172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : Casell
|
|
- Ξανθίππη Μαλαξός
- 6 χρόνια πριν
- Προβολές:
Transcript
1 20104 Chinese Journal of Applied Probability and Statistics Vol.26 No.2 Apr P (,, ) P P. Wang (2006)P, P, P,. : P,,,. : O212.1, O , (). : X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ 0 H 1 : θ θ 0. θ : P(θ = θ 0 ) = π 0, θ θ 0 π 1 g 1 (θ), π 1 = 1 π 0, g 1 (θ),. nz = n x θ 0 /σ P, H 0 α 0 1. Lindley [1][2],. BergerSellke (1987):, π 0 = 0.5, n, g 1 (θ), α 0 P, Berger-Sellke. P, H 0, α 0,.,.,, π 0, g 1 (θ)α 0. α 0 α 0. Lindley (1997)Lavine(1999)α 0. P (),. P H 0., H 0 : θ = 50 H 1 : θ 50. σ = 1, n = 2500, x = 50.1, : z = 5, P = 2[1 Φ(5)] = , P ,
2 172,,,,. P,. Box (1980)P, Guttman (1967)Rubin (1984)P, Meng (1994), Gelman(1996)De la HorraRodriguez-Bernal (2003). BayarriBerger (2000)P P.. : CasellaBerger (1987), Gomez-VillegasSanz (1998, 2000), OhDasGupta (1999), Gomez-Villegas(2002), MicheasDcy (2003), De la Horra (2005), MicheasDey (2007). P., P, P..,.., ( ),,,,., k(k4 ),.,,.,,,,.,,. Wang (2006) (2007)P, P, Wang (2006)P, P,, P. 2. P 2.1 P X 1, X 2,, X n N(θ, σ 2 ), σ 2. H 0 : θ = θ 0 H 1 : θ θ 0. x = 1 n n n(x θ) n(x θ0 ) x i, z =, z 0 =, σ σ i=1
3 : P 173 Z. P 2P(Z > z 0 ), z 0 > 0; P = 2P(Z < z 0 ), z 0 < 0, P = P( Z > z 0 ) = 2[1 Φ( z 0 )], Φ( )., θ 0 = 0σ = 1, Y i = (X i θ 0 )/σ. : z 0 = nx, z = z 0 nθ. : H 0 : θ Θ 0 = {0}H 1 : θ Θ 1 = ( a, 0) (0, b), a, b > 0.,, θ 0, a = b., a b,. a = b, a b,. Θ = Θ 0 Θ Wang (2006)P P W P W P W = P θ=θ0 ( Z > z ) inf P( Z > z ). P( Z > z ) sup P( Z > z ) inf P W (a) = P W, z = z 0 nθ, P W (a) = P W (a) = = sup 2.3 P P F P F 2 P F = P( Z > z 0 ) inf P( Z > z 0 nθ ) P( Z > z 0 nθ ) inf P( Z > z 0 nθ ). P( Z > z 0 ) P( Z > z 0 + na) P( Z > max( z 0 na, 0)) P( Z > z 0 + na) Φ[ z 0 + na] Φ[ z 0 ] Φ[ z 0 + na] Φ[max( z 0 na, 0)]. (2.1) 2 P θ=θ0 (Z > z) inf P(Z > z) sup sup P(Z > z) inf P(Z > z), z 0 > 0; P θ=θ0 (Z < z) inf P(Z < z) P(Z < z) inf P(Z < z), z 0 < 0.
