بلورشناسی. Crystallography. URL: University of Arak

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "بلورشناسی. Crystallography. URL: University of Arak"

Transcript

1 بلورشناسی Crystallography URL:

2 طول و عرض جغرافیائی Longitude Latitude 2

3 We measure latitude and longitude in degrees. One degree is 1/360 th the way around the earth. Slide 3

4 Another way to describe coordinates is to use a + or - instead of north, south, east, or west. North is + East is + South is - West is - Many computer programs, such as GIS software, use this method. Slide 4

5 نمايش تصويری يک بلور! چی فکرمیکنم اسمش استریوگرافیک باشه.

6 Stereographic projection تصويراستريوگرافيک- نمايش تصويری يک بلور تصويراستريوگرافيک )تصويردوب عدی درصفحه(: برجسته نمائی يا تصويرفضائی تصويری ازنقاط سطح يک کره روی سطح دايره عظيمه است که برای مطالعه ساختار و وضعيت بلورها و نشان دادن شکل سه ب عدی بلور در صفحه بکارگرفته می شود. تصويراستريوگرافيک ابزاری است برای اندازه گيری زاويه بين سطوح مختلف يک بلور. در واقع برای تصوير هر بلور ابتدا موقعيت هريک از سطوح را نسبت به فضای سه ب عدی در نظر می گيريم و آنگاه اين موقعيت را بر روی يک صفحه دو ب عدی تصوير می کنيم. نمايش تصويری هر بلور با استفاده از موقعيت سطوح و زوايای بين آنها ارائه ميشود. بلور اجسام مختلف بااستفاده ازقانون ثابت بودن زوايا ازيکديگر قابل تشخيص هستند. Slide 6

7 What is Stereographic projection? در واقع تصوير استريوگرافيک کليه اطالعات مورد نياز يک بلور را در صفحه بما ميدهد. اگرنقطه ای مانندP روی سطح کره رابه قطب جنوب کره) S ( وصل کنيم خط PS دايره عظيمه کره را در نقطه کاربردها p 1 قطع می کند به نقطه P 1 بررسی ناهمسانگردی در جهات مختلف بلوری بررسی جابجايی های صفحات بلوری در استحاله های فازی بررسی ساختارهای بلوری به وسيله ميکروسکوپ الکترونی عبوری تصوير استريوگراف نقطه P گويند.

8 میهدیم ماجنا ارراکنیا هنوگچ رد عقاو يارب ريوصت ره رولب تيعقومادتبا كيره زا حوطس ار تبسن هب ياضف هس يدعب ميريگيمرظنرد و هاگنآ نيا تيعقوم ار رب يور هحفص كي ود يدعب ريوصت يم.مينك يارب مسجت ريوصت هس يدعب اي ياضف ره رولب رتهب تسا ره رولب ار رد لخاد كي هرك ضرف مينك هكيروطب زكرم رولب رب زكرم هرك قبطنم دوش سپس زا زكرم هرك هب مامت حوطس رولب يئاهدومع مسر يم.مينك

9 مطابق شکل باال هرگاه از مرکز کره عمودهايی به سطوح مختلف اين بلور وارد کنيم محل تقاطع اين عمودها باسطوح بلور قطبين آن سطوح ناميده می شود. يا به عبارت ديگر اگر فرض کنيم سطوح اين بلور را به موازات خود از مرکز جسم به سمت خارج حرکت دهيم هرکدام از اين سطوح در يک نقطه بر سطوح کره مماس می شوند که به اين ترتيب اثر هر يک از اين سطوح بصورت يک نقطه در روی کره ظاهر می شود که همان قطب سطح مورد نظر است

10 کره استريوگرافيک هم به را كره جنوب و شمال قطب دو كه قطري كه كنيم مي فرض طوري را كره عمل اين در y z و محور با شود مي كشيده چپ به راست از كه قطري و محور موازات به كند مي وصل محور x كند. مطابقت شناسي بلور با مي شود كشيده عقب به جلو از كه قطري باالخره درشكل روبرو موقعيت قطبي هر يك از سطوح بلور ديده مي شود. پيدا كردن موقعيت قطبي هر سطح با استفاده از و τ در تصوير فضايي مانند زواياي Φ پيدا كردن موقعيت يك شهر در روي كره زمين با استفاده از طول و عرض جغرافيايي است. 10

11 ريوصت ره كي زا طاقن ار رب يور حطس يياوتسا هرك هك كي هرياد يضرف تسا اديپ يم مينك و هب مان ريوصت كيفارگويرتسا نآ حوطس يراذگمان يم.مينك يارب نيا راك مادكره زا نيا طاقن يبطق ار هليسوب يطخ هب هطقن لباقم دوخ لصو يم مينك ره مادك زا نيا طوطخ رد كي هطقن هرياد يزكرم اي يياوتسا ار عطق يم دننك هك نيا هطقن ريوصت هطقن يبطق يحطس دروم رظن تسا و هعومجم طاقن طوبرم هب هيلك حوطس نيرولب رب يور كي هرياد ريوصت كيفارگويرتسا حوطس ره رولب ار هب دوجو يم.دروآ 11

12 هب لكش ريز هجوت دينك رد نيا لكش تيعقوم A رهش اب هجوت هب لوط و ييايفارغج ضرع هداد هدش تبسن هب ادبم يلوط فصن( راهنلا )چيونيرگ و ادبم يضرع )اوتسا( ميسرت هدش تسا نييعت تيعقوم حوطس رد ريوصت يياضف زين هب تروص نيمه تسا اب نيا توافت هك رد دروم اهرولب نوچ رادقم هبواز τ تبسن هب ادبم يلامش هيواز جنس هدناوخ يم دوش اذل فرطزا بطق لامش مه دياب مينكادج ارنآ يلاحرد هك ييايفارغج ضرع ره هطقن رب يور هرك نيمز زا طخ فرط ادج اوتسا.دوشيم هب نيمه بيترت اب هدافتسا زا Φياياوز و τ طوبرم هب كيره زا حوطس نيرولب تيعقوم يياضف اي هس يدعب كيره نيازا طاقن رب يور كي حطس يورك هب تسد يم.ديآ 12

13 Slide 13

14 Slide 14

15 Stereographic Projection Gray plane = Equatorial Plane Want to use it as our 2-D representation and project our spherical poles back to it This is a 2-D stereographic projection 15

16 Slide 16

17 Slide 17

18 Stereographic Projection First we define the interfacial angle between two crystal faces as the angle between lines that are perpendicular to the faces. Such a lines are called the poles to the crystal face. Note that this angle is can be measured easily with a device called a contact goniometer. Next, we need a systematic way to define crystallographic angles. For this we use a spherical projection. Imagine that we have a crystal inside of a sphere. From each crystal face we draw a line perpendicular to the face (poles to the face).

19 Stereographic Projection The outer sphere is a spherical projection Plot points where poles intersect sphere Planes now = points But still 3-D Fig 6.3

20 Stereographic Projection Gray plane = Equatorial Plane Want to use it as our 2-D representation and project our spherical poles back to it This is a 2-D stereographic projection Fig 6.5 of Klein (2002) Manual of Mineral Science, John Wiley and Sons

21

22 Figures from {100} Poles of a cubic crystal + {111} Poles

23

24 اولين مرتبه در سال 1902 ميالدي دانشمندي به نام ولف تصوير دوب عدي كره را به صورت يك شبكه كه خطوط طولي آن را نصف النهارات و خطوط عرضي آن را خط استوا و مدارهاي شمالي و جنوبي تشكيل مي دهد ترسيم كرد. Wulff net.pdf 10º 24

25 The Wulff Net دراين شبكه كه به شبكه ولف معروف است فاصله هريك از خطوط 2 درجه است و تصوير محورz بر محور شبكه منطبق است و محل محور y در جهت قطر عرضي )راست به چپ( و محل محور x در جهت طولي )جلو به عقب( در نظر گرفته مي شود. موقعيت قطبي هريك از سطوح بلور را با استفاده از زواياي Φ و ρ كه با دستگاه زاويه سنج انعكاسي دو دايره به دست آمده است مي توان بر روي شبكه ولف پياده كرد. زاويه Φ تعيين كننده طول جغرافيايي و زاويه ρ تعيين كننده عرض جغرافيايي قطب سطح مورد نظر است. Slide 25

26 symmetry elements face poles and principal zones موقعيت قطبي سطوحي كه بر يك محور بلورشناسي عمود و با دوتاي ديگر موازي هستند. Slide 26

27 براي پيداكردن موقعيت طولي نقطه قطبي ازآنجاييكه زاويه Φ در سطح استوا اندازه گيري مي شود مي توان مقدار آن را مستقيما وبكمك يك نقاله از نقطه صفر )شرقي ترين نقطه قطرعرضي( جدانمود وسپس با توجه به موقعيت عرضي بدست آمده نقطه ي مورد نظر را مشخص كرد. D and E are spherical D' and E' are stereographic Distance GD' = f(r) as r 90 as r 0 D' G D' O Slide 27 براي بدست آوردن عرض جغرافيايي نقطه مورد نظر باتوجه به شكل فرض كنيم ميخواهيم عرض جغرافيايي نقطه D بر روي شبكه پياده كنيم وميدانيم كه تصوير نقطه D بر روي شبكه همان نقطه 'D است پس خط OD' موقعيت عرضي نقطه D را مشخص ميكندكه براي بدست آوردن طول OD' درمثلث SOD' از رابطه زير استفاده مي كنيم: OD' =OStg(S) و S= و ρ/2 OS=R و OD' =Rtg(ρ/2)

28 درشکل موقعیت شهرAبا توجه به طول وعرض جغرافیایي داده شده نسبت به مبدا طولي )نصف النهار گرینویچ( ومبداعرضي)استوا( ترسیم شده است تعیین موقعیت سطوح در تصویر فضایي نیزبه همین صورت است با این تفاوت كه در مورد بلورها چون مقدار زاوبه ρ نسبت به مبدا شمالي زاویه سنج قرائت میشود لذا از طرف قطب شمال هم بایدآن راجداكنیم درحالي كه عرض جغرافیایي هرنقطه بر روي كره زمین از طرف خط استوا جدا میشود. به همین ترتیب بااستفاده از زوایايΦ و ρ مربوط به هریك از سطوح بلورین موقعیت فضایي یا سه بعدي هریك از این نقاط بر روي یك سطح كروي بدست مي آید. Slide 28

29 اندازه گيري زاويه بين دوصفحه بااستفاده ازشبكه ولف براي اندازه گيري زاويه بين دو صفحه كه در تصوير استريوگرافيك وجود دارند ابتدا تصوير استريوگرافيك را روي كاغذ شفافي رسم كرده و مركز تصوير را بر مركز شبكه مدرج ولف كه بر روي كاغذ شفافي رسم شده است منطبق مي كنيم )هر دو دايره بايد هم قطر باشند.( سوزني را در مركز دواير فرو مي كنيم. تصوير استريو گرافيك را آنقدر مي چرخانيم تا نصف النهاري از دو نقطه بگذرد زاويه بين دو نقطه را از روي محيط اين نصف النهارمي توان تشخيص داد. Slide 29

30 براي رسم تصويرهربلورابتداموقعيت هريك ازسطوح آنرا نسبت به فضاي سه بعدي در نظرگرفته و آنگاه اين موقعيت را بر روي يك صفحه دوبعدي تصويرمي كنيم. براي تجسم تصويرسه بعدي يافضاي هربلور بهتر است هر بلور را در داخل يك كره فرض كنيم بطوريكه مركز بلور برمركزكره منطبق شود سپس ازمركز كره به تمام سطوح اين بلور عمودهائي رسم كنيم دراين عمل كره را طوري فرض ميكنيم كه قطري كه دوقطب شمال و جنوب كره را به هم وصل ميكند به موازات محور z و قطري كه از راست به چپ كشيده مي شود با محور y و باالخره قطري كه از جلو به عقب كشيده مي شود با محور x بلور شناسي مطابقت كند. 30

31 بلورشناسی-ذواالنوار 31

32 در باره نقاط شبكه كه در سرتاسر بلور توزيع شده اند صحبت كرديم. صفحات منتسب به اين نقاط دسته صفحاتي هستند كه همگي موازيند. صفحات اتمها تابشهاي مختلفي را بازتاب مي كنند. اين صفحات يعني كه عمده ترين اين تابشها الكترونها پرتوهاي ايكس و نوترونها هستند كه براي بررسي ساختمان بلورها بكار مي روند. پس كه هم صفحات بلوري و هم راستاي تابش را مورد مطالعه بيشتري قرار بدهيم. الزم است صفحات بلورها با انديس هاي ميلر و جهت آنها توسط )u,v,w( شناخته مي شوند. )h,k,l(

33 چگونه بايد انديس (l,h),k شناسائی کرد ميلر های را صفحات از يکدسته به مربوط. 1 اگر طول بردار a برابر طول سلول واحد باشد بايد تعداد فاصله هائی را که در اثر قطع صفحات در طول آن درست شده است را بشماريم که اين همان مقدار h است. )البته منظور از فاصله ها فاصله ی صفحات است.(. 2 همين کار را در راستای b انجام ميدهيم تا k بدست آيد. l بدست آيد.. 3 همين کار را در راستای c انجام ميدهيم تا

34 Practice: Find Miller Indices for Planes B A Brown planes: No growth in A, one increment in B. (0,1) Blue planes: One increase in A, one increment in B (1,1) Black planes: No increment in B, one increment in A (1,0)

35

36

37

38

39 Miller Indices of Crystal Planes Z Z Z Y Y Y X (100) X (110) X (111) Figure 4.9

40 Slide 40

41 زاویه بین دو صفحه یا دو جهت براي اندازه گيري زاوية بين دو صفحه ي ( 1 h) 1 k 1 l و) h )در 2 k 2 l 2 هر سيستم بلوري از روابط زير استفاده ميشود: Slide 41

42

43

44 Silicon Crystal Structure and Growth

45 Silicon Crystal Structure Planes and directions are defined using x, y, z coordinates. [111] direction is defined by a vector of 1 unit in x, y and z. Normal direction (reciprocals of intercepts of plane with the x, y and z axes).

46 Silicon has the basic diamond crystal structure two merged FCC cells offset by a/4 in x, y and z.

47 Faced-centered Cubic (FCC) Unit Cell Figure 4.5

48 Silicon Unit Cell: FCC Diamond Structure Figure 4.6

49 Basic FCC Cell Merged FCC Cells Omitting atoms outside Cell Bonding of Atoms

50 عدد همسايگی Coordination Number فاکتور فشردگی اتمها ) Factor (Packing ميزان پرشدن فضاي شبكه توسط اتمها يا حجم اتمهاي داخل سلول واحد تقسيم بر حجم كل سلول واحد را فاكتور فشردگي اتمها مينامند. عدد همسايگی: نزديكترين نقاط شبكه براوه به يك نقطه خاص عدد كوردينانسي را مشخص مي كنند. چون شبكه براوه تناوبي تكرار مي شود همه نقاط تعداد يكساني نقاط همسايه يا عدد كوردينانسي دارند كه اين خاصيتي از شبكه است. Slide 50

51 فاکتور تراکم اتمی )APF( Slide 51

52 ساختار مکعبی مرکز پر BCC Slide 52

53 BCC : فاکتور تراکم اتمی )APF( Slide 53

54 ساختار مکعبی مرکز وجوه پر FCC Slide 54

55 FCC : فاکتور تراکم اتمی )APF( Slide 55

56 ساختار هگزاگونال فشردهHCP Slide 56

57 سلول واحد ويگنر سايتز محاسبه پيوندهاي انرژي الكترون اولين بار توسط Wignerو Seitz با استفاده از طرح سلول واحد انجام شد. به كمك بردارهاي شبكه هر نقطه از شبكه با تمام نقاط شبكه ارتباط برقرار مي كند. سپس يك صفحه عمود بر هر يك از اين بردارها كه متصل مي شود به نقطه شبكه مركزي در نقطه مياني از بردار كشيده مي شود. صفحات كامال نزديك از يك جسم چند وجهي كه شامل تنها نقطه شبكه در مركز آن است تشكيل مي دهد. جسم چند وجهي به عنوان يك سلول واحد ايده آل عمل مي كندكه Wigner and Seitz ناميده ميشود. ساخت سلول واحد Wignerو شبکه دو بعدی (a) bcc شبکه فضائی (b) fcc شبکه فضائی (c) Seitzبا استفاده از طرح: Slide 57

58 Slide 58

59 Slide 59

60 Slide 60

61 Slide 61

62 Slide 62

63 Slide 63

64 Slide 64

65 و آخ ر د عوانا ا ن الح م د ل له ر ب العال مين 65

تصاویر استریوگرافی.

تصاویر استریوگرافی. هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی

Διαβάστε περισσότερα

ﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ

ﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ دستوركارآزمايش ميز نيرو هدف آزمايش: تعيين برآيند نيروها و بررسي تعادل نيروها در حالت هاي مختلف وسايل آزمايش: ميز مدرج وستون مربوطه, 4 عدد كفه وزنه آلومينيومي بزرگ و قلاب با نخ 35 سانتي, 4 عدد قرقره و پايه

Διαβάστε περισσότερα

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

برخوردها دو دسته اند : 1) كشسان 2) ناكشسان

برخوردها دو دسته اند : 1) كشسان 2) ناكشسان آزمايش شماره 8 برخورد (بقاي تكانه) وقتي دو يا چند جسم بدون حضور نيروهاي خارجي طوري به هم نزديك شوند كه بين آنها نوعي برهم كنش رخ دهد مي گوييم برخوردي صورت گرفته است. اغلب در برخوردها خواستار اين هستيم

Διαβάστε περισσότερα

را بدست آوريد. دوران

را بدست آوريد. دوران تجه: همانطر كه در كلاس بارها تا كيد شد تمرينه يا بيشتر جنبه آمزشي داشت براي يادگيري بيشتر مطالب درسي بده است مشابه اين سه تمرين كه در اينجا حل آنها آمده است در امتحان داده نخاهد شد. m b الف ماتريس تبديل

Διαβάστε περισσότερα

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ 1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

1 ﺶﻳﺎﻣزآ ﻢﻫا نﻮﻧﺎﻗ ﻲﺳرﺮﺑ

1 ﺶﻳﺎﻣزآ ﻢﻫا نﻮﻧﺎﻗ ﻲﺳرﺮﺑ آزمايش 1 بررسي قانون اهم بررسي تجربي قانون اهم و مطالعه پارامترهاي مو ثر در مقاومت الكتريكي يك سيم فلزي تي وري آزمايش هر و دارند جسم فيزيكي داراي مقاومت الكتريكي است. اجسام فلزي پلاستيك تكه يك بدن انسان

Διαβάστε περισσότερα

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين

Διαβάστε περισσότερα

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.

Διαβάστε περισσότερα

هندسه تحلیلی بردارها در فضای R

هندسه تحلیلی بردارها در فضای R هندسه تحلیلی بردارها در فضای R فصل اول-بردارها دستگاه مختصات سه بعدی از سه محور ozوoyوox عمود بر هم تشکیل شده که در نقطه ای به نام o یکدیگر را قطع می کنند. قرارداد: دستگاه مختصات سه بعدی راستگرد می باشد

Διαβάστε περισσότερα

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا

Διαβάστε περισσότερα

هر عملگرجبر رابطه ای روی يک يا دو رابطه به عنوان ورودی عمل کرده و يک رابطه جديد را به عنوان نتيجه توليد می کنند.

هر عملگرجبر رابطه ای روی يک يا دو رابطه به عنوان ورودی عمل کرده و يک رابطه جديد را به عنوان نتيجه توليد می کنند. 8-1 جبررابطه ای يک زبان پرس و جو است که عمليات روی پايگاه داده را توسط نمادهايی به صورت فرمولی بيان می کند. election Projection Cartesian Product et Union et Difference Cartesian Product et Intersection

Διαβάστε περισσότερα

هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر:

هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر: آزمايش شماره (10) تقويت كننده اميتر مشترك هدف: هدف از اين آزمايش مونتاژ مدار طراحي شده و اندازهگيري مشخصات اين تقويت كننده جهت مقايسه نتايج اندازهگيري با مقادير مطلوب و در ادامه طراحي يك تقويت كننده اميترمشترك

Διαβάστε περισσότερα

e r 4πε o m.j /C 2 =

e r 4πε o m.j /C 2 = فن( محاسبات بوهر نيروي جاذبه الکتروستاتيکي بين هسته و الکترون در اتم هيدروژن از رابطه زير قابل محاسبه F K است: که در ا ن بار الکترون فاصله الکترون از هسته (يا شعاع مدار مجاز) و K ثابتي است که 4πε مقدار

Διαβάστε περισσότερα

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی

1 دایره فصل او ل کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم با محیط ثابت دایره دارای بیشترین مساحت است. این موضوع در طراحی فصل او ل 1 دایره هندسه در ساخت استحکامات دفاعی قلعهها و برج و باروها از دیرباز کاربردهای بسیاری داشته است. یک قضیۀ بنیادی در هندسه موسوم به»قضیۀ همپیرامونی«میگوید در بین همۀ شکلهای هندسی بسته با محیط ثابت

Διαβάστε περισσότερα

است). ازتركيب دو رابطه (1) و (2) داريم: I = a = M R. 2 a. 2 mg

است). ازتركيب دو رابطه (1) و (2) داريم: I = a = M R. 2 a. 2 mg دستوركارآزمايش ماشين آتوود قانون اول نيوتن (قانون لختي يا اصل ماند): جسمي كه تحت تا ثيرنيروي خارجي واقع نباشد حالت سكون يا حركت راست خط يكنواخت خود را حفظ مي كند. قانون دوم نيوتن (اصل اساسي ديناميك): هرگاه

Διαβάστε περισσότερα

آزمایش 8: تقویت کننده عملیاتی 2

آزمایش 8: تقویت کننده عملیاتی 2 آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده

Διαβάστε περισσότερα

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s.

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s. معادلات ديفرانسيل + f() d تبديل لاپلاس تابع f() را در نظر بگيريد. همچنين فرض كنيد ( R() > عدد مختلط با قسمت حقيقي مثبت) در اين صورت صورت وجود لاپلاس f() نامند و با قضايا ) ضرب در (انتقال درحوزه S) F()

Διαβάστε περισσότερα

دبیرستان غیر دولتی موحد

دبیرستان غیر دولتی موحد دبیرستان غیر دلتی محد هندسه تحلیلی فصل دم معادله های خط صفحه ابتدا باید بدانیم که از یک نقطه به مازات یک بردار تنها یک خط می گذرد. با تجه به این مطلب برای نشتن معادله یک خط احتیاج به داشتن یک نقطه از خط

Διαβάστε περισσότερα

آشنایی با پدیده ماره (moiré)

آشنایی با پدیده ماره (moiré) فلا) ب) آشنایی با پدیده ماره (moiré) توری جذبی- هرگاه روی ورقه شفافی چون طلق تعداد زیادی نوارهای خطی کدر هم پهنا به موازات یکدیگر و به فاصله های مساوی از هم رسم کنیم یک توری خطی جذبی به وجود می آید شکل

Διαβάστε περισσότερα

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i. محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک

Διαβάστε περισσότερα

در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود.

در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود. ك ي آزمايش 7 : راهاندازي و مشخصه خروجي موتور القايي روتور سيمپيچيشده آزمايش 7: راهاندازي و مشخصه خروجي موتور القايي با روتور سيمپيچي شده 1-7 هدف آزمايش در اين آزمايش ابتدا راهاندازي موتور القايي روتور

Διαβάστε περισσότερα

مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان 4-4- تحليلجريانمشبامنابعولتاژنابسته

مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان 4-4- تحليلجريانمشبامنابعولتاژنابسته مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان -2-4 بامنابعجريانوولتاژ تحليلولتاژگرهمدارهايي 3-4- تحليلولتاژگرهبامنابعوابسته 4-4- تحليلجريانمشبامنابعولتاژنابسته 5-4- ژاتلو و 6-4 -تحليلجريانمشبامنابعجريان

Διαβάστε περισσότερα

a a VQ It ميانگين τ max =τ y= τ= = =. y A bh مثال) مقدار τ max b( 2b) 3 (b 0/ 06b)( 1/ 8b) 12 12

a a VQ It ميانگين τ max =τ y= τ= = =. y A bh مثال) مقدار τ max b( 2b) 3 (b 0/ 06b)( 1/ 8b) 12 12 مقاومت مصالح بارگذاري عرضي: بارگذاري عرضي در تيرها باعث ايجاد تنش برشي ميشود كه مقدار آن از رابطه زير قابل محاسبه است: كه در اين رابطه: - : x h q( x) τ mx τ ( τ ) = Q I برش در مقطع مورد نظر در طول تير

Διαβάστε περισσότερα

به نام خدا ساختار بلوری مواد حمیدرضا فرنوش دانشگاه کاشان گروه مهندسی مواد و متالورژی نیمسال اول 94-95

به نام خدا ساختار بلوری مواد حمیدرضا فرنوش دانشگاه کاشان گروه مهندسی مواد و متالورژی نیمسال اول 94-95 به نام خدا ساختار بلوری مواد حمیدرضا فرنوش دانشگاه کاشان گروه مهندسی مواد و متالورژی نیمسال اول 94-95 Energy typical neighbor bond length علم و مهندسی مواد انرژی و چینش اتم ها: غیر چگال چینش رندوم typical

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت

Διαβάστε περισσότερα

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )( shimiomd خواندن مقاومت ها. بررسی قانون اهم برای مدارهای متوالی. 3. بررسی قانون اهم برای مدارهای موازی بدست آوردن مقاومت مجهول توسط پل وتسون 4. بدست آوردن مقاومت

Διαβάστε περισσότερα

( ) x x. ( k) ( ) ( 1) n n n ( 1) ( 2)( 1) حل سري: حول است. مثال- x اگر. يعني اگر xها از = 1. + x+ x = 1. x = y= C C2 و... و

( ) x x. ( k) ( ) ( 1) n n n ( 1) ( 2)( 1) حل سري: حول است. مثال- x اگر. يعني اگر xها از = 1. + x+ x = 1. x = y= C C2 و... و معادلات ديفرانسيل y C ( ) R mi i كه حل سري يعني جواب دقيق ميخواهيم نه به صورت صريح بلكه به صورت سري. اگر فرض كنيم خطي باشد, اين صورت شعاع همگرايي سري فوق, مينيمم اندازه است جواب معادله ديفرانسيل i نقاط

Διαβάστε περισσότερα

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

+ Δ o. A g B g A B g H. o 3 ( ) ( ) ( ) ; 436. A B g A g B g HA است. H H برابر

+ Δ o. A g B g A B g H. o 3 ( ) ( ) ( ) ; 436. A B g A g B g HA است. H H برابر ا نتالپي تشكيل پيوند وا نتالپي تفكيك پيوند: ا نتالپي تشكيل يك پيوندي مانند A B برابر با تغيير ا نتالپي استانداردي است كه در جريان تشكيل ا ن B g حاصل ميشود. ( ), پيوند از گونه هاي (g )A ( ) + ( ) ( ) ;

Διαβάστε περισσότερα

فصل چهارم آشنايي با اتوكد 2012 فصل چهارم

فصل چهارم آشنايي با اتوكد 2012 فصل چهارم 55 فصل چهارم آشنايي با اتوكد 2012 56 هدفهاي رفتاري پس از پايان اين فصل هنرجو بايد در AutoCAD بتواند : 1- قسمت هاي مختلف محيط كار AutoCAD را بشناسد. 2- با كاربرد روبانهاي مختلف آشنايي كلي داشته باشد. 3-

Διαβάστε περισσότερα

هدف: LED ديودهاي: 4001 LED مقاومت: 1, اسيلوسكوپ:

هدف: LED ديودهاي: 4001 LED مقاومت: 1, اسيلوسكوپ: آزمايش شماره (1) آشنايي با انواع ديود ها و منحني ولت -آمپر LED هدف: هدف از اين آزمايش آشنايي با پايه هاي ديودهاي معمولي مستقيم و معكوس مي باشد. و زنر همراه با رسم منحني مشخصه ولت- آمپر در دو گرايش وسايل

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢ دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم

Διαβάστε περισσότερα

بلورشناسی )قسمت اول( Crystallography (part I) دانشگاه کردستان گروه فیزیک ابراهیمی

بلورشناسی )قسمت اول( Crystallography (part I) دانشگاه کردستان گروه فیزیک ابراهیمی بلورشناسی )قسمت اول( Crystallography (part I) دانشگاه کردستان گروه فیزیک ابراهیمی دانشگاه کردستان گروه فیزیک ابراهیمی مراجع 1- بلورشناسی با پرتو L.V. Azaroff X ترجمه: ناصر تجبر 2- Crystals and Crystal

Διαβάστε περισσότερα

SanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک

SanatiSharif.ir مقطع مخروطی: دایره: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک مقطع مخروطی: از دوران خط متقاطع d با L حول آن یک مخروط نامحدود بدست میآید که سطح مقطع آن با یک صفحه میتواند دایره بیضی سهمی هذلولی یا نقطه خط و دو خط متقاطع باشد. دایره: مکان هندسی نقاطی است که فاصلهی

Διαβάστε περισσότερα

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین

همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین همبستگی و رگرسیون در این مبحث هدف بررسی وجود یک رابطه بین دو یا چند متغیر می باشد لذا هدف اصلی این است که آیا بین دو صفت متغیر x و y رابطه و همبستگی وجود دارد یا خیر و آیا می توان یک مدل ریاضی و یک رابطه

Διαβάστε περισσότερα

تبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد.

تبدیل ها هندسه سوم دبیرستان ( D با یک و تنها یک عضو از مجموعه Rست که در آن هر عضو مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. تبدیل ها ن گاشت : D با یک و تنها یک عضو از مجموعه نگاشت از Dبه R تناظری بین مجموعه های D و Rمتناظر باشد. Rست که در آن هر عضو مجموعه تبد ی ل : نگاشتی یک به یک از صفحه به روی خودش است یعنی در تبدیل هیچ دو

Διαβάστε περισσότερα

P = P ex F = A. F = P ex A

P = P ex F = A. F = P ex A محاسبه كار انبساطي: در ترموديناميك اغلب با كار ناشي از انبساط يا تراكم سيستم روبرو هستيم. براي پي بردن به اين نوع كار به شكل زير خوب توجه كنيد. در اين شكل استوانهاي را كه به يك پيستون بدون اصطكاك مجهز

Διαβάστε περισσότερα

آزمایش 2: تعيين مشخصات دیود پيوندي PN

آزمایش 2: تعيين مشخصات دیود پيوندي PN آزمایش 2: تعيين مشخصات دیود پيوندي PN هدف در اين آزمايش مشخصات ديود پيوندي PN را بدست آورده و مورد بررسي قرار مي دهيم. وسايل و اجزاي مورد نياز ديودهاي 1N4002 1N4001 1N4148 و يا 1N4004 مقاومتهاي.100KΩ,10KΩ,1KΩ,560Ω,100Ω,10Ω

Διαβάστε περισσότερα

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی

ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی ویرایشسال 95 شیمیمعدنی تقارن رضافالحتی از ابتدای مبحث تقارن تا ابتدای مبحث جداول کاراکتر مربوط به کنکور ارشد می باشد افرادی که این قسمت ها را تسلط دارند می توانند از ابتدای مبحث جداول کاراکتر به مطالعه

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

تلفات کل سيستم کاهش مي يابد. يکي ديگر از مزاياي اين روش بهبود پروفيل ولتاژ ضريب توان و پايداري سيستم مي باشد [-]. يکي ديگر از روش هاي کاهش تلفات سيستم

تلفات کل سيستم کاهش مي يابد. يکي ديگر از مزاياي اين روش بهبود پروفيل ولتاژ ضريب توان و پايداري سيستم مي باشد [-]. يکي ديگر از روش هاي کاهش تلفات سيستم اراي ه روشي براي کاهش تلفات در سيستم هاي توزيع بر مبناي تغيير محل تغذيه سيستم هاي توزيع احد کاظمي حيدر علي شايانفر حسن فشکي فراهاني سيد مهدي حسيني دانشگاه علم و صنعت ايران- دانشکده مهندسي برق چکيده براي

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

زمین شناسی ساختاری.فصل پنجم.محاسبه ضخامت و عمق الیه

زمین شناسی ساختاری.فصل پنجم.محاسبه ضخامت و عمق الیه پن ج م فص ل محاسبه ضخامت و عم ق الهی زمین شناسی ساختاری.کارشناسی زمین شناسی.بخش زمین شناسی دانشکده علوم.دانشگاه شهید باهنر کرمان.استاد درس:دکتر شهرام شفیعی بافتی 1 تعاریف ضخامت - فاصله عمودی بین دو صفحه

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست

Διαβάστε περισσότερα

سبد(سرمايهگذار) مربوطه گزارش ميكند در حاليكه موظف است بازدهي سبدگردان را جهت اطلاع عموم در

سبد(سرمايهگذار) مربوطه گزارش ميكند در حاليكه موظف است بازدهي سبدگردان را جهت اطلاع عموم در بسمه تعالي در شركت هاي سبدگردان بر اساس پيوست دستورالعمل تاسيس و فعاليت شركت هاي سبدگردان مصوب هيي ت مديره سازمان بورس بانجام مي رسد. در ادامه به اراي ه اين پيوست مي پردازيم: چگونگي محاسبه ي بازدهي سبد

Διαβάστε περισσότερα

الکتریسیته ساکن مدرس:مسعود رهنمون سال تحصیلى 95-96

الکتریسیته ساکن مدرس:مسعود رهنمون سال تحصیلى 95-96 الکتریسیته ساکن سال تحصیلى 95-96 مقدمه: همانطور که می دانیم بارهای الکتریکی بر هم نیرو وارد می کنند. بارهای الکتریکی هم نام یکدیگر را می رانند و بارهای الکتریکی نا هم نام یکدیگر را می ربایند. بار نقطه

Διαβάστε περισσότερα

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط

هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. 2- اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط هد ف های هفته ششم: 1- اجسام متحرک و ساکن را از هم تشخیص دهد. - اندازه مسافت و جا به جایی اجسام متحرک را محاسبه و آن ها را مقایسه کند 3- تندی متوسط اجسام متحرک را محاسبه کند. 4- تندی متوسط و لحظه ای را

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف.

هندسه در فضا 1. خط و صفحه در فضا ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا الف. 4 هندسه در فضا فصل در اين فصل ميخوانيم: 1. خط و صفحه در فضا الف. اصول هندسهي فضايي ب. وضعیت نسبی دو صفحه در فضا پ. وضعیت نسبی دو خط در فضا ت. وضعیت نسبی خط و صفحه در فضا ث. حاالت چهارگانهي مشخص كردن صفحه

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { }

1) { } 6) {, } {{, }} 2) {{ }} 7 ) { } 3) { } { } 8) { } 4) {{, }} 9) { } { } هرگاه دسته اي از اشیاء حروف و اعداد و... که کاملا"مشخص هستند با هم در نظر گرفته شوند یک مجموعه را به وجود می آورند. عناصر تشکیل دهنده ي یک مجموعه باید دو شرط اساسی را داشته باشند. نام گذاري مجموعه : الف

Διαβάστε περισσότερα

در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود.

در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود. ا زمايش 4: راهاندازي و مشخصه خروجي موتور القايي با رتور سيمپيچي شده 1-4 هدف ا زمايش در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا

Διαβάστε περισσότερα

مثلث بندی دلونی فصل 9 مژگان صالحی- دی 92 استاد راهنما: جناب آقای دکتر محمد فرشی

مثلث بندی دلونی فصل 9 مژگان صالحی- دی 92 استاد راهنما: جناب آقای دکتر محمد فرشی مثلث بندی دلونی فصل 9 مژگان صالحی- دی 92 استاد راهنما: جناب آقای دکتر محمد فرشی 1 روش اول گراف دوگان دیاگرام ورونوی : دیاگرام ورونوی مثلث بندی وجوهی که مثلث نیستند 2 : روش دوم )الگوریتم تصادفی افزایشی(

Διαβάστε περισσότερα

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب

که روي سطح افقی قرار دارد متصل شده است. تمام سطوح بدون اصطکاك می باشند. نیروي F به صورت افقی به روي سطح شیبداري با زاویه شیب فصل : 5 نیرو ها 40- شخصی به جرم جرم به وسیله طنابی که از روي قرقره بدون اصطکاکی عبور کرده و به یک کیسه شن به متصل است از ارتفاع h پایین می آید. اگر شخص از حال سکون شروع به حرکت کرده باشد با چه سرعتی به

Διαβάστε περισσότερα

CD = AB, BC = ٢DA, BCD = ٣٠ الاضلاع است.

CD = AB, BC = ٢DA, BCD = ٣٠ الاضلاع است. 1.چهار مثلث چوبی مساوي با اضلاع 3 و 4 و 5 داریم. با استفاده از این چهار مثلث چه تعداد چندضلعی محدب می توان ساخت نیازي به اثبات نیست و تنها کافی است چندضلعی هاي موردنظر را رسم کنید. چندضلعی محدب به چندضلعی

Διαβάστε περισσότερα

رياضي 1 و 2. ( + ) xz ( F) خواص F F. u( x,y,z) u = f = + + F = g g. Fx,y,z x y

رياضي 1 و 2. ( + ) xz ( F) خواص F F. u( x,y,z) u = f = + + F = g g. Fx,y,z x y رياضي و رياضي و F,F,F F= F ˆ ˆ ˆ i+ Fj+ Fk)F ديورژانس توابع برداري ديورژانس ميدان برداري كه توابع اسكالر و حقيقي هستند) به صورت زير تعريف ميشود: F F F div ( F) = + + F= f در اين صورت ديورژانس گراديان,F)

Διαβάστε περισσότερα

(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم«

(,, ) = mq np داريم: 2 2 »گام : دوم« »گام : چهارم« 3 8 بردارها خارجي ضرب مفروضاند. (,, ) 3 و (,, 3 ) بردار دو تعريف: و ميدهيم نمايش نماد با را آن كه است برداري در خارجي ضرب ( 3 3, 3 3, ) m n mq np p q از: است عبارت ماتريس دترمينان در اينكه به توجه با اما

Διαβάστε περισσότερα

راهنمای کاربری موتور بنزینی )سیکل اتو(

راهنمای کاربری موتور بنزینی )سیکل اتو( راهنمای کاربری موتور بنزینی )سیکل اتو( هدف آزمایش : شناخت و بررسی عملکرد موتور بنزینی تئوری آزمایش: موتورهای احتراق داخلی امروزه به طور وسیع برای ایجاد قدرت بکار می روند. ژنراتورهای کوچک پمپ های مخلوط

Διαβάστε περισσότερα

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8 پايداری Stility اطمينان از پايداری سيستم های کنترل در زمان طراحی ا ن بسيار حاي ز اهمييت می باشد. سيستمی پايدار محسوب می شود که: بعد از تغيير ضربه در ورودی خروجی به مقدار اوليه ا ن بازگردد. هر مقدار تغيير

Διαβάστε περισσότερα

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

سعيدسيدطبايي. C=2pF T=5aS F=4THz R=2MΩ L=5nH l 2\µm S 4Hm 2 بنويسيد كنييد

سعيدسيدطبايي. C=2pF T=5aS F=4THz R=2MΩ L=5nH l 2\µm S 4Hm 2 بنويسيد كنييد تمرينات درس اندازه گيري دانشگاه شاهد سعيدسيدطبايي تمرين سري 1 و 2 سوال 1: اندازه گيري را تعريف كرده مشخصات شاخص و دستگاه اندازه گيري را بنويسيد منظور از كاليبراسيون و تنظيم چيست. تفاوت دستگاههاي اندازه

Διαβάστε περισσότερα

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي

ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي ماشینهای مخصوص سیم پیچي و میدانهای مغناطیسي استاد: مرتضي خردمندی تهیهکننده: سجاد شمس ویراستار : مینا قنادی یاد آوری مدار های مغناطیسی: L g L g مطابق شکل فرض کنید سیمپیچ N دوری حامل جریان i به دور هستهای

Διαβάστε περισσότερα

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال

دانشکده ی علوم ریاضی جلسه ی ۵: چند مثال دانشکده ی علوم ریاضی احتمال و کاربردا ن ۴ اسفند ۹۲ جلسه ی : چند مثال مدر س: دکتر شهرام خزاي ی نگارنده: مهدی پاک طینت (تصحیح: قره داغی گیوه چی تفاق در این جلسه به بررسی و حل چند مثال از مطالب جلسات گذشته

Διαβάστε περισσότερα

هندسه تحلیلی و جبر خطی ( خط و صفحه )

هندسه تحلیلی و جبر خطی ( خط و صفحه ) هندسه تحلیلی جبر خطی ( خط صفحه ) z معادالت متقارن ) : خط ( معادله برداری - معادله پارامتری P فرض کنید e معادلهی خطی باشد که از نقطه ی P به مازات بردار ( c L ) a b رسم شده باشد اگر ( z P ) x y l L نقطهی

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز

جلسه 16 نظریه اطلاعات کوانتمی 1 ترم پاییز نظریه اطلاعات کوانتمی ترم پاییز 39-39 مدرسین: ابوالفتح بیگی و امین زاده گوهري نویسنده: محم دحسن آرام جلسه 6 تا اینجا با دو دیدگاه مختلف و دو عامل اصلی براي تعریف و استفاده از ماتریس چگالی جهت معرفی حالت

Διαβάστε περισσότερα

فصل چهارم تعیین موقعیت و امتدادهای مبنا

فصل چهارم تعیین موقعیت و امتدادهای مبنا فصل چهارم تعیین موقعیت و امتدادهای مبنا هدف های رفتاری پس از آموزش و مطالعه این فصل از فراگیرنده انتظار می رود بتواند: 1 راهکار کلی مربوط به ترسیم یک امتداد در یک سیستم مختصات دو بعدی و اندازه گیری ژیزمان

Διαβάστε περισσότερα

سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات

سايت ويژه رياضيات   درسنامه ها و جزوه هاي دروس رياضيات سايت ويژه رياضيات درسنامه ها و جزوه هاي دروس رياضيات دانلود نمونه سوالات امتحانات رياضي نمونه سوالات و پاسخنامه كنكور دانلود نرم افزارهاي رياضيات و... کانال سایت ریاضی سرا در تلگرام: https://telegram.me/riazisara

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی

فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 37 فصل دوم مثلثات نسبت های مثلثاتی دایره مثلثاتی روابط بین نسبتهای مثلثاتی 38 آخر این درس با چی آشنا میشی نسبت های مثلثاتی آشنایی با نسبت های مثلثاتی سینوس کسینوس تانژانت کتانژانت 39 به شکل مقابل نگاه

Διαβάστε περισσότερα

O 2 C + C + O 2-110/52KJ -393/51KJ -283/0KJ CO 2 ( ) ( ) ( )

O 2 C + C + O 2-110/52KJ -393/51KJ -283/0KJ CO 2 ( ) ( ) ( ) به كمك قانون هس: هنري هس شيميدان و فيزيكدان سوي يسي - روسي تبار در سال ۱۸۴۰ از راه تجربه دريافت كه گرماي وابسته به يك واكنش شيمياي مستقل از راهي است كه براي انجام ا ن انتخاب مي شود (در دماي ثابت و همچنين

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال

جلسه 2 جهت تعریف یک فضاي برداري نیازمند یک میدان 2 هستیم. یک میدان مجموعه اي از اعداد یا اسکالر ها به همراه اعمال نظریه اطلاعات کوانتمی 1 ترم پاییز 1391-1392 مدرسین: ابوالفتح بیگی و امین زاده گوهري جلسه 2 فراگیري نظریه ي اطلاعات کوانتمی نیازمند داشتن پیش زمینه در جبرخطی می باشد این نظریه ترکیب زیبایی از جبرخطی و نظریه

Διαβάστε περισσότερα

حل J 298 كنيد JK mol جواب: مييابد.

حل J 298 كنيد JK mol جواب: مييابد. تغيير ا نتروپي در دنياي دور و بر سيستم: هر سيستم داراي يك دنياي دور و بر يا محيط اطراف خود است. براي سادگي دنياي دور و بر يك سيستم را محيط ميناميم. محيط يك سيستم همانند يك منبع بسيار عظيم گرما در نظر گرفته

Διαβάστε περισσότερα

ﺮﺑﺎﻫ -ﻥﺭﻮﺑ ﻪﺧﺮﭼ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﻱﺭﻮﻠﺑ ﻪﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻦﻴﻴﻌﺗ ﻪﺒـﺳﺎﺤﻣ ﺵﻭﺭ ﺩﺭﺍﺪﻧ ﺩﻮﺟﻭ ﻪ ﻱﺍ ﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻱﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻱﺍﺮﺑ ﻲﻤﻴﻘﺘﺴﻣ ﻲﺑﺮﺠﺗ ﺵﻭﺭ ﹰﻻﻮﻤﻌﻣ ﻥﻮﭼ ﻱﺎ ﻩﺩ

ﺮﺑﺎﻫ -ﻥﺭﻮﺑ ﻪﺧﺮﭼ ﺯﺍ ﻩﺩﺎﻔﺘﺳﺍ ﺎﺑ ﻱﺭﻮﻠﺑ ﻪﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻦﻴﻴﻌﺗ ﻪﺒـﺳﺎﺤﻣ ﺵﻭﺭ ﺩﺭﺍﺪﻧ ﺩﻮﺟﻭ ﻪ ﻱﺍ ﻜﺒﺷ ﻱﮊﺮﻧﺍ ﻱﺮﻴﮔ ﻩﺯﺍﺪﻧﺍ ﻱﺍﺮﺑ ﻲﻤﻴﻘﺘﺴﻣ ﻲﺑﺮﺠﺗ ﺵﻭﺭ ﹰﻻﻮﻤﻌﻣ ﻥﻮﭼ ﻱﺎ ﻩﺩ تعيين انرژي بلوري با استفاده از چرخه بورن - هابر چون معمولا روش تجربي مستقيمي براي اندازهگيري انرژي اي وجود ندارد روش محاسبه اين انرژي براي تركيبات يوني اهميت بسياري مييابد. اما مقداري انرژي اي با استفاده

Διαβάστε περισσότερα

آرايه ها و ساختارها سید مهدی وحیدی پور با تشکر از دکتر جواد سلیمی دانشکده مهندسی برق و کامپیوتر

آرايه ها و ساختارها سید مهدی وحیدی پور با تشکر از دکتر جواد سلیمی دانشکده مهندسی برق و کامپیوتر آرايه ها و ساختارها سید مهدی وحیدی پور با تشکر از دکتر جواد سلیمی دانشگاه کاشان- دانشکده مهندسی برق و کامپیوتر آرايه ها آرايه ها به عنوان يک نوع داده مجرد ساختارها و يونيون ها نوع داده اي مجرد چند جمله

Διαβάστε περισσότερα

مشخصه های نابجایی ها چگالی نابجایی: مجموع طول نابجاییها در واحد حجم و یا تعداد نابجایی هایی که یک واحد از سطح مقطع دلخواه را قطع می کنند.

مشخصه های نابجایی ها چگالی نابجایی: مجموع طول نابجاییها در واحد حجم و یا تعداد نابجایی هایی که یک واحد از سطح مقطع دلخواه را قطع می کنند. مشخصه های نابجایی ها نابجاییها و مشخصات آنها تاثیرات مهمی بر روی خواص مکانیکی فلزات دارند. مهمترین این مشخصات میدان کرنشی است که در اطراف نابجایی ها وجود دارد. این میدان کرنش بر تحرک سایر نابجایی ها و

Διαβάστε περισσότερα

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x

Διαβάστε περισσότερα

R = V / i ( Ω.m كربن **

R = V / i ( Ω.m كربن ** مقاومت مقاومت ويژه و رسانندگي اگر سرهاي هر يك از دو ميله مسي و چوبي را كه از نظر هندسي مشابهند به اختلاف پتانسيل يكساني وصل كنيم جريانهاي حاصل در ا نها بسيار متفاوت خواهد بود. مشخصهاي از رسانا كه در اينجا

Διαβάστε περισσότερα

سپس بردار بردار حاال ابتدای بردار U 1 ولتاژ ورودی است.

سپس بردار بردار حاال ابتدای بردار U 1 ولتاژ ورودی است. 33 زیر ميباشد: U = U + U + U 1 R X رابطه )1-6( نشان مي دهد با جمع برداری سه بدست می آید. U' بردار و U x بردار U1= ReI1+ XeI1+ U UR = ReI1 )1-7( )1-8( Ux = XeI1 )1-9( را افت ولتاژ که در رابطه )1-8( و )1-9(

Διαβάστε περισσότερα

به نام حضرت دوست. Downloaded from: درسنامه

به نام حضرت دوست. Downloaded from:  درسنامه به نام حضرت دوست درسنامه کروی هندسه گردآوری: و تهی ه معتمدی ارسالن اصالح: سی د و بازبینی امیر سادات موسوی سالم دوستان همان طور که می دانیم نجوم کروی یکی از بخش های مهم المپیاد نجوم است. این علم شامل دو

Διαβάστε περισσότερα

و دماي هواي ورودي T 20= o C باشد. طبق اطلاعات كاتالوگ 2.5kW است. در صورتي كه هوادهي دستگاه

و دماي هواي ورودي T 20= o C باشد. طبق اطلاعات كاتالوگ 2.5kW است. در صورتي كه هوادهي دستگاه 1- بخاري گازسوز كارگاهي مدل انرژي از تعدادي مجرا تشكيل شده كه گازهاي احتراق در آن جريان دارد و در اثر عبور هوا از روي سطح خارجي اين پره ها توسط يك پروانه محوري fan) (axial گرما به هوا منتقل مي شود. توان

Διαβάστε περισσότερα

ﺪ ﻮﻴﭘ ﻪﻳﻭﺍﺯ ﺯﺍ ﻪﻛ ﺖﺳﺍ ﻂﺧ ﻭﺩ ﻊﻃﺎﻘﺗ ﺯﺍ ﻞﺻﺎﺣ ﻲﻠﺧﺍﺩ ﻪﻳﻭﺍﺯ ﺯﺍ ﺕﺭﺎﺒﻋ ﺪﻧﻮﻴﭘ ﻪﻳﻭﺍﺯ ﻪﻛ ﺪﻫﺩ ﻲﻣ ﻥﺎﺸﻧ ﺮﻳﺯ ﻞﻜﺷ ﻥﺎﺳﻮﻧ ﻝﺎﺣ ﺭﺩ ﹰﺎﻤﺋﺍﺩ ﺎﻬﻤﺗﺍ ﻥﻮﭼ

ﺪ ﻮﻴﭘ ﻪﻳﻭﺍﺯ ﺯﺍ ﻪﻛ ﺖﺳﺍ ﻂﺧ ﻭﺩ ﻊﻃﺎﻘﺗ ﺯﺍ ﻞﺻﺎﺣ ﻲﻠﺧﺍﺩ ﻪﻳﻭﺍﺯ ﺯﺍ ﺕﺭﺎﺒﻋ ﺪﻧﻮﻴﭘ ﻪﻳﻭﺍﺯ ﻪﻛ ﺪﻫﺩ ﻲﻣ ﻥﺎﺸﻧ ﺮﻳﺯ ﻞﻜﺷ ﻥﺎﺳﻮﻧ ﻝﺎﺣ ﺭﺩ ﹰﺎﻤﺋﺍﺩ ﺎﻬﻤﺗﺍ ﻥﻮﭼ طول پيوند Bond lengths همواره در مولكولها اتمهاي متشكله داراي حركت نوساني نسبت به يكديگر ميباشند اگرچه در اثر نوسان اتمها فاصله پيوند ا نها هميشه متغير است با وجود اين در همه پيوندها فاصله متوسطي بين هسته

Διαβάστε περισσότερα

بسمه تعالی «تمرین شماره یک»

بسمه تعالی «تمرین شماره یک» بسمه تعالی «تمرین شماره یک» شماره دانشجویی : نام و نام خانوادگی : نام استاد: دکتر آزاده شهیدیان ترمودینامیک 1 نام درس : ردیف 0.15 m 3 میباشد. در این حالت یک فنر یک دستگاه سیلندر-پیستون در ابتدا حاوي 0.17kg

Διαβάστε περισσότερα

آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ

آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ آزمایش 1 :آشنایی با نحوهی کار اسیلوسکوپ هدف در اين آزمايش با نحوه كار و بخشهاي مختلف اسيلوسكوپ آشنا مي شويم. ابزار مورد نياز منبع تغذيه اسيلوسكوپ Function Generator شرح آزمايش 1-1 اندازه گيري DC با اسيلوسكوپ

Διαβάστε περισσότερα

مود لصف یسدنه یاه لیدبت

مود لصف یسدنه یاه لیدبت فصل دوم 2 تبدیلهای هندسی 1 درس او ل تبدیل های هندسی در بسیاری از مناظر زندگی روزمره نظیر طراحی پارچه نقش فرش کاشی کاری گچ بری و... شکل های مختلف طبق الگویی خاص تکرار می شوند. در این فصل وضعیت های مختلفی

Διαβάστε περισσότερα

A D. π 2. α= (2n 4) π 2

A D. π 2. α= (2n 4) π 2 فصل هشتم پليگون بن ه ف ها رفتار : در پايان اين فصل از فراگير انتظار م رود ه: ۱ پليگون بن را توضيح ده. ۲ ان ازه گير اضلاع و زوايا پليگون را توضيح ده. ۳ تع يل خطا زاويه ا ي پليگون را توضيح ده. ۴ آزمون ي

Διαβάστε περισσότερα

بسم هللا الرحمن الرحیم

بسم هللا الرحمن الرحیم بسم هللا الرحمن الرحیم نام سر گروه : نام اعضای گروه : شماره گروه : تاریخ انجام آزمایش : تاریخ تحویل آزمایش : هدف آزمایش : بررسی جریان و ولتاژ در مدارهای RLC و مطالعه پدیده تشدید وسایل آزمایش : منبع تغذیه

Διαβάστε περισσότερα

یﺭﺎﺘﻓﺭ یﺭﺎﺘﻓﺭ یﺎﻫ یﺎﻫ ﻑﺪﻫ ﻑﺪﻫ

یﺭﺎﺘﻓﺭ یﺭﺎﺘﻓﺭ یﺎﻫ یﺎﻫ ﻑﺪﻫ ﻑﺪﻫ دهم فصل اندازه گذارى ساعات آموزش نظری عملی جمع ٤ ٣ ١ فصل دهم كند. های رفتاری هدف پس از پايان اين فصل از هنرجو انتظار می رود: 1 لزوم اندازه گذاری را تعريف كند. 2 علايم اندازه گذاری را طبق استاندارد شناسايی

Διαβάστε περισσότερα

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی

فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی فصل سوم جریان های الکتریکی و مدارهای جریان مستقیم جریان الکتریکی در رساناها مانند یک سیم مسی الکترون های آزاد وجود دارند که با سرعت های متفاوت بطور کاتوره ای)بی نظم(در حال حرکت هستند بطوریکه بار خالص گذرنده

Διαβάστε περισσότερα

هلول و هتسوپ لدب م ١ لکش

هلول و هتسوپ لدب م ١ لکش دوفازي با كيفيت صورت مخلوط به اواپراتور به 1- در اواپراتور كولر يك اتومبيل مبرد R 134a با دبي 0.08kg/s جريان دارد. ورودي مبرد مي شود و محيط بيرون در دماي 25 o C وارد از روي اواپراتور از بخار اشباع است.

Διαβάστε περισσότερα