεάζει την αποτελεσµατικότητα ενός χάρτη ως µέσω επικοινωνίας
Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης
Ένα µοντέλο Ισοδύναµης Χωρητικότητας για IEEE 802.11 Ασύρµατα Δίκτυα. Εµµανουήλ Καφετζάκης mkafetz@iit.demokritos.gr Το κίνητρο µας-συνεισφορά Η ασύρµατη δικτύωση λαµβάνει ευρείας αποδοχής. Το πρότυπο
46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []
2 Chinese Journal of Alied Probability and Statistics Vol.26 No.5 Oct. 2 Coula,2 (,, 372; 2,, 342) Coula Coula,, Coula,. Coula, Coula. : Coula, Coula,,. : F83.7..,., Coula,,. Coula Sklar [],,, Coula.,
Ηλεκτρονικά σώματα κειμένων και γλωσσική διδασκαλία: Διεθνείς αναζητήσεις και διαφαινόμενες προοπτικές για την ελληνική γλώσσα
818 Ηλεκτρονικά σώματα κειμένων και γλωσσική διδασκαλία: Διεθνείς αναζητήσεις και διαφαινόμενες προοπτικές για την ελληνική γλώσσα Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Ελλάδα Abstract Corpus linguistics
Βιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015
Βιοπληροφορική Ι Παντελής Μπάγκος Αναπληρωτής Καθηγητής Πανεπιστήμιο Θεσσαλίας Λαμία, 2015 1 Διάλεξη 4 Hidden Markov Models (HMMs) 2 Μαρκοβιανά μοντέλα εξάρτησης Η πιθανότητα εμφάνισης ενός νουκλεοτιδίου
Text Mining using Linguistic Information
630-0101 8916-5 {taku-kukaoru-yayuuta-tmatsu}@isaist-naraacjp PrefixSpan : PrefixSpan Text Mining using Linguistic Information Taku Kudo Kaoru Yamamoto Yuta Tsuboi Yuji Matsumoto Graduate School of Information
GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs
GPU 1 1 NP number partitioning problem Pedroso CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA C Pedroso Python 323 Python C 12.2 Parallelizing the Number Partitioning Problem for
Topic Structure Mining based on Wikipedia and Web Search
DEWS2008 A7-5 Wikipedia Web AdamJatowt 606-8501 606-8501 E-mail: {nakatani,tezuka,adam,tanaka}@dl.kuis.kyoto-u.ac.jp Wikipedia Web Web Wikipedia Wikipedia Abstract Topic Structure Mining based on Wikipedia
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
Κύρια σημεία. Μεθοδολογικές εργασίες. Άρθρα Εφαρμογών. Notes - Letters to the Editor. Εργασίες στη Στατιστική Μεθοδολογία
Κύρια σημεία Εργασίες στη Στατιστική Μεθοδολογία Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Κατηγορίες άρθρων Στατιστικά Περιοδικά Βιβλιογραφική Έρευνα Βιβλιογραφικές Βάσεις Δεδομένων Γενικές Μηχανές
Shortness Ambiguity TEAM Ungrammaticality
DEIM Forum 2017 D8-4 Twitter 305 8573 1 1 1 305 8573 1 1 1 E-mail: s.nagaki@kde.cs.tsukuba.ac.jp, kitagawa@cs.tsukuba.ac.jp Twitter Twitter 1 Twitter 1. Twitter Wikipedia 2 Twitter 1 1 Twitter [1] Twitter
Topic Estimation for Microblogs Taking into Account the Relationships between Adjacent Tweets
1,a) 2 2 2 LDA 1 1 Topic Estimation for Microblogs Taking into Account the Relationships between Adjacent Tweets Naoya Nakamura 1,a) Ryohei Sasano 2 Hiroya Takamura 2 Manabu Okumura 2 Abstract: In recent
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Big Data/Business Intelligence
Big Data/Business Intelligence 5 8 Φεβρουαρίου 2018 ΓΕΝΙΚΑ Το μάθημα αποτελείται από δύο ενότητες, η πρώτη σε Big Data και Data Analytics και η δεύτερη σε Business Intelligence. Η πρώτη ενότητα παρέχει
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ. Δυναμικός Προγραμματισμός. Παντελής Μπάγκος
ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Δυναμικός Προγραμματισμός Παντελής Μπάγκος Δυναμικός Προγραμματισμός Στοίχιση (τοπική-ολική) RNA secondary structure prediction Διαμεμβρανικά τμήματα Hidden Markov Models Άλλες εφαρμογές
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Τεχνικές NLP Σχεδιαστικά Θέματα
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Τεχνικές NLP Σχεδιαστικά Θέματα Natural Language Processing Επεξεργασία δεδομένων σε φυσική γλώσσα Κατανόηση φυσικής γλώσσας από τη μηχανή
Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment
18 2 JOURNAL OF CHINESE INFORMATION PROCESSING Vol118 No12 :1003-0077 (2004) 02-0073 - 07 Ξ 1,2, 1, 1 (11, 215006 ;21, 210000) : ISO/ IEC 10646,,,,,, 9919 % : ; ; ; ; : TP39111 :A Research of Han Character
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF
100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]
1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.
2 0 1 5 7 Journal of Chinese Institute of Food Science and Technology Vol. 15 No. 7 Jul. 2 0 1 5 1,2 1 1 1 1* ( 1 315211 2 315502) : ( ) : (E-Nose), - : GC-MS, 20.98% 2.5%, 53.15% 11.2%, 0. 51% 71.86%
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ. Data Mining - Classification
ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΕΧΟΜΕΝΟΥ ΠΑΓΚΟΣΜΙΟΥ ΙΣΤΟΥ ΚΑΙ ΓΛΩΣΣΙΚΑ ΕΡΓΑΛΕΙΑ Data Mining - Classification Data Mining Ανακάλυψη προτύπων σε μεγάλο όγκο δεδομένων. Σαν πεδίο περιλαμβάνει κλάσεις εργασιών: Anomaly Detection:
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής Πανεπιστήµιο Πειραιώς, Καραολή ηµητρίου 80, 18534 Πειραιάς Τηλ. 210 414-2147, e-mail: sofianop@unipi.gr
ΣΤΟΙΧΕΙΑ ΠΡΟΤΕΙΝΟΜΕΝΟΥ ΕΞΩΤΕΡΙΚΟΥ ΕΜΠΕΙΡΟΓΝΩΜΟΝΟΣ Προσωπικά Στοιχεία:
Όνομα Marios Πανεπιστήμιο / Brunel University London Επώνυμο Angelides E-mail Marios.Angelides@brun el.ac.uk Electronic and Computer Engineering Βαθμίδα Professor Επιστημονική Περιοχή Multimedia Content
ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΑΤΟΜΩΝ ΜΕ ΒΑΡΙΑ ΝΟΗΤΙΚΗ ΥΣΤΕΡΗΣΗ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΠΟΥ ΜΕΝΟΥΝ ΣΕ ΟΙΚΟΤΡΟΦΕΙΟ ΣΤΗΝ ΚΟΙΝΟΤΗΤΑ.
1 Η ΕΦΑΡΜΟΓΗ ΜΙΑΣ ΣΥΣΤΗΜΙΚΗΣ ΜΕΘΟΔΟΥ ΣΤΗ ΒΕΛΤΙΩΣΗ ΤΗΣ ΛΕΙΤΟΥΡΓΙΚΟΤΗΤΑΣ ΑΤΟΜΩΝ ΜΕ ΒΑΡΙΑ ΝΟΗΤΙΚΗ ΥΣΤΕΡΗΣΗ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΣΥΜΠΕΡΙΦΟΡΑΣ ΠΟΥ ΜΕΝΟΥΝ ΣΕ ΟΙΚΟΤΡΟΦΕΙΟ ΣΤΗΝ ΚΟΙΝΟΤΗΤΑ. Γεωργία Γκαντώνα, Νικόλαος
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4//,a) Vocoder (F) F F. PSOLA [] sinusoidal model [] phase vocoder Vocoder [3] (F) F 3 [4], [5], [6], [7], [8], [9] [], [], [], [3], [4] [5], [6] [7], [8], University
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΒΑΣΙΛΕΙΟΥ Τ. ΤΑΜΠΑΚΑ
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΒΑΣΙΛΕΙΟΥ Τ. ΤΑΜΠΑΚΑ 1. Προσωπικά Στοιχεία Ονοματεπώνυμο : ΤΑΜΠΑΚΑΣ ΒΑΣΙΛΕΙΟΣ Ημερομ. Γέννησης: 25 Ιουλίου 1962 Υπηκοότητα : Ελληνική Οικογεν. Κατάσταση : Έγγαμος, πατέρας δύο παιδιών
Διπλωματική Εργασία της φοιτήτριας του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ:ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ:ΕΝΣΥΡΜΑΤΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΣ Διπλωματική Εργασία της φοιτήτριας