4 174 P F (a) = P F, Φ[z 0 + na] Φ[z 0 ] 2 P F Φ[z 0 + na] Φ[z 0 na], z 0 > 0; (a) = Φ[ na z 0 ] Φ[ z 0 ] 2 Φ[ na z 0 ] Φ[ z 0 na], z 0 < P F (a)p W (a) 2.1 : P F Φ( z 0 + na) Φ( z 0 ) (a) = 2 Φ( z 0 + na) Φ( z 0 na). (2.2) z 0 > na x > a, P F (a) = 2P W (a). z 0 > 0, z 0 < 0, (2.1) P W (a) = (2.2): P F (a) = 2P W (a),. 2.2 (1) dp F (a)/da < 0. (2) lim P F (a) = P, lim P F (a) = 1. a a 0 (3) sup P F (a) = 1, inf P F (a) = P. : (1) Φ[ z 0 + na] Φ[ z 0 ] Φ[ z 0 + na] Φ[ z 0 na]. P F Φ[ z 0 + na] Φ[ z 0 ] (a) = 2 Φ[ z 0 + na] Φ[ z 0 na]. F (a) = z > 0, F (a) < 0. F (a) = = Φ(z + a) Φ(z) Φ(z + a) Φ(z a), φ(z + a)[φ(z) Φ(z a)] φ(z a)[φ(z + a) Φ(z)] [Φ(z + a) Φ(z a)] 2 φ(z + a) [Φ(z) Φ(z a)] e 2az [Φ(z + a) Φ(z)] 2π [Φ(z + a) Φ(z a)] 2, φ( ). G(a) = [Φ(z) Φ(z a)] e 2az [Φ(z + a) Φ(z)],
5 : P 175 G (a) = φ(z a) e 2az φ(z + a) 2ze 2az [Φ(z + a) Φ(z)] = 2ze 2az [Φ(z + a) Φ(z)] < 0. G(0) = 0, a > 0G(a) < 0, F (a) < 0dP F (a)/da < 0. > 0. (2) lim (a) a = lim Φ( z 0 + na) Φ( z 0 ) a Φ( z 0 + na) Φ( z 0 na) = 2[1 Φ( z 0 )] = P lim P F (a) = lim a 0 (3) (1)(2), Φ( z 0 + na) Φ( z0 ) a 0 Φ( z 0 + na) Φ( z 0 na) = 2 lim a 0 = 1. nφ( z0 + na) nφ( z0 + na) + nφ( z 0 na) sup P F (a) = lim P F (a) = 1, a 0 inf P F (a) = lim P F (a) = P. a 2.3 (1) lim P W (a) = P, lim P W (a) = 1. a a 0 (2) z 0 > na, x >a, dp W (a)/da<0. z 0 < na, x <a, dp W (a)/da (3) sup P W (a) = 1, ( inf P W (a) = P W z 0 ) = Φ(2 z 0 ) Φ( z 0 ) < P. n Φ(2 z 0 ) 0.5 (4) z 0 < na, x < a, P W (a) < P. : (1) (2.1), lim P W (a) = 1 Φ[ z 0 ] = 2[1 Φ[ z 0 ]] = P a 1 0.5
6 176 lim P W Φ[ z 0 + na] Φ[ z0 ] (a) = lim a 0 a 0 Φ[ z 0 + na] Φ[max( z 0 na, 0)] Φ[ z 0 + na] Φ[ z0 ] = lim a 0 Φ[ z 0 + na] Φ[ z 0 ] = 1. (2) z 0 > na, P F (a) = 2P W (a), z 0 < na, dp W (a)/da > 0. (3) (1)(2) (2)(2.1) dp W (a) da = 1 dp F (a) < 0; 2 da P W (a) = Φ[ z 0 + na] Φ[ z 0 ] Φ[ z 0 + na] 0.5, sup P W (a) = lim P W (a) = 1. a 0 ( inf P W (a) = P W z 0 ) = Φ(2 z 0 ) Φ( z 0 ) < lim n Φ(2 z 0 ) 0.5 P W (a) = P. a (4) z 0 < na, (2), dp W (a)/d; (4), lim P W (a)=p. P W (a)<p. a. 2.5 P F (a)p W (a) (1) P W (a), a < z 0 / n, a; a > z 0 / n, a.,!, 2.3 (4), a > z 0 / n, P W (a) < P. a > z 0 / n,., P W (a)p., P H 0, P W (a) P. (2) P F (a) P F (a)a,, a, H 0, P F (a)a. sup P F (a) = 1, inf P F (a) = P P F (a) H 0. inf P F (a) = P P F (a).
7 : P H 0 : θ = 500H 1 : θ 500θ (500 t, t). x = 506, σ = 90, n = 800, z 0 = n(x θ 0 )/σ = 1.886, P = 2[1 2Φ(1.886)] = 0.059, t a P F P W P : (1) a > z 0 / n, x (θ 0 t, θ 0 + t),, P W, P W, P,,.. (2) P F θ 2, P, (Θ), P F P, P F. : P F (a, b)p. [1] Shafer, G., Lindley s paradox, J. Amer. Statist. Assoc., 77(1982), [2] Berger, J.O.,,, [3] Berger, J.O. and Sellke, T., Testing a point null hypothesis: the irreconcilability of P values and evidence (with discussion), J. Amer. Statist. Assoc., 82(1987), [4] Lindley, D.V., Discussion forum: some comments on bayes factors, Journal of Statistical Planning and Inference, 61(1997), [5] Lavine, M. and Schervish, M.J., Bayes factors: what they are and what they are not, The American Statistician, 53(2)(1999), [6] Box, G.E.P., Sampling and Bayes inference in scientific modelling and robustness (with discussion), J. Roy. Statist. Soc. A, 143(1980), [7] Guttman, L., The use of the concept of a future observation in goodness-of-fit problems, J. Roy. Statist. Soc. B, 29(1967), [8] Rubin, D.B., Bayesianly justifiable and relevant frequency calculations for the applied statistician, Ann. Statist., 12(1984), [9] Meng, X.L., Posterior predictive P-values, Ann. Statist., 22(1994), [10] Gelman, A., Meng, X.L. and Stern, H., Posterior predictive assessment of model fitness via realized discrepancies (with discussion), Statistica Sinica, 6(1996),
8 178 [11] De la Horra, J. and Rodriguez-Bernal, M.T., Bayesian robustness of the posterior predictive p-value, Commun. Statist. Theory-Meth., 32(2003), [12] Bayarri, M.J. and Berger, J.O., P-values for composite null models, J. Amer. Statist. Assoc., 95(2000), [13] Casella, G. and Berger, R.L., Reconciling Bayesian and frequentist evidence in the one-sided testing problem, J. Amer. Statist. Assoc., 82(1987), [14] Gomez-Villegas, M.A. and Sanz, L., Reconciling Bayesian and frequentist evidence in the point null testing problem, Test, 7(1998), [15] Gomez-Villegas, M.A. and Sanz, L., ε-contaminated priors in testing point null hypothesis: a procedure to determine the prior probability, Statist. Probab. Lett., 47(2000), [16] Oh, H.S. and DasGupta, A., Comparison of the P-value and posterior probability, Journal of Statistical Planning and Inference, 76(1999), [17] Gomez-Villegas, M.A., Main, P. and Sanz, L., A suitable Bayesian approach testing point null hypothesis: some examples revisited, Commun. Statist. Theor. Meth., 31(2002), [18] Micheas, A.C. and Dey, D.K., Prior and posterior predictive p-values in the one-sided location parameter testing problem, Sankhya, 65(2003), [19] De la Horra, J., Reconciling classical and prior predictive P-values in the two-sided location parameter testing problem, Commun. Statist. Theor. Meth., 34(2005), [20] Micheas, A.C. and Dey, D.K., Reconciling Bayesian and Frequentist Evidence in the One-Sided Scale Parameter Testing Problem, Communications in Statistics-Theory and Methods, 36(2007), , [21] Wang, H., Modified p-values for two-sided test for normal distribution with restricted parameter space, Communications in Statistics-Theory and Methods, 35(2006), [22] Wang, H., Modified p-values for one-sided testing in restricted parameter space, Statistics and Probability Letters, 77(2007), Modification of P -Value of Two-Sided Test with Restricted Parameter Space and Its Reconciliation with Bayesian Evidence Fu Junhe (Department of Information Management, College of International Business Management, Shanghai International Studies University, Shanghai, ) This paper makes research on modification of P -value of two-sided test with restricted parameter space and reconciling Bayesian test with classical test based on modified P -value, which shows that there exist critical defects in modified P -value put forward by Wang in This paper sets forth another modified P -value, which has comparative reasonable characteristics, based on which the conflict of Bayesian test and classical test can be reconciled to some extent. Keywords: Modified P -value, evidence, Bayesian, classical Statistics. AMS Subject Classification: 97K70.
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Διαβάστε περισσότερα90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z
00 Chinese Journal of Applied Probability and Statistics Vol6 No Feb 00 Panel, 3,, 0034;,, 38000) 3,, 000) p Panel,, p Panel : Panel,, p,, : O,,, nuisance parameter), Tsui Weerahandi [] Weerahandi [] p
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραAquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραResearch on Economics and Management
36 5 2015 5 Research on Economics and Management Vol. 36 No. 5 May 2015 490 490 F323. 9 A DOI:10.13502/j.cnki.issn1000-7636.2015.05.007 1000-7636 2015 05-0052 - 10 2008 836 70% 1. 2 2010 1 2 3 2015-03
Διαβάστε περισσότεραMIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ
«ΣΠΟΥΔΑΙ», Τόμος 41, Τεύχος 2ο, Πανεπιστήμιο Πειραιώς «SPOUDAI», Vol. 41, No 2, University of Piraeus MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ Του Πάνου Αναστ. Πανόπουλου Οικονομικό
Διαβάστε περισσότεραBayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Διαβάστε περισσότεραΟ παράγοντας Φ του Bayes Σύντομη αναφορά σε έναν εναλλακτικό τρόπο λήψης στατιστικών αποφάσεων
REVIEW ÁÑ ÅÉÁ ÅËËÇÍÉÊÇÓ ÉÁÔÑÉÊÇÓ 2017, 34(5):622-627 Ο παράγοντας Φ του Bayes Σύντομη αναφορά σε έναν εναλλακτικό τρόπο λήψης στατιστικών αποφάσεων Στην παρούσα ανασκόπηση γίνεται μια σύντομη αναφορά στην
Διαβάστε περισσότεραΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.
ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. Γενικά στοιχεία Όνομα Επίθετο Θέση E-mail Πέτρος Μαραβελάκης Επίκουρος καθηγητής στο Πανεπιστήμιο Πειραιώς, Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων με αντικείμενο «Εφαρμογές Στατιστικής
Διαβάστε περισσότεραPrey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Διαβάστε περισσότερα46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []
2 Chinese Journal of Alied Probability and Statistics Vol.26 No.5 Oct. 2 Coula,2 (,, 372; 2,, 342) Coula Coula,, Coula,. Coula, Coula. : Coula, Coula,,. : F83.7..,., Coula,,. Coula Sklar [],,, Coula.,
Διαβάστε περισσότεραJ. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραWeb-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data
Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data Rahim Alhamzawi, Haithem Taha Mohammad Ali Department of Statistics, College of Administration and Economics,
Διαβάστε περισσότεραFORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
Διαβάστε περισσότεραΒιογραφικό Σημείωμα. (τελευταία ενημέρωση 20 Ιουλίου 2015) 14 Ιουλίου 1973 Αθήνα Έγγαμος
Βιογραφικό Σημείωμα (τελευταία ενημέρωση 20 Ιουλίου 2015) Προσωπικές Πληροφορίες Όνομα Δημήτρης Φουσκάκης Ημερομηνία γέννησης Τόπος γέννησης Οικογενειακή κατάσταση 14 Ιουλίου 1973 Αθήνα Έγγαμος Εθνικότητα
Διαβάστε περισσότεραAPPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679
APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 1 Table I Summary of Common Probability Distributions 2 Table II Cumulative Standard Normal Distribution Table III Percentage Points, 2 of the Chi-Squared
Διαβάστε περισσότεραΚύρια σημεία. Μεθοδολογικές εργασίες. Άρθρα Εφαρμογών. Notes - Letters to the Editor. Εργασίες στη Στατιστική Μεθοδολογία
Κύρια σημεία Εργασίες στη Στατιστική Μεθοδολογία Απόστολος Μπουρνέτας Τμήμα Μαθηματικών ΕΚΠΑ Κατηγορίες άρθρων Στατιστικά Περιοδικά Βιβλιογραφική Έρευνα Βιβλιογραφικές Βάσεις Δεδομένων Γενικές Μηχανές
Διαβάστε περισσότεραStatistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data
Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data B. Renard, M. Lang, P. Bois To cite this version: B. Renard, M. Lang,
Διαβάστε περισσότεραLecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραΥπολογιστική Φυσική Στοιχειωδών Σωματιδίων
Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων Όρια Πιστότητας (Confidence Limits) 2/4/2014 Υπολογ.Φυσική ΣΣ 1 Τα όρια πιστότητας -Confidence Limits (CL) Tα όρια πιστότητας μιας μέτρησης Μπορεί να αναφέρονται
Διαβάστε περισσότεραBayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
Διαβάστε περισσότερα552 Lee (2006),,, BIC,. : ; ; ;. 2., Poisson (Zero-Inflated Poisson Distribution), ZIP. Y ZIP(φ, λ), φ + (1 φ) exp( λ), y = 0; P {Y = y} = (1 φ) exp(
2012 10 Chinese Journal of Applied Probability and Statistics Vol.28 No.5 Oct. 2012 (,, 675000) Poisson,,, Gibbs, BIC.,. :,, Gibbs, BIC. : O212.8. 1. (count data), Poisson Poisson., (zeroinflation).,.,,
Διαβάστε περισσότεραSchedulability Analysis Algorithm for Timing Constraint Workflow Models
CIMS Vol.8No.72002pp.527-532 ( 100084) Petri Petri F270.7 A Schedulability Analysis Algorithm for Timing Constraint Workflow Models Li Huifang and Fan Yushun (Department of Automation, Tsinghua University,
Διαβάστε περισσότεραΜηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραMath 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Διαβάστε περισσότεραStatistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Διαβάστε περισσότεραΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Mετακύλιση τιμών βασικών προϊόντων και τροφίμων στην περίπτωση του Νομού Αιτωλοακαρνανίας
ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΑΓΡΟΤΙΚΩΝ ΠΡΟΙΟΝΤΩΝ ΚΑΙ ΤΡΟΦΙΜΩΝ MBA ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΤΡΟΦΙΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Mετακύλιση τιμών βασικών προϊόντων και τροφίμων στην περίπτωση του Νομού Αιτωλοακαρνανίας
Διαβάστε περισσότεραACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Διαβάστε περισσότεραHomework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραSCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Διαβάστε περισσότερα476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1
2008 10 Chinese Journal of Applied Probability and Statistics Vol.24 No.5 Oct. 2008 (,, 1000871;,, 100044) (,, 100875) (,, 100871). EM, Wishart Jeffery.,,,,. : :,,, EM, Wishart. O212.7. 1.,. 1894, Pearson.
Διαβάστε περισσότεραTheorem 8 Let φ be the most powerful size α test of H
Testing composite hypotheses Θ = Θ 0 Θ c 0 H 0 : θ Θ 0 H 1 : θ Θ c 0 Definition 16 A test φ is a uniformly most powerful (UMP) level α test for H 0 vs. H 1 if φ has level α and for any other level α test
Διαβάστε περισσότεραESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL
ESTIMATION OF SYSTEM RELIABILITY IN A TWO COMPONENT STRESS-STRENGTH MODELS DAVID D. HANAGAL Department of Statistics, University of Poona, Pune-411007, India. Abstract In this paper, we estimate the reliability
Διαβάστε περισσότεραExercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
Διαβάστε περισσότεραΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ. Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο. την απόκτηση του διπλώματος
ΣΧΕΔΙΑΣΜΟΣ ΔΙΚΤΥΩΝ ΔΙΑΝΟΜΗΣ Η εργασία υποβάλλεται για τη μερική κάλυψη των απαιτήσεων με στόχο την απόκτηση του διπλώματος «Οργάνωση και Διοίκηση Βιομηχανικών Συστημάτων με εξειδίκευση στα Συστήματα Εφοδιασμού
Διαβάστε περισσότεραIMES DISCUSSION PAPER SERIES
IMES DISCUSSION PAPER SERIES Will a Growth Miracle Reduce Debt in Japan? Selahattin mrohorolu and Nao Sudo Discussion Paper No. 2011-E-1 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN 2-1-1
Διαβάστε περισσότερα!! " # $%&'() * & +(&( 2010
!!" #$%&'() *& (&( 00 !! VISNIK OF HE VOLODYMYR DAL EAS UKRAINIAN NAIONAL UNIVERSIY 8 (50) 00 8 (50) 00 HE SCIENIFIC JOURNAL " 996 WAS FOUNDED IN 996 " - - " I IS ISSUED WELVE IMES A YEAR "#$% Founder
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Διαβάστε περισσότεραApplying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
Διαβάστε περισσότεραHomomorphism of Intuitionistic Fuzzy Groups
International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com
Διαβάστε περισσότεραLecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Διαβάστε περισσότερα: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
Διαβάστε περισσότεραWritten Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Διαβάστε περισσότεραEcon 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Διαβάστε περισσότεραApproximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Διαβάστε περισσότεραΗ ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ Ι Ο Ν Ι Ω Ν Ν Η Σ Ω Ν ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ Ταχ. Δ/νση : ΑΤΕΙ Ιονίων Νήσων- Λεωφόρος Αντώνη Τρίτση Αργοστόλι Κεφαλληνίας, Ελλάδα 28100,+30
Διαβάστε περισσότεραVol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
Διαβάστε περισσότερα6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Διαβάστε περισσότερα«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»
ΓΔΩΠΟΝΗΚΟ ΠΑΝΔΠΗΣΖΜΗΟ ΑΘΖΝΩΝ ΣΜΗΜΑ ΑΞΙΟΠΟΙΗΗ ΦΤΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗ ΜΗΥΑΝΙΚΗ ΣΟΜΕΑ ΕΔΑΦΟΛΟΓΙΑ ΚΑΙ ΓΕΩΡΓΙΚΗ ΥΗΜΕΙΑ ΕΙΔΙΚΕΤΗ: ΕΦΑΡΜΟΓΕ ΣΗ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗ ΣΟΤ ΦΤΙΚΟΤ ΠΟΡΟΤ «ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ
Διαβάστε περισσότεραΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS
ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗ ΔΙΟΙΚΗΣΗ ΤΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH
Διαβάστε περισσότεραΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΑΝΑΛΥΣΗ ΤΩΝ ΣΥΣΧΕΤΙΣΕΩΝ ΧΡΕΟΚΟΠΙΑΣ ΚΑΙ ΤΩΝ
Διαβάστε περισσότεραA Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle
Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles
Διαβάστε περισσότεραΑλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999
Αλγοριθµική και νοηµατική µάθηση της χηµείας: η περίπτωση των πανελλαδικών εξετάσεων γενικής παιδείας 1999 Γεώργιος Τσαπαρλής, ηµήτριος Σταµοβλάσης, Χαράλαµπος Καµηλάτος, Εριφύλη Ζαρωτιάδου, ηµήτριος Παπαοικονόµου
Διαβάστε περισσότεραSupplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
Διαβάστε περισσότεραEstimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότερα22 .5 Real consumption.5 Real residential investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.5 Real house prices.5 Real fixed investment.5.5.5 965 975 985 995 25.5 965 975 985 995 25.3 Inflation
Διαβάστε περισσότεραThe Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling
5 7 008 7 Statistical Research Vol. 5, No7 Jul. 008 :,,, : ; ; ; :O :A :00 4565 (008) 07 0070 04 The Research on Sapling Estiation of Seasonal Index Based on Stratified Rando Sapling Deng Ming Abstract
Διαβάστε περισσότεραþÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿÿ ÁÌ» Â Ä Å ¹µÅ Å½Ä ÃÄ þÿ ¹±Çµ Á¹Ã ºÁ õɽ ÃÄ ÃÇ» Tokatzoglou,
Διαβάστε περισσότερα5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Διαβάστε περισσότεραDevelopment of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer
Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer Naomi Morota Newman M Key Words woman diagnosed with breast cancer, rehabilitation nursing care program, the
Διαβάστε περισσότεραVol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Διαβάστε περισσότεραΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙO ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΞΙΟΠΟΙΗΣΗΣ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΓΕΩΡΓΙΚΗΣ ΜΗΧΑΝΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΓΕΩΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΟΥΣ ΦΥΣΙΚΟΥΣ ΠΟΡΟΥΣ» «Χωρικά μοντέλα πρόβλεψης αναβλάστησης
Διαβάστε περισσότεραΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής
Ενότητα 7α: Impact of the Internet on Economic Education Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως
Διαβάστε περισσότεραΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ
Δ ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΜΗΜΑ ΠΔΡΙΦΔΡΔΙΑΚΗ ΓΙΟΙΚΗΗ ΣΔΛΙΚΗ ΔΡΓΑΙΑ Θέκα: Αμηνιφγεζε κίαο δηαπξαγκάηεπζεο. Μειέηε Πεξίπησζεο: Ζ αλέγεξζε ηεο Νέαο Δζληθήο Λπξηθήο θελήο, ηεο Νέαο
Διαβάστε περισσότερα( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;
28 1 2006 1 RESOURCES SCIENCE Vol. 28 No. 1 Jan. 2006 :1007-7588(2006) 01-0002 - 07 20 1 1 2 (11 100101 ; 21 101149) : 1978 1978 2001 ; 2010 ; ; ; : ; ; 24718kg 1) 1990 26211kg 260kg 1995 2001 238kg( 1)
Διαβάστε περισσότερα27/2/2013
Μοντέλα και μοντελοποίηση Βασικές έννοιες και ορισμοί Αθανάσιος Σταυρακούδης http://stavrakoudis.econ.uoi.gr 27/2/2013 Διάστημα και μοντελοποίηση Clive W.J. Granger Cambridge University Press 1999 http://bit.ly/emecom
Διαβάστε περισσότερα794 Appendix A:Tables
Appendix A Tables A Table Contents Page A.1 Random numbers 794 A.2 Orthogonal polynomial trend contrast coefficients 800 A.3 Standard normal distribution 801 A.4 Student s t-distribution 802 A.5 Chi-squared
Διαβάστε περισσότεραΔθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.
ΑΡΗΣΟΣΔΛΔΗΟ ΠΑΝΔΠΗΣΖΜΗΟ ΘΔΑΛΟΝΗΚΖ ΣΜΖΜΑ ΜΑΘΖΜΑΣΗΚΧΝ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΧΝ ΠΟΤΓΧΝ Δπηζηήκε ηνπ Γηαδηθηύνπ «Web Science» ΜΔΣΑΠΣΤΥΗΑΚΖ ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ
Διαβάστε περισσότεραJ. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
Διαβάστε περισσότεραTest Data Management in Practice
Problems, Concepts, and the Swisscom Test Data Organizer Do you have issues with your legal and compliance department because test environments contain sensitive data outsourcing partners must not see?
Διαβάστε περισσότεραEM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
Διαβάστε περισσότεραΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΤΜΗΜΑ ΕΠΙΣΤΗΜΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΣΤΗΝ ΠΡΟΣΧΟΛΙΚΗ ΗΛΙΚΙΑ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Διαπολιτισμική Εκπαίδευση και Θρησκευτική Ετερότητα: εθνικές και θρησκευτικές
Διαβάστε περισσότεραSOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραMath 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραOLS. University of New South Wales, Australia
1997 2007 5 OLS Abstract An understanding of the macro-level relationship between fertility and female employment is relevant and important to current policy-making. The objective of this study is to empirically
Διαβάστε περισσότερα[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1
1,a) Bayesian Approach An Application of Monte-Carlo Tree Search Algorithm for Shogi Player Based on Bayesian Approach Daisaku Yokoyama 1,a) Abstract: Monte-Carlo Tree Search (MCTS) algorithm is quite
Διαβάστε περισσότεραExercise 2: The form of the generalized likelihood ratio
Stats 2 Winter 28 Homework 9: Solutions Due Friday, March 6 Exercise 2: The form of the generalized likelihood ratio We want to test H : θ Θ against H : θ Θ, and compare the two following rules of rejection:
Διαβάστε περισσότεραThe Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets
2005 9 9 :100026788 (2005) 0920036206,, (, 230009) :,.,, A ;, A A, A A.,2000 10,.,,,. : ; ; ; : F830191 : A The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China
Διαβάστε περισσότεραSTAT200C: Hypothesis Testing
STAT200C: Hypothesis Testing Zhaoxia Yu Spring 2017 Some Definitions A hypothesis is a statement about a population parameter. The two complementary hypotheses in a hypothesis testing are the null hypothesis
Διαβάστε περισσότεραThe ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Διαβάστε περισσότεραAn Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Διαβάστε περισσότεραΑξιολόγηση της αισθητικής αξίας δασογεωργικών και γεωργικών συστημάτων
Αξιολόγηση της αισθητικής αξίας δασογεωργικών και γεωργικών συστημάτων Α. Σιδηροπούλου 1, M. Βραχνάκης 2, Γ. Φωτιάδης 3 και Δ. Μπούσμπουρας 4 1 Εργαστήριο Λιβαδικής Οικολογίας, Τ.Θ. 286, Α.Π.Θ., Τ.Κ. 54124,
Διαβάστε περισσότερα557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING
Most Powerful Tests 557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING To construct and assess the quality of a statistical test, we consider the power function β(θ). Consider a
Διαβάστε περισσότεραAnalysis of energy consumption of telecommunications network and application of energy-saving techniques
40 2 ( ) Vol.40 No.2 2009 4 Journal of Central South University (Science and Technology) Apr. 2009 1, 2 (1. 430074 2. 410015) TN915 A 1672 7207(2009)02 0464 07 Analysis of energy consumption of telecommunications
Διαβάστε περισσότερα1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]
212 2 ( 4 252 ) No.2 in 212 (Total No.252 Vol.4) doi 1.3969/j.issn.1673-7237.212.2.16 STANDARD & TESTING 1 2 2 (1. 2184 2. 2184) CensusX12 ARMA ARMA TU111.19 A 1673-7237(212)2-55-5 Time Series Analysis
Διαβάστε περισσότεραSecond Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Διαβάστε περισσότεραGlobal energy use: Decoupling or convergence?
Crawford School of Public Policy Centre for Climate Economics & Policy Global energy use: Decoupling or convergence? CCEP Working Paper 1419 December 2014 Zsuzsanna Csereklyei Geschwister Scholl Institute
Διαβάστε περισσότεραDOI /J. 1SSN
4 3 2 Vol 43 No 2 2 1 4 4 Journal of Shanghai Normal UniversityNatural Sciences Apr 2 1 4 DOI1 3969 /J 1SSN 1-5137 214 2 2 1 2 2 1 22342 2234 O 175 2 A 1-51372142-117-1 2 7 8 1 2 3 Black-Scholes-Merton
Διαβάστε περισσότεραHomomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Διαβάστε περισσότεραChapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment
Contents Preface ix Part 1 Introduction Chapter 1 Introduction to Observational Studies... 3 1.1 Observational vs. Experimental Studies... 3 1.2 Issues in Observational Studies... 5 1.3 Study Design...
Διαβάστε περισσότεραΠερίπτωση ασθενούς µε ιδιαίτερα ανθεκτική υπέρταση επιτυχώς αντιµετωπισθείσα µε απονεύρωση νεφρικών αρτηριών
Περίπτωση ασθενούς µε ιδιαίτερα ανθεκτική υπέρταση επιτυχώς αντιµετωπισθείσα µε απονεύρωση νεφρικών αρτηριών Α. Ζιάκας, Κ. Τσιούφης, Δ. Πέτρογλου, Θ. Γκόσιος, Λ. Λίλλης, Χ. Καρβούνης Π.Γ.Ν. ΑΧΕΠΑ, Θεσσαλονίκη,
Διαβάστε περισσότεραΠανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009. HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems
Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη 2009 HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems Στατιστικά Κειμένου Text Statistics Γιάννης Τζίτζικας άλ ιάλεξη :
Διαβάστε περισσότερα