ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ
|
|
- Μένθη Γούσιος
- 9 χρόνια πριν
- Προβολές:
Transcript
1
2
3 ΑΝΑΛΟΓΙΕΣ Α. ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ Ο 1. Δίνεται τρίγωνο ABΓ με AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει τις AB,AΓ στα Δ,E αντίστοιχα. α) Να αποδείξετε ότι AΔ = AB 3 και AE =. EΓ (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων AΔ, ΓE. Στο τρίγωνο ΑΒΓ του παρακάτω σχήματος, το τμήμα ΔΕ είναι παράλληλο στην πλευρά ΒΓ του τριγώνου. Από το σημείο Δ φέρουμε την παράλληλη προς τη ΒΕ η οποία τέμνει την ΑΓ στο σημείο Ζ. Να αποδείξετε ότι: α) β) γ) (Μονάδες 5) 3. Δίνεται τρίγωνο ΑΒΓ και τυχαίο σημείο Δ στην πλευρά ΒΓ. Φέρνουμε από το σημείο Δ παράλληλες στις πλευρές ΑΓ και ΑΒ που τέμνουν αντίστοιχα τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ. Να αποδείξετε ότι: α) β) γ) 1 (Μονάδες 5) 3 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
4 4. Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε, Ζ, Η και Θ των πλευρών του ΑΔ, 1 ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) ΕΖ//ΘΗ//ΔΒ. β) ΕΖ = ΘΗ = 1 3 γ) ΕΖΗΘ παραλληλόγραμμο. (Μονάδες 5) 5. Οι διαγώνιοι του τραπεζίου ΑΒΓΔ (ΑΒ//ΓΔ) με ΓΔ>ΑΒ τέμνονται στο Ο. Η παράλληλη από το Β προς την ΑΔ τέμνει την ΑΓ στο Μ. Αν ΟΑ=1, ΟΒ=9 και ΟΓ=36, να αποδείξετε ότι: α) ΟΔ = 7 (Μονάδες 1) β) ΟΜ = 4 4 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
5 ΘΕΜΑ 4ο 6. Δύο οχήματα κινούμενα με σταθερές ταχύτητες υ 1 και υ, περνούν ταυτόχρονα τη χρονική στιγμή t 0 = 0 από τα σημεία Α και Β αντίστοιχα και συναντιούνται στο σημείο Γ όπως φαίνεται στο σχήμα. (Δίνεται ότι η ταχύτητα ενός σώματος που κινείται με σταθερή ταχύτητα είναι ίση με το διάστημα που κινήθηκε προς τον αντίστοιχο χρόνο.) α) Μετά από χρόνο t 1 το όχημα που περνά από το σημείο Α βρίσκεται στο σημείο Δ της διαδρομής ΑΓ ενώ το όχημα που περνά από το σημείο Β βρίσκεται στο σημείο Ε της διαδρομής ΒΓ. Να αποδείξετε ότι ΔΕ//ΑΒ. (Μονάδες 1) β) Έστω Ζ σημείο της διαδρομής ΑΓ και Η σημείο της διαδρομής ΒΓ. Αν ΖΗ//ΑΒ, να αποδείξετε ότι τα οχήματα περνούν ταυτόχρονα από τις θέσεις Ζ και Η. 5 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
6 Β. ΘΕΩΡΗΜΑΤΑ ΔΙΧΟΤΟΜΩΝ ΘΕΜΑ Ο 7. Στο κυρτό τετράπλευρο ΑΒΓΔ του παρακάτω σχήματος, η διχοτόμος της γωνίας Α είναι παράλληλη στην πλευρά ΒΓ και τέμνει τη ΔΒ στο Ε και τη ΔΓ στο Ζ. Αν ΑΔ = 1, ΑΒ = 8, ΔΕ= 9 και ΖΓ = 6, να αποδείξετε ότι: α) ΕΒ = 6 β) ΔΖ =9 (Μονάδες 1) 8. Δίνεται τρίγωνο ΑΒΓ (ΑΒ>ΑΓ) και ΑΔ, ΑΕ η εσωτερική και η εξωτερική διχοτόμος του αντίστοιχα. Αν είναι ΑΒ=6, ΔΒ=3, ΒΓ=5 και ΒΕ=15, να αποδείξετε ότι: α) ΑΓ = 4 (Μονάδες 1) β) ΔΕ = 1 9. Δίνεται τρίγωνο ΑΒΓ με ΑΔ διχοτόμο της. Φέρουμε τις διχοτόμους ΔΕ και ΔΖ των γωνιών και αντίστοιχα. α) Να συμπληρώσετε τα κενά στις παρακάτω ισότητες: i.. ii.. β) Να αποδείξετε ότι:. (Μονάδες 15) 6 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
7 ΟΜΟΙΟΤΗΤΑ Α. ΟΜΟΙΑ ΠΟΛΥΓΩΝΑ ΘΕΜΑ Ο 10. Στο παρακάτω σχήμα, τα πολύγωνα ΑΒΓΔΕ και ΚΛΜΝΡ είναι όμοια και έχουν και. α) Να προσδιορίσετε το λόγο ομοιότητάς τους. Να αιτιολογήσετε την απάντησή σας. β) Να υπολογίσετε το μήκος x της πλευράς ΑΕ. γ) Να βρείτε την περίμετρο του πολυγώνου ΑΒΓΔΕ. 7 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
8 Β. ΟΜΟΙΑ ΤΡΙΓΩΝΑ ΘΕΜΑ Ο 11. Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. α) Να εξετάσετε σε ποιές από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε την απάντησή σας. i. ΑΒ=8, ΑΓ=1, 0 A 35, ΔΕ=0, ΔΖ=30, 0 35 ii. A 47 0, Β 38 0, 47 0,Δ 95 0 iii. ΑΒ=ΑΓ, A Δ, ΔΕ=ΔΖ (Μονάδες 15) β) Στις περιπτώσεις που το τρίγωνο ΑΒΓ είναι όμοιο με το ΔΕΖ, να γράψετε τους ίσους λόγους των ομόλογων πλευρών τους. 1. Στο παρακάτω σχήμα τα τμήματα ΑΕ και ΒΔ τέμνονται στο Γ. Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΕΔΓ είναι όμοια σε κάθε μια από τις παρακάτω περιπτώσεις: α) ΑΒ//ΔΕ (Μονάδες 1) 1 β) ΒΓ=ΔΓ και 13. α) Να εξετάσετε αν δύο τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια σε κάθε μία από τις παρακάτω περιπτώσεις: i) ΑΓ=4, ΒΓ=16, ΒΑ=18, ΔΖ=10, ΕΖ=40, ΔΕ=48 ii) A 63 0, 83 0,Δ 63 0, 34 0 (Μονάδες 15) β) Έστω τρίγωνο ΑΒΓ με πλευρές ΑΒ=6, ΑΓ=7 και ΒΓ=8. Ποιο θα είναι το μήκος των πλευρών ενός τριγώνου ΔΕΖ το οποίο είναι όμοιο με το τρίγωνο ΑΒΓ, με λόγο ομοιότητας 3; 14. Από ένα σημείο Σ που βρίσκεται έξω από έναν δοσμένο κύκλο φέρουμε τα εφαπτόμενα τμήματα ΣΑ και ΣΒ και μία τέμνουσα ΣΓΔ. Να αποδείξετε ότι: α) i. Τα τρίγωνα ΣΒΓ και ΣΔΒ είναι όμοια. ii. Τα τρίγωνα ΣΑΓ και ΣΔΑ είναι όμοια. (Μονάδες 16) β) ΑΓ ΒΔ=ΑΔ ΒΓ 8 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
9 15. Τα παρακάτω τρίγωνα ΑΒΓ και ΔΕΖ έχουν A, και ΑΓ=5, ΕΖ=1, ΕΔ=18 και ΖΔ=15. α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια. β) Να συμπληρώσετε την ισότητα των λόγων με τις κατάλληλες πλευρές του τριγώνου ΔΕΖ: γ) Να υπολογίσετε τα x και y. 16. Στο σχήμα που ακολουθεί, το τμήμα ΔΕ είναι παράλληλο στην πλευρά ΒΓ του τριγώνου ΑΒΓ και επιπλέον ισχύουν ΑΔ=4, ΔΒ=5 και ΔΕ=6. α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΑΔΕ είναι όμοια. β) Με τη βοήθεια του ερωτήματος α) να συμπληρώσετε τα κενά στην ισότητα: γ) Ένας μαθητής χρησιμοποιεί την αναλογία 4 5 για να υπολογίσει το x. Να 6 x εξηγήσετε γιατί αυτή η αναλογία είναι λάθος, να γράψετε τη σωστή και να υπολογίσετε την τιμή του x. (Μονάδες 7) 17. Τα παρακάτω τρίγωνα ΑΒΓ και ΔΕΖ είναι ορθογώνια με ορθές τις γωνίες Α και Δ αντίστοιχα. Επιπλέον, για τις πλευρές των τριγώνων ΑΒΓ και ΔΕΖ αντίστοιχα ισχύουν ΑΒ=8, ΑΓ=4 και ΔΕ=1, ΔΖ=18. 9 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
10 α) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια. β) Με τη βοήθεια του ερωτήματος α) να συμπληρώσετε κατάλληλα τα κενά: γ) Από τις παρακάτω ισότητες να επιλέξετε τη σωστή i. ii. iii. iv (Μονάδες 6) 18. Στο σχήμα που ακολουθεί ισχύουν ΑΒ//ΔΓ, ΑΕ=6, ΑΒ=8, ΓΕ=15 και ΔΕ=10. α) Να βρείτε δυο ζεύγη ίσων γωνιών των τριγώνων ΑΕΒ και ΔΕΓ. Να αιτιολογήσετε την απάντησή σας. β) Να αποδείξετε ότι τα τρίγωνα ΑΕΒ και ΔΕΓ είναι όμοια και να γράψετε την ισότητα των λόγων των ομόλογων πλευρών τους. γ) Να υπολογίσετε τα τμήματα ΒΕ και ΔΓ. 19. Να χρησιμοποιήσετε τις πληροφορίες που σας δίνονται για το κάθε ζεύγος τριγώνων των παρακάτω σχημάτων, προκειμένου να απαντήσετε στα ακόλουθα: α) Ποιο από τα παρακάτω ζεύγη τριγώνων είναι όμοια και ποιο δεν είναι; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 14) β) Για το ζεύγος των όμοιων τριγώνων του προηγούμενου ερωτήματος, i. να γράψετε την ισότητα των λόγων των ομόλογων πλευρών. (Μονάδες 6) ii. να βρείτε το λόγο ομοιότητάς τους. 10 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
11 (Μονάδες 5) 1 ο ζεύγος: τρίγωνα ΚΛΜ και ΖΔΕ ο ζεύγος: τρίγωνα ΑΒΓ και ΗΚΛ 0. Στη διχοτόμο Οδ της γωνίας xoy θεωρούμε τα σημεία Α, Β τέτοια ώστε ΟΒ=ΟΑ. Η κάθετος στην Οδ στο σημείο Α τέμνει την πλευρά Οx στο σημείο Ε και έστω Δ η προβολή του Β στην Οy. Να αποδείξετε ότι: α) Τα τρίγωνα ΟΑΕ και ΟΔΒ είναι όμοια. β) ΟΑ = ΟΔ ΟΕ. (Μονάδες 15) 1. Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ και Ε των πλευρών ΑΒ και ΑΓ αντίστοιχα 1 ώστε. Από το σημείο Ε φέρνουμε παράλληλη προς την ΑΒ, η οποία 3 τέμνει την ΒΓ στο σημείο Ζ. Να αποδείξετε ότι : α) Τα τρίγωνα ΑΒΓ και ΑΔΕ είναι όμοια. β) 3ΒΖ = ΒΓ. (Μονάδες 15) 11 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
12 . Στο ακόλουθο σχήμα είναι και ΒΓ=6. α) Να δικαιολογήσετε γιατί τα τρίγωνα ΑΒΓ και ΑΔE είναι όμοια και να συμπληρώσετε τα κενά στην ισότητα (Μονάδες 15) β) Αν ο λόγος ομοιότητας των τριγώνων ΑΒΓ και ΑΔE είναι ίσος με 3, να βρείτε το μήκος του τμήματος ΔE. 3. Θεωρούμε τρίγωνο ΑΒΓ με ΑΔ εσωτερική διχοτόμο της γωνίας και Ε σημείο της ΑΔ τέτοιο ώστε. 3 Από το Ε φέρνουμε παράλληλες προς τις πλευρές ΑΒ και ΑΓ που τέμνουν τη ΒΓ στα Ζ και Η αντίστοιχα. Να αποδείξετε ότι: α). 3 (Μονάδες 1) β). 1 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
13 ΘΕΜΑ 4 Ο 4. Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουμε τα ύψη του ΑΔ και ΒΕ. α) Αν το τρίγωνο ΑΒΓ είναι και σκαληνό, τότε: i. Να αποδείξετε ότι τα τρίγωνα ΑΔΓ και ΒΕΓ είναι όμοια. ii. Να δικαιολογήσετε γιατί τα τρίγωνα ΑΔΒ και ΒΕΑ δεν μπορεί να είναι όμοια. β) Αν το τρίγωνο ΑΒΓ είναι και ισοσκελές με κορυφή το Γ, τότε μπορούμε να ισχυριστούμε ότι τα τρίγωνα ΑΔΒ και ΒΕΑ είναι όμοια; Να αιτιολογήσετε την απάντησή σας. (Μονάδες 5) 5. Στην πλευρά ΑΒ παραλληλογράμμου ΑΒΓΔ θεωρούμε σημείο Ε τέτοιο, ώστε 1 1 και στην πλευρά ΔΓ θεωρούμε σημείο Ζ τέτοιο, ώστε. Αν η 3 3 διαγώνιος ΑΓ τέμνει τις ΔΕ και ΒΖ στα σημεία Μ και Ν αντίστοιχα, να αποδείξετε ότι: α) ΑΜ=ΓΝ=MN β) MN 1 5 (Μονάδες 1) 6. Δίνεται τρίγωνο ΑΒΓ. Θεωρούμε ΑΜ τη διάμεσο του και Ε τυχαίο σημείο του τμήματος ΒΜ. Από το Ε φέρουμε ευθεία παράλληλη στην ΑΜ που τέμνει την πλευρά ΑΒ στο Δ και την προέκτασή της ΓΑ στο Ζ. α) Να συμπληρώσετε τις αναλογίες και να αιτιολογήσετε την επιλογή σας: i) ii) (Μονάδες 1) β) Να αποδείξετε ότι το άθροισμα ΔΕ+ΕΖ είναι σταθερό, για οποιαδήποτε θέση του Ε στο ΒΜ. 7. Στο παρακάτω σκαληνό τρίγωνο AB θεωρούμε τα σημεία και E στις πλευρές AB και A αντίστοιχα, έτσι ώστε να ισχύουν: AE A και A AB ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
14 α) Να αποδείξετε ότι AE A B AE E β) Να εξετάσετε αν ισχύει A B γ) Να εξετάσετε αν το τμήμα ΒΓ είναι παράλληλο στο τμήμα ΔΕ. Να αιτιολογήσετε πλήρως τις απαντήσεις σας. 8. Δίνεται τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) και σημείο Μ της πλευράς του ΑΔ ώστε 1. Από το Μ φέρνουμε παράλληλη προς τις βάσεις του τραπεζίου, η οποία 3 τέμνει τις ΑΓ και ΒΓ στα σημεία Κ και N αντίστοιχα.να αποδείξετε ότι: 1 α) 3 β) γ) Δίνεται ισοσκελές τρίγωνο ΑΒΓ με ΑΒ = ΑΓ, α) Να αποδείξετε ότι: i) Τα τρίγωνα ΒΔΓ και ΑΒΓ είναι όμοια. ΑΔ ΑΓ ΔΓ 0 Â 36 και η διχοτόμος του ΒΔ. (Μονάδες 6) ii) β) Αν θεωρήσουμε το ΑΓ ως μοναδιαίο τμήμα (ΑΓ = 1), να υπολογίσετε το μήκος του τμήματος ΑΔ και το λόγο ΑΔ ΔΓ. 14 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
15 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ Α. ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΘΕΜΑ Ο 8. Ένας άνθρωπος σπρώχνει ένα κουτί προς τα πάνω στη ράμπα του παρακάτω σχήματος. α) Να αποδείξετε ότι για το ύψος y, που απέχει το κουτί από το έδαφος κάθε s χρονική στιγμή, ισχύει ότι y, όπου s το μήκος που έχει διανύσει το κουτί πάνω 4 στη ράμπα. (Μονάδες 15) β) Όταν το κουτί απέχει από το έδαφος m, να βρείτε: i. Το μήκος s που έχει διανύσει το κουτί στη ράμπα. (Μονάδες 3) ii. Την απόσταση του σημείου Δ από την άκρη της ράμπας Α. (Μονάδες 7) 9. Σε τρίγωνο ΑΒΓ η διχοτόμος της γωνίας A τέμνει την πλευρά ΒΓ σε σημείο Δ, 3 τέτοιο ώστε. 4 3 α) Να αποδείξετε ότι. 4 (Μονάδες 1) 5 β) Αν επιπλέον ισχύει ότι, να εξετάσετε αν το τρίγωνο ΑΒΓ είναι 4 ορθογώνιο. Να δικαιολογήσετε την απάντησή σας. 30. α) Ποιες από τις παρακάτω τριάδες θετικών αριθμών μπορούν να θεωρηθούν μήκη πλευρών ορθογωνίου τριγώνου; Να δικαιολογήσετε την απάντησή σας. i. 3, 4, 5 ii. 3λ, 4λ, 5λ ( λ>0) iii. 4, 5, 6 (Μονάδες18) β) Στο παρακάτω ορθογώνιο τρίγωνο να αποδείξετε ότι, το μήκος x είναι ακέραιο πολλαπλάσιο του 4. (Μονάδες 7) 15 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
16 31. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( 0 90 ) με ύψος ΑΔ και ΑΓ=8, ΔΓ= 3 5. Να υπολογίσετε τα μήκη των παρακάτω τμημάτων: α) ΒΓ β) ΑΒ γ) ΑΔ 3. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( 0 90 ) με ΑΓ=4 και ύψος ΑΔ 1. 5 α) Να υπολογίσετε το μήκος του τμήματος ΔΓ. β) Να αποδείξετε ότι 9. 5 γ) Να βρείτε το εμβαδόν του τριγώνου ΑΒΓ. (Μονάδες 5) 33. Δίνεται τρίγωνο ΑΒΓ με ΑΒ = 18 cm και ΒΓ = 30 cm. Η διχοτόμος της γωνίας Β τέμνει την πλευρά ΑΓ στο σημείο Δ. Αν ΑΔ = 9 cm τότε: α) Να βρείτε το μήκος της πλευράς ΑΓ. β) Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ορθογώνιο. (Μονάδες 1) 34. Δίνεται τετράγωνο ΑΒΓΔ πλευράς α. Στην πλευρά ΑΒ παίρνουμε ένα τμήμα 3 4 και στην ΑΔ ένα τμήμα. Αν το εμβαδόν του πενταγώνου 5 5 ΕΒΓΔΖ είναι 76, να υπολογίσετε: α) Το μήκος α της πλευράς του τετραγώνου ΑΒΓΔ. β) Την περίμετρο του πενταγώνου ΕΒΓΔΖ. (Μονάδες 1) 16 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
17 ΘΕΜΑ 4 Ο 35. Σε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι: i. Όταν η χορδή ΑΒ είναι κάθετη στη χορδή ΓΔ, τότε AM AB=AΓ. ii. Όταν η χορδή ΑΒ δεν είναι κάθετη στη χορδή ΓΔ, ισχύει η σχέση AM AB=AΓ ; Να αιτιολογήσετε την απάντησή σας. β) Αν για τις χορδές ΑΒ και ΓΔ που τέμνονται σε σημείο Μ ισχύει ότι AM AB=AΓ, να αποδείξετε ότι το σημείο Α είναι το μέσο του τόξου ΓΔ. 36. Δίνεται κύκλος (O,R) και μία διάμετρός του ΑΒ. Με διαμέτρους τα τμήματα ΟΑ και ΟΒ γράφουμε τους κύκλους κέντρων Κ και Λ αντίστοιχα. Ένας τέταρτος κύκλος κέντρου Μ και ακτίνας ρ εφάπτεται εξωτερικά των κύκλων κέντρων Κ και Λ και εσωτερικά του κύκλου κέντρου Ο. α) Να εκφράσετε τις διακέντρους ΚΜ, ΛΜ και ΟΜ των αντιστοίχων κύκλων ως συνάρτηση των ακτινών τους, δικαιολογώντας την απάντησή σας. (Μονάδες 1) R β) Να αποδείξετε ότι Ένα κινητό ξεκινάει από ένα σημείο Α και κινείται βόρεια 3 χιλιόμετρα, κατόπιν συνεχίζει 10 χιλιόμετρα ανατολικά, στη συνέχεια προχωράει 4 χιλιόμετρα βόρεια και τέλος 14 χιλιόμετρα ανατολικά καταλήγοντας στο σημείο Ε. α) Αν από το σημείο Ε επιστρέψει στο σημείο Α από το οποίο ξεκίνησε, κινούμενο ευθύγραμμα, να βρείτε την απόσταση ΑΕ που θα διανύσει. (Μονάδες 1) β) Τα σημεία Α, Γ και Ε είναι συνευθειακά; Να αιτιολογήσετε πλήρως την απάντησή σας. 17 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
18 38. Ιδιοκτήτης μεγάλης ακίνητης περιουσίας διαθέτει προς πώληση μια ιδιοκτησία του, η οποία περιλαμβάνει τρία διαδοχικά οικόπεδα με συνολική πρόσοψη 195 m σε ακτή θάλασσας, τα οποία αποτυπώνονται στο σχέδιο που ακολουθεί. Οι επιφάνειες της ιδιοκτησίας και των οικοπέδων είναι σχήματος ορθογωνίου τραπεζίου. Σημειώνεται ότι, ως πρόσοψη οικοπέδου θεωρείται το μήκος της πλευράς του οικοπέδου που συνορεύει με την ακτή της θάλασσας (σημειώνεται ότι το σχέδιο δεν έχει γίνει υπό κλίμακα). α) Να υπολογίσετε το μήκος της πρόσοψης του κάθε οικοπέδου. (Μονάδες 1) β) Αν τα μήκη των δυο άλλων πλευρών της ιδιοκτησίας είναι ανάλογα των αριθμών και 1, να υπολογίσετε την περίμετρο της ιδιοκτησίας. (Δίνεται ότι = 117 ). 18 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
19 Β. ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ ΘΕΜΑ Ο 39. Τα μήκη των πλευρών τριγώνου ΑΒΓ είναι α=8, β=6 και γ=5. α) Να αποδείξετε ότι το τρίγωνο είναι αμβλυγώνιο. (Μονάδες 11) β) Να υπολογίσετε τις προβολές της πλευράς ΑΒ στις πλευρές ΑΓ και ΒΓ. (Μονάδες 14) 40. Δίνεται τρίγωνο ΑΒΓ με πλευρές ΑΒ=6, ΒΓ=9 και α) Να αποδείξετε ότι ΑΓ=3 7. β) Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις γωνίες του. γ) Να υπολογίσετε την προβολή της ΑΒ πάνω στη ΒΓ. 41. Δίνεται τρίγωνο ΑΒΓ με μήκη πλευρών α=5, β=7 και γ=3. 0 α) Να αποδείξετε ότι 10. β) Να υπολογίσετε την προβολή της πλευράς α πάνω στην ευθεία ΑΒ. (Μονάδες 1) 4. Δίνεται τρίγωνο ΑΒΓ με ΑΒ=1, ΑΓ=6, ΒΓ=8. α) Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις γωνίες του. β) Να υπολογίσετε την προβολή της πλευράς ΑΓ πάνω στην ευθεία ΒΓ. (Μονάδες 15) Σε αμβλυγώνιο τρίγωνο ΑΒΓ ( 90 ) φέρουμε τα ύψη του ΑΔ, ΒΕ και ΓΖ. α) Ποια από τις παρακάτω ισότητες είναι λανθασμένη; Στη συνέχεια να την γράψετε σωστά. Α. β = α +γ Αβδ Β. γ = β +α βαε Γ. α = β +γ + Βαε (Μονάδες 1) β) Αν α=7, β=4 και γ=5, να υπολογίσετε την προβολή της ΒΓ πάνω στην ΑΓ. 19 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
20 44. Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουμε το ύψος του ΒΔ. Αν ΑΒ=7, ΑΓ=10 και 0 30, να υπολογίσετε: α) το τμήμα ΑΔ. β) την πλευρά ΒΓ. (Μονάδες 17) 0 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
21 Γ. ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ ΘΕΜΑ Ο 45. Δίνεται τρίγωνο ΑΒΓ με πλευρές α=7, β=4 και μβ 33. α) Να αποδείξετε ότι γ=5. β) Να βρείτε το είδος του τριγώνου ΑΒΓ ως προς τις γωνίες του. (Μονάδες 1) 46. Δίνεται κύκλος (Κ,R) και δύο διάμετροί του ΑΒ και ΓΔ. Έστω Μ εξωτερικό σημείο του κύκλου τέτοιο, ώστε ΑΜ=10, ΒΜ=1 και ΓΜ=14. α) Να αποδείξετε ότι : ΜΑ + ΜΒ = (ΜΚ + R ) β) Να αποδείξετε ότι : ΜΓ + ΜΔ = (ΜΚ + R ) γ) Να υπολογίσετε το μήκος του ΔΜ. (Μονάδες 7) 47. Σε τρίγωνο ΑΒΓ είναι ΑΒ = 6, ΑΓ = 8. Φέρουμε το ύψος του ΑΔ και τη διάμεσο ΑΜ και ισχύει ότι: ΔΜ =. α) Να αποδείξετε ότι ΒΓ = 7. β) Να βρείτε το μήκος του ύψους ΑΔ. (Μονάδες 1) 1 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
22 48. Δίνεται τρίγωνο ΑΒΓ με μήκη πλευρών ΒΓ = α 3, ΑΓ = α και AB = α, όπου α>0. Να αποδείξετε ότι: α) Το τρίγωνο ΑΒΓ είναι ορθογώνιο και να βρείτε ποια είναι η ορθή γωνία. (Μονάδες 1) 3 β), όπου γ μ η διάμεσος του ΑΒΓ που αντιστοιχεί στην πλευρά ΑΒ. 49. Δίνεται τρίγωνο ΑΒΓ για το οποίο έχουμε β=7, γ=6 και η διάμεσος του 89 α. α) Να αποδείξετε ότι α = 9. β) Να υπολογίσετε την προβολή ΜΔ της διαμέσου ΑΜ πάνω στην πλευρά α. (Μονάδες 1) Σε ορθογώνιο τρίγωνο ΑΒΓ ( 90 ) με ΑΒ > ΑΓ, φέρουμε τη διάμεσό του ΑΜ και το ύψος του ΑΔ. α) Να εξετάσετε αν οι παρακάτω σχέσεις είναι σωστές ή λανθασμένες. Αν κάποια είναι λανθασμένη να την ξαναγράψετε διορθωμένη. Α. β + γ = 4μ α Β. β γ = α ΜΔ β) Αν ΑΒ=8 και ΑΓ=6, να υπολογίσετε την προβολή ΜΔ της διαμέσου ΑΜ στην πλευρά ΒΓ. (Μονάδες 15) ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
23 ΘΕΜΑ 4ο 51. Δίνεται τρίγωνο ΑΒΓ με πλευρές α, β, γ για το οποίο ισχύει ότι: β + γ = α. Φέρουμε τα ύψη ΒΔ, ΓΕ και τη διάμεσο ΑΜ το μέσο της οποίας είναι το σημείο Ζ. Να αποδείξετε ότι: α) 90. β). 3 γ). (Μονάδες 6) 3 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
24 Δ. ΤΕΜΝΟΥΣΕΣ ΚΥΚΛΟΥ ΘΕΜΑ ο 5. Δίνεται ορθογώνιο τρίγωνο ΑΒΓ με τη γωνία Α ορθή και το ύψος του ΑΔ. Ένας κύκλος διέρχεται από τα σημεία Δ, Γ και τέμνει την ΒΑ στο Ε και την προέκτασή της στο Ζ έτσι ώστε: ΒΕ=6, ΒΖ=8 και ΒΔ=4. Να υπολογίσετε τα μήκη των τμημάτων: α) ΒΓ. β) ΑΒ. (Μονάδες 1) ΘΕΜΑ 4 Ο 53. Κυρτό τετράπλευρο ABΓΔ είναι εγγεγραμμένο σε κύκλο. Οι διαγώνιοί του AΓ και BΔ τέμνονται στο σημείο M, το οποίο είναι το μέσο της διαγωνίου BΔ. Να αποδείξετε ότι: α) B 4MAM (Μονάδες 7 ) β) AB A AM A γ) AB B A A 54. Θεωρούμε τρίγωνο ΑΒΓ με διάμεσο τέμνονται στο σημείο Η, να αποδείξετε ότι: α) Η γωνία Α του τριγώνου ΑΒΓ είναι οξεία. β) AH AΔ=AΓ AE AM 5. Αν τα ύψη του ΑΔ και ΒΕ (Μονάδες 1) 55. Δίνεται κύκλος κέντρου Ο και μία διάμετρός του ΑΒ. Από σημείο Ε στην προέκταση της διαμέτρου ΑΒ προς το Α, φέρουμε την εφαπτομένη ΕΓ του κύκλου. Η κάθετη στην ΑΒ στο σημείο Ε, τέμνει την προέκταση της ΒΓ (προς το Γ) σε σημείο Δ. α) Να επιλέξετε τη σωστή ισότητα: i. ΕΓ = ΕΑ ΑΒ ii. ΕΓ = ΕΑ ΕΒ iii. ΕΓ = ΕΟ ΕΒ iv. ΕΓ = ΕΟ ΟΒ (Μονάδες 6) 4 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
25 β) Να αποδείξετε ότι: i. ΒΓ ΒΔ = ΒΑ ΒΕ. ii. ΕΒ = ΕΓ + ΒΓ ΒΔ. 5 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
26
27 ΕΜΒΑΔΑ Α. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜΜΑ ΤΜΗΜΑΤΑ ΘΕΜΑ 4 Ο 41. Δίνεται τρίγωνο ΑΒΓ και τα σημεία Δ και Ε των πλευρών του ΑΒ και ΑΓ αντίστοιχα, ώστε. Από το σημείο Α φέρνουμε ευθεία (ε) παράλληλη στη ΒΓ. Η ευθεία (ε) τέμνει τις προεκτάσεις των ΒΕ και ΓΔ στα σημεία Ζ, Η αντίστοιχα. Να αποδείξετε ότι: α) ΔΕ//ΓΒ (Μονάδες 5) β) ΖΕ = 1 ΕΒ. (Μονάδες 7) γ) ΑΖ = 1 ΒΓ. (Μονάδες 7) δ) (ΒΗΖ) = (ΑΒΖ) (Μονάδες 6) 7 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
28 Β. ΕΜΒΑΔΑ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΜΑ Ο 4. Δίνεται ισοσκελές τραπέζιο ΑΒΓΔ (ΑΒ//ΓΔ) και ΒΕ το ύψος του. Αν είναι ΑΒ=3, ΓΔ=7 και ΒΓ=4 τότε, α) να αποδείξετε ότι ΒΕ= 3. β) να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ. (Μονάδες 1) 43. Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην ΑΒ τέμνει την ΑΓ στο σημείο Ζ και η παράλληλη στην ΑΓ τέμνει την ΑΒ στο σημείο Ε. Θεωρούμε Κ και Λ τα μέσα των ΒΔ και ΔΓ αντίστοιχα. Να αποδείξετε ότι: 1 α). Μονάδες 7 1 β). γ). Μονάδες 7 Μονάδες Στο τρίγωνο ΑΒΓ θεωρούμε Δ εσωτερικό σημείο της ΒΓ και έστω Μ στο μέσον της ΑΔ. Να αποδείξετε ότι: 1 α). 1. β) (Μονάδες 1) 8 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
29 45. Σε τετράγωνο ΑΒΓΔ πλευράς α, θεωρούμε σημείο Ε της πλευράς ΔΓ έτσι ώστε 1 ΔΕ= cm. Αν ισχύει ότι, τότε: 8 α) Να αποδείξετε ότι η πλευρά του τετραγώνου α είναι 8 cm. β) Να υπολογίσετε το μήκος του τμήματος ΒΕ. (Μονάδες 1) 46. Σε παραλληλόγραμμο ΑΒΓΔ θεωρούμε Μ το μέσο της ΑΔ. Προεκτείνουμε τη ΔΓ προς το Γ κατά ΓΕ = ΔΓ. Να αποδείξετε ότι: 1 α). (Μονάδες 1) β). 9 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
30 Γ. ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ ΚΑΙ ΠΟΛΥΓΩΝΩΝ ΘΕΜΑ Ο 47. Σε ημικύκλιο διαμέτρου ΑΒ κέντρου Ο θεωρούμε σημείο του Δ. Η χορδή ΔΒ τέμνει το ημικύκλιο διαμέτρου ΟΒ στο Γ. Να αποδείξετε ότι: α) Τα τρίγωνα ΑΔΒ και ΟΓΒ είναι όμοια. (Μονάδες 1) β) (ΑΔΒ)= 4 (ΟΓΒ) ΘΕΜΑ 4 Ο 48. Δίνεται τρίγωνο ΑΒΓ εγγεγραμμένο σε κύκλο (Ο,R) τέτοιο ώστε να ισχύει. Αν η προέκτασή της διαμέσου του ΑΜ τέμνει τον κύκλο στο σημείο Ρ, να αποδείξετε ότι : 3 α) β) a 3 MP= 6 γ) (ΑΒΓ)=6 (ΜΡΓ) 49. Δίνονται δύο κύκλοι (O,α) και (K,β) με a, οι οποίοι εφάπτονται εξωτερικά στο. Φέρνουμε το κοινό εφαπτόμενο τμήμα AB, με A, B σημεία των κύκλων (O,α) και (K,β) αντίστοιχα. Από το θεωρούμε την κάθετη στο AB, η οποία τέμνει τα ευθύγραμμα τμήματα AK και AB στα σημεία και αντίστοιχα. Να αποδείξετε ότι: αβ α) MΛ= α+β β) αβ ΛN= α+β γ) Αν E1, E είναι τα εμβαδά των κύκλων ( Oa, ) και ( K, ) αντίστοιχα, τότε: 30 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
31 E E 1 (AΛN) = (KMΛ) 50. Δίνεται τρίγωνο ΑΒΓ και σημεία Μ, Λ και Ζ πάνω στις πλευρές ΑΒ, ΑΓ και ΒΓ 1 1 αντίστοιχα τέτοια, ώστε AM AB, AΛ AΓ και BZ BΓ α) Να αποδείξετε ότι (AMΛ) (ABΓ). 3 (Μονάδες 7) β) Να αποδείξετε ότι (MZΛ) 5. (ABΓ) 18 (Μονάδες 1) γ) Να υπολογίσετε το λόγο των εμβαδών (AMZΛ). (ABΓ) (Μονάδες 6) 51. Ένα οικόπεδο ΑΒΓΔ σχήματος ορθογωνίου τραπεζίου ( 90 ) έχει πλευρές ΓΔ = 40 m, ΑΒ = 60 m και ΑΔ = 30 m. Ένας δρόμος αποκόπτει από το οικόπεδο το κομμάτι ΖΕΚΓ σχήματος παραλληλογράμμου. Αν ΔΖ = 0 m και ΑΕ = 10 m τότε: α) Να υπολογίσετε το εμβαδόν (ΚΓΒ). (Μονάδες 5) β) Να υπολογίσετε το εμβαδόν του οικοπέδου που αποκόπτει ο δρόμος. (Μονάδες 5) γ) Να υπολογίσετε το πλάτος (υ) του δρόμου. δ) Να υπολογίσετε την ΒΓ. (Μονάδες 6) 31 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
32 5. Δίνεται ημικύκλιο κέντρου Ο και διαμέτρου ΑΒ = R. Στην προέκταση του ΑΒ προς το Β, θεωρούμε ένα σημείο Μ, τέτοιο ώστε ΒΜ = R. Από το Μ φέρουμε το εφαπτόμενο τμήμα ΜΓ στο ημικύκλιο. Φέρουμε εφαπτόμενη στο ημικύκλιο στο σημείο Α η οποία τέμνει την προέκταση του τμήματος ΜΓ στο σημείο Δ. Να αποδείξετε ότι: α) ΜΓ = R. β) ΜΟ ΜΑ =ΜΓ ΜΔ. γ) (ΑΟΓΔ) = (ΜΟΓ). 53. Δίνεται κύκλος (Κ,R) και διάμετρός του ΑΒ. Από σημείο Ε στην προέκταση της ΑΒ προς το μέρος του Β φέρουμε εφαπτόμενο τμήμα στον κύκλου και έστω Γ το σημείο επαφής. Στο σημείο Ε φέρουμε κάθετη στην ΑΒ η οποία τέμνει την προέκταση της ΑΓ στο σημείο Δ. Να αποδείξετε ότι: α) Το τετράπλευρο ΒΕΔΓ είναι εγγράψιμο. β) ΑΓ ΑΔ = ΑΕ ΒΕ ΑΕ. γ) ( ) ( ). (Μονάδες 7) 3 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
33 Δ. ΑΛΛΟΙ ΤΥΠΟΙ ΓΙΑ ΤΟ ΕΜΒΑΔΟΝ ΤΡΙΓΩΝΟΥ ΘΕΜΑ ο Δίνεται τρίγωνο ΑΒΓ με ΑΓ = cm ΒΓ = 3 cm και γωνία 30. α) Να αποδείξετε ότι ΑΒ = 1 cm. β) Να υπολογίσετε το εμβαδόν του τριγώνου ΑΒΓ. γ) Να υπολογίσετε την ακτίνα του περιγεγραμμένου κύκλου του τριγώνου ΑΒΓ. (Μονάδες 7) ΘΕΜΑ 4ο 55. Δίνεται τρίγωνο ΑΒΓ και σημεία Μ, Λ και Ζ πάνω στις πλευρές ΑΒ, ΑΓ και ΒΓ 1 1 αντίστοιχα τέτοια ώστε, και α) Να αποδείξετε ότι ( ) ( ). 3 (Μονάδες 7) β) Να αποδείξετε ότι ( ) 5. ( ) 18 (Μονάδες 1) γ) Να υπολογίσετε το λόγο των εμβαδών ( ) ( ). (Μονάδες 6) 56. Δίνονται δύο κύκλοι (Ο,8), (K,) με διάκεντρο ΟΚ = 1 η οποία τους τέμνει στα σημεία Γ και Δ αντίστοιχα. Αν ΑΒ είναι κοινό εξωτερικό εφαπτόμενο τμήμα των δυο κύκλων και ΚΜ κάθετο τμήμα στην ΟΑ τότε, να αποδείξετε ότι: α) ΜΚ = 6 3. (Μονάδες 6) β) (ΑΟΚΒ) = (Μονάδες 5) γ) Να υπολογίσετε τη γωνία ΜΟΚ. (Μονάδες 7) δ) (ΟΑΓ) = 16(ΔΒΚ). (Μονάδες 7) 33 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
34 57. Σε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ) προεκτείνουμε την πλευρά ΑΓ κατά τμήμα. Αν η προέκταση του ύψους ΑΜ, τέμνει την ΒΔ στο Ε, να αποδείξετε ότι: α). 3 β) ( ). ( ) 3 γ) ( ) 5. ( ) 34 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
35 ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ ΘΕΜΑ ο 58. Με ένα σύρμα μήκους c κατασκευάζουμε ένα κανονικό εξάγωνο. α) Να εκφράσετε την πλευρά του εξαγώνου ως συνάρτηση του c. β) Να αποδείξετε ότι, το εμβαδόν του εξαγώνου ισούται με c 3 4. (Μονάδες 15) 59. Δίνεται κύκλος (Ο,R) και μία διάμετρός του ΒΓ. Η κάθετος στο μέσο Ε της ακτίνας ΟΒ τέμνει το ένα ημικύκλιο στο σημείο Α και η εφαπτομένη του κύκλου στο σημείο Β τέμνει την προέκταση της χορδής ΑΓ στο σημείο Δ. α) Να αποδείξετε ότι: i. ΑΓ = λ 3 = R 3. A ii.. 3 β) Να υπολογίσετε το λόγο των εμβαδών: ( A ) ( ). 35 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
36 Β. ΜΗΚΟΣ ΚΥΚΛΟΥ 60. Με διάμετρο την ακτίνα ΟΑ ενός κύκλου (Ο, R) γράφουμε κύκλο (Κ) και από το Ο φέρουμε ημιευθεία που σχηματίζει με την ακτίνα ΟΑ γωνία 30 και τέμνει τον κύκλο (Ο) στο Γ και τον κύκλο (Κ) στο Δ. α) Να αποδείξετε ότι τα τόξα ΑΓ και ΑΔ έχουν ίσα μήκη. β) Να υπολογίσετε ως συνάρτηση της ακτίνας R του κύκλου (Ο, R) την περίμετρο του μικτόγραμμου (σκιασμένου) τριγώνου ΑΔΓ. (Μονάδες 15) 36 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
37 Γ.ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΜΑ ο 61. Σε τετράγωνο ΑΒΓΔ με πλευρά 10, θεωρούμε τον εγγεγραμμένο κύκλο του κέντρου Ο και εντός του κύκλου το εγγεγραμμένο τετράγωνο ΚΛΜΝ. α) Να αποδείξετε ότι (ΚΛΜΝ)=50. (Μονάδες 1) β) Να αποδείξετε ότι το εμβαδόν του γραμμοσκιασμένου χωρίου του κύκλου που βρίσκεται στο εξωτερικό του τετραγώνου ΚΛΜΝ και εσωτερικά του κύκλου, είναι 5(π ). 6. Στο παρακάτω σχήμα οι κύκλοι (Ο, R) και (Κ, ρ) εφάπτονται εσωτερικά στο σημείο Α. Από το άκρο Β της διαμέτρου ΑΒ του κύκλου (Ο, R) φέρουμε το εφαπτόμενο τμήμα ΒΓ του κύκλου (Κ, ρ) και είναι ΒΓ=1. Αν η διάμετρος ΒΑ τέμνει τον κύκλο (Κ, ρ) στο Δ και ισχύει ότι ΒΔ=8, τότε: α) Να αποδείξετε ότι για τις ακτίνες R και ρ των κύκλων (Ο, R) και (Κ, ρ) ισχύουν R=9 και ρ=5. (Μονάδες 15) β) Να υπολογίσετε το εμβαδόν του χωρίου (σκιασμένο) που περικλείεται μεταξύ των κύκλων. 37 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
38 63. Στο παρακάτω σχήμα, τα καμπυλόγραμμα τμήματα ΒΑ, ΑΓ, ΖΔ και ΔΕ είναι ίσα ημικύκλια. Αν ΒΕ//AΔ//ΓΖ, ΒΕ=ΑΔ=ΓΖ=0 και το ύψος του σχήματος είναι 4, να υπολογίσετε: α) Την περίμετρο του σχήματος. (Μονάδες 1) β) Το εμβαδόν του. 64. Από σημείο Α εκτός κύκλου (Ο, R) φέρουμε τέμνουσα ΑΒΓ έτσι ώστε ΑΒ=ΒΓ. Αν ΟΑ = R 7 τότε: α) Να αποδείξετε ότι ΒΓ = λ 3 = R 3. (Μονάδες 1) β) Να υπολογίσετε το εμβαδόν του κυκλικού τμήματος ΓΔΒ. 65. Δίνεται κύκλος (Ο,R) διαμέτρου ΑΒ και ημιευθεία Αx τέτοια, ώστε η γωνία ΒΑx να είναι 30 o. Η Αx τέμνει τον κύκλο στο σημείο Γ. Φέρουμε την εφαπτομένη του κύκλου στο σημείο Β, η οποία τέμνει την Αx στο σημείο Ρ. Να αποδείξετε ότι: α) ΒΓ = R. (Μονάδες 5) ( ) 1 β). ( ) 4 38 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
39 γ) ΡΒ = R 3. 3 (Μονάδες 6) δ) Το εμβαδόν του κυκλικού τμήματος που περιέχεται στην κυρτή γωνία ΒΟΓ είναι: R (3 3) Ε =. 1 (Μονάδες 6) 66. Σε τετράγωνο ΑΒΓΔ με πλευρά 10, κατασκευάζουμε ημικύκλια με διαμέτρους τις πλευρές του τετραγώνου που βρίσκονται στο εσωτερικό του και έχουν κοινό σημείο το κέντρο Ο του τετραγώνου. α) Να υπολογίσετε το εμβαδόν του κυκλικού τομέα που περιέχεται στην επίκεντρη γωνία, όπου Θ το μέσο της πλευράς ΑΔ. (Μονάδες 5) β) Να αποδείξετε ότι το εμβαδόν του κυκλικού τμήματος που περιέχεται στην επίκεντρη γωνία είναι 5 ( ) 4. γ) Να αποδείξετε ότι το εμβαδόν του γραμμοσκιασμένου μέρους του τετραγώνου, είναι 50 (4 π). 39 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
40 ΘΕΜΑ 4 ο 67. Σε τετράγωνο ΑΒΓΔ πλευράς α, γράφουμε τεταρτοκύκλιο εσωτερικά του τετραγώνου με κέντρο Α και ακτίνα α. α) Αν X 1 είναι το χωρίο του τετραγώνου που βρίσκεται εξωτερικά του τεταρτοκύκλιου, να αποδείξετε ότι το εμβαδόν του είναι: (X 1 ) = (4 ). 4 (Μονάδες 5) β) Με διάμετρο ΑB κατασκευάζουμε ημικύκλιο εσωτερικά του τετραγώνου. Αν Χ είναι το χωρίο του ημικυκλίου και Χ 3 το χωρίο του τεταρτοκυκλίου που βρίσκεται εξωτερικά του ημικυκλίου, να υπολογίσετε τα εμβαδά των δύο χωρίων X και Χ 3. (Μονάδες 11) γ) Ποιο από τα χωρία Χ 1 και Χ έχει το μεγαλύτερο εμβαδόν; Να δικαιολογήσετε την απάντησή σας. 68. Δύο ίσοι κύκλοι (Κ,R) και (Λ,R) τέμνονται στα σημεία Α και Β έτσι ώστε το μήκος της διακέντρου τους να είναι ΚΛ = R. α) Να δείξετε ότι το τετράπλευρο ΚΑΛΒ είναι τετράγωνο. β) Να υπολογίσετε το εμβαδόν του κοινού χωρίου των δύο κύκλων. (Μονάδες 15) 69. Σε κύκλο (Ο,R) θεωρούμε τα σημεία Γ και Δ που διαιρούν τη διάμετρό του ΑΒ=δ σε τρία ίσα τμήματα. Στο ένα από τα δύο ημιεπίπεδα της ΑΒ γράφουμε τα ημικύκλια με διαμέτρους τις ΑΓ και ΑΔ και στο αντικείμενο ημιεπίπεδο γράφουμε τα ημικύκλια με διαμέτρους ΒΔ και ΒΓ. 40 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
41 Να αποδείξετε: α) Το εμβαδόν Ε του κυκλικού δίσκου διαμέτρου ΑΒ = δ ισούται με. 4 (Μονάδες 5) β) Το μήκος του καμπυλόγραμμου σχήματος ΑΓΒΔΑ (το γραμμοσκιασμένο) ισούται με το μήκους του κύκλου (Ο,R). γ) Οι καμπύλες γραμμές ΑΓΒ και ΑΔΒ διαιρούν τον κυκλικό δίσκο διαμέτρου ΑΒ = δ σε τρία ισεμβαδικά χωρία τα Ε 1, Ε, Ε Στα άκρα της χορδής ΑΒ = R ενός κύκλου (Ο, R), φέρουμε τα εφαπτόμενα τμήματα ΣΑ και ΣΒ. Αν η ΣΟ τέμνει το τόξο ΑΒ στο σημείο Μ, τότε: α) Να αποδείξτε ότι: i) το τρίγωνο ΑΟΒ είναι ορθογώνιο. ii) R( 1). (Μονάδες 5) β) Να υπολογίσετε το γραμμοσκιασμένο εμβαδόν (ΣΑΒ) ως συνάρτηση της ακτίνας R του κύκλου. 71. Σε κύκλο κέντρου Ο και ακτίνας R = 6 cm εγγράφουμε τετράγωνο ΑΒΓΔ και στο τετράγωνο εγγράφουμε νέο κύκλο. α) Να υπολογίσετε: i. Το εμβαδόν του τετραγώνου. (Μονάδες 7) ii. Το εμβαδόν E του γραμμοσκιασμένου χωρίου, δηλαδή του χωρίου του τετραγώνου ΑΒΓΔ που βρίσκεται έξω από τον εγγεγραμμένο κύκλο του. 41 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
42 β) Να συγκρίνετε το εμβαδόν E του γραμμοσκιασμένου χωρίου με το εμβαδόν του τμήματος του κύκλου ακτίνας R που βρίσκεται έξω από το τετράγωνο ΑΒΓΔ. 7. Δίνεται κύκλος (Ο,R), η διάμετρος του ΒΓ και η χορδή του ΑΒ = R 3. Η εφαπτομένη του κύκλου στο σημείο Γ τέμνει την προέκταση της χορδής ΒΑ στο σημείο Δ. Να βρείτε ως συνάρτηση της ακτίνας R: α) Το εμβαδόν του τριγώνου ΑΒΓ. β) Το μήκος του ευθυγράμμου τμήματος ΓΔ. γ) Το εμβαδόν του (σκιασμένου) μικτόγραμμου τριγώνου ΑΔΓ. 73. Δίνεται κύκλος (Ο,R) και σημείο Μ τέτοιο, ώστε η δύναμή του ως προς τον κύκλο (Ο,R) να είναι 3R. Αν ΜΑ, ΜΒ είναι τα εφαπτόμενα τμήματα από το σημείο Μ προς τον κύκλο, τότε : α) Να αποδείξετε ότι ΜΑ= R 3 (Μονάδες 6) β) Να βρείτε ως συνάρτηση της ακτίνας R το εμβαδόν i) του τετραπλεύρου ΟΑΜΒ. (Μονάδες 6) ii) του (σκιασμένου) μικτόγραμμου τριγώνου ΑΜΒ. γ) Να αποδείξετε ότι (ΟΑΓΒ) = το ευθύγραμμο τμήμα ΟΜ. R 3, όπου Γ είναι το σημείο τομής του κύκλου με (Μονάδες 5) 4 ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
43 74. Δύο ίσοι κύκλοι (Κ,R), (Λ,R) τέμνονται στα σημεία Α, Β, όπως φαίνεται στο παρακάτω σχήμα και έχουν διάκεντρο ΚΛ = R 3. α) Να βρείτε τη γωνία. β) Να βρείτε ως συνάρτηση της ακτίνας R το εμβαδόν: i) Του τετραπλεύρου ΑΚΒΛ. ii) Του σκιασμένου μηνίσκου. (Μονάδες 7) 75. Δίνεται κανονικό εξάγωνο ΑΒΓΔΕΖ εγγεγραμμένο σε κύκλο (Ο,R). Φέρουμε τα τμήματα ΑΓ, ΑΔ και ΑΜ, όπου Μ το μέσο του ΓΔ. Να αποδείξετε ότι: 3R 3 α) (ΑΒΓΔΕΖ) =. (Μονάδες 5) R 3 β) (ΑΜΔ) =. 4 (Μονάδες 7) γ) (ΑΜΔΕΖ) = (ΑΒΓΜ) (Μονάδες 5) δ) Το εμβαδόν του (σκιασμένου) κυκλικού τμήματος που περικλείεται από τη χορδή R ΑΓ και το τόξο ΑΒΓ είναι ίσο με: (4 3 3) ΕΠΙΜΕΛΕΙΑ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ
και των πλευρών του,,, 1 αντίστοιχα τέτοια, ώστε. 3 Να αποδείξετε ότι: α) / / / /. (Μονάδες 10)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ 04 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΤΑΞΙΝΟΜΗΣΗ ΘΕΜΑΤΩΝ ΑΝΑ ΕΝΟΤΗΤΑ ΘΕΩΡΗΜΑ ΘΑΛΗ ΘΕΜΑ ο ΘΕΜΑ -8975 Δίνεται τρίγωνο ABΓ με AB=9, AΓ=5. Από το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά BΓ που τέμνει
Διαβάστε περισσότερα2ηέκδοση 20Ιανουαρίου2015
ηέκδοση 0Ιανουαρίου015 ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΓΧΡΟΝΗ ΜΑΘΗΣΗ (β-πακέτο ασκήσεων) 1 89 Δίνεται τρίγωνο ΑΒΓ και Δ εσωτερικό σημείο του ΒΓ. Φέρουμε από το Δ παράλληλες στις πλευρές ΑΒ και ΑΓ. Η παράλληλη στην
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 7 : ΑΝΑΛΟΓΙΕΣ. Δίνεται τρίγωνο ΑΒΓ (ΑΒ>ΑΓ) και ΑΔ, ΑΕ η εσωτερική και η εξωτερική διχοτόμος του αντίστοιχα. Αν είναι ΑΒ=6, ΔΒ=, ΒΓ=5 και ΒΕ=5, να αποδείξετε ότι: α) ΑΓ
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση - - 0 Μεταβολές από την προηγούμενη έκδοση Αφαιρέθηκαν οι ασκήσεις _90, _900 και _907 Αλλαγές: Στην άσκηση _909 άλλαξε το β ερώτημα, στην
Διαβάστε περισσότεραΘΕΜΑ 4 Ο ΑΒ 3 ΕΓ Α ΑΒ,
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 7 Ο - ΑΝΑΛΟΓΙΕΣ ΘΕΜΑ Ο Άσκηση (_8975) Θεωρούμε τρίγωνο ΑΒΓ ΑΒ=9 και ΑΓ=5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ
Διαβάστε περισσότεραΘεώρημα Θαλή. μ10. μ 10 γ) Δίνεται κυρτό τετράπλευρο ΑΒΓΔ και τα σημεία Ε,Ζ,Η και Θ των πλευρών του ΑΔ, ΑΒ, ΒΓ, ΓΔ αντίστοιχα τέτοια, ώστε
Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. α) Να αποδείξετε
Διαβάστε περισσότεραΦεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ. Θέμα 2 ο (29)
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Θέμα 2 ο (29) -2- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος -3- Τράπεζα θεμάτων Γεωμετρίας Β Λυκείου Φεργαδιώτης Αθανάσιος
Διαβάστε περισσότεραΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου. // ) και BE
ΡΑΛΛΕΙΟ ΓΕΛ ΘΗΛΕΩΝ ΠΕΙΡΑΙΑ ΣΧ. ΕΤΟΣ 06-7 Επειδή το ζητήσατε κορίτσια μου: Α. ΘΕΩΡΙΑ Τα κεφάλαια: ΕΠΑΝΑΛΗΨΗ Γεωμετρίας Β Λυκείου 9 ο Μετρικές σχέσεις, 0 ο Εμβαδά, ο Μέτρηση Κύκλου, την διδαχθείσα ύλη Β.
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr 9--0 Θεώρημα Θαλή.897. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΚΕΦΑΛΑΙΟ 8 Ο - ΟΜΟΙΟΤΗΤΑ ΘΕΜΑ 2 Ο Άσκηση 1 (2_18984) Θεωρούμε δύο τρίγωνα ΑΒΓ και ΔΕΖ. (α) Να εξετάσετε σε ποιες από τις παρακάτω περιπτώσεις τα τρίγωνα ΑΒΓ και ΔΕΖ είναι όμοια και να δικαιολογήσετε
Διαβάστε περισσότεραΣε κύκλο κέντρου Ο θεωρούμε δύο χορδές του ΑΒ και ΓΔ που τέμνονται σε ένα σημείο Μ. α) Αν το σημείο Α είναι το μέσο του τόξου ΓΔ, να αποδείξετε ότι:
GI_V_GEO_4_8976 Σε οξυγώνιο τρίγωνο ΑΒΓ φέρουμε τα ύψη του ΑΔ και ΒΕ. α) Αν το τρίγωνο ΑΒΓ είναι και σκαληνό, τότε: i. Να αποδείξετε ότι τα τρίγωνα ΑΔΓ και ΒΕΓ είναι όμοια. (Μονάδες 0) ii. Να δικαιολογήσετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ
Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤA ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ Θέμα 4 ο (14) -- Τράπεζα θεμάτων Μαθηματικών προσανατολισμού Β Λυκείου Φεργαδιώτης Αθανάσιος -- Τράπεζα θεμάτων Μαθηματικών
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου. Τράπεζα Θεμάτων 18-22/1/2015
Τράπεζα Θεμάτων 8 -//0 ο Θέμα Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Πατσιμάς Δημήτρης Θεωρήματα διχοτόμων..8.δίνεται τρίγωνο ΑΒΓ με ΑΔ διχοτόμο της γωνίας και Φέρουμε τις διχοτόμους
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ
ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ Βασικά θεωρήματα Σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο μιας κάθετης πλευράς του είναι ίσο με το γινόμενο της υποτείνουσας επί την προβολή της
Διαβάστε περισσότεραΑΒ ίνεται τραπέζιο ΑΒΓ (ΑΒ//Γ ) και σηµείο Μ της πλευράς του Α ώστε =. Από το
1. ίνεται ισοσκελές τρίγωνο ΑΒΓ µε ΑΒ=ΑΓ, Â =36o και η διχοτόµος του Β. α) Να αποδείξετε ότι: i) Τα τρίγωνα Β Γ και ΑΒΓ είναι όµοια. ii) A 2 =ΑΓ Γ β) Αν θεωρήσουµε το ΑΓ ως µοναδιαίο τµήµα (ΑΓ=1), να υπολογίσετε
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Τράπεζα θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα θεμάτων www.askisopolis.gr η έκδοση 7 - - 05 Μεταβολές από την προηγούμενη έκδοση Προστέθηκαν 50 ασκήσεις Θεώρημα Θαλή.8975. Θεωρούμε τρίγωνο ΑΒΓ με AB 9 και 5. Από το βαρύκεντρο
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ (ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ)
ΩΜΤΡΙ ΛΥΚΙΟΥ (ΤΡΠΖ ΘΜΤΩΝ) GI_V_GEO_2_18975 ίνεται τρίγωνο AB με AB=9, A=15. πό το βαρύκεντρο φέρνουμε ευθεία παράλληλη στην πλευρά B που τέμνει τις AB,A στα,e αντίστοιχα. α) Να αποδείξετε ότι A = 2 AB
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ. ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου 2 ο Θέμα. Εκφωνήσεις - Λύσεις των θεμάτων. Έκδοση 1 η (14/11/2014)
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΓΕΩΜΕΤΡΙΑ Β τάξης Γενικού Λυκείου ο Θέμα Εκφωνήσεις - Λύσεις των θεμάτων Έκδοση 1 η (14/11/014) Θέματα ης Ομάδας GI_V_GEO 18975 Δίνεται τρίγωνο ABΓμε AB=9, AΓ=15. Από το βαρύκεντρο φέρνουμε
Διαβάστε περισσότεραA λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α )
A λ υ τ ε ς Α σ κ η σ ε ι ς ( Τ ρ ι γ ω ν α ) 1 Στις πλευρες ΑΒ, ΒΓ, ΓΑ ισοπλευρου τριγωνου ΑΒΓ, παιρνουμε 3 Να δειχτει οτι α + 110 0α Ποτε ισχυει Συγκρινετε το ισον; τα τριγωνα με σημεια Δ, Ε, Ζ αντιστοιχα,
Διαβάστε περισσότεραΤάξη A Μάθημα: Γεωμετρία
Τάξη A Μάθημα: Γεωμετρία Η Θεωρία σε Ερωτήσεις Ερωτήσεις Κατανόησης Επαναληπτικά Θέματα Επαναληπτικά Διαγωνίσματα Περιεχόμενα Τρίγωνα Α. Θεωρία-Αποδείξεις Σελ.2 Β. Θεωρία-Ορισμοί..Σελ.9 Γ. Ερωτήσεις Σωστού
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )
ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος ) Ερωτήσεις Θεωρίας Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια (210-4903576) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...
Αμυραδάκη 0, Νίκαια (10-4903576) ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΘΕΜΑ 1 ΝΟΕΜΒΡΙΟΣ 013 Α. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο, το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα του ισούται με το γινόμενο
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 4ο Το Θεώρημα του Θαλή και οι Συνέπειές του 198 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Στο παρακάτω σχήμα το τρίγωνο ΑΒΓ είναι ορθογώνιο στο Α. Αν ΑΔ ΒΓ, ΕΔ ΑΒ τότε το τρίγωνο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 8 ο ΟΜΟΙΟΤΗΤΑ
ΟΜΟΙΟΤΗΤΑ Ορισμός: Δύο ευθύγραμμα σχήματα ονομάζονται όμοια, αν έχουν τις πλευρές τους ανάλογες και τις γωνίες που σχηματίζονται από ομόλογες πλευρές τους ίσες μία προς μία. ΚΡΙΤΗΡΙΑ ΟΜΟΙΟΤΗΤΑΣ ΤΡΙΓΩΝΩΝ
Διαβάστε περισσότεραΑσκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ
Ασκήσεις για τις εξετάσεις Μάη Ιούνη 014 στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ Άσκηση 1 η Δίνεται παραλληλόγραμμο ΑΒΓΔ και. Με διάμετρο τη διαγώνιο ΑΓ γράφουμε κύκλο με κέντρο Ο που τέμνει τη ΓΔ στο
Διαβάστε περισσότερα4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ
4 ΔΙΑΜΕΣΟΣ ΟΡΘΟΓΩΝΙΟΥ ΤΡΙΓΩΝΟΥ 1. Δίνεται ορθογώνιο και ισοσκελές τρίγωνο ΑΒΓ( ˆ =90 ο ) και ΑΔ η διχοτόμος της γωνίας A. Από το σημείο Δ φέρουμε παράλληλη προς την ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο
ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο τέλος της πρότασης αν αυτή είναι Σωστή και Λ αν αυτή είναι Λάθος: ύο τρίγωνα είναι ίσα αν έχουν ίσες
Διαβάστε περισσότερα5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια
5o ΚΕΦΑΛΑΙΟ : Παραλληλόγραμμα - Τραπέζια 7 η διδακτική ενότητα : Παραλληλόγραμμα-Είδη παραλληλογράμμων 1. Να εξετάσετε αν είναι σωστή ή λανθασμένη καθεμιά από τις επόμενες προτάσεις: α) Οι διαγώνιοι κάθε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ
ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ 1) Από εξωτερικό σημείο Ρ ενός κύκλου (Ο,ρ) φέρνουμε τα εφαπτόμενα τμήματα ΡΑ και ΡΒ. Αν Μ είναι ένα τυχαίο εσωτερικό σημείο του ευθύγραμμου τμήματος ΟΡ, να αποδείξετε ότι: α) τα
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7 ο ΑΝΑΛΟΓΙΕΣ
ΑΝΑΛΟΓΙΕΣ ΘΕΩΡΗΜΑ ΤΟΥ ΘΑΛΗ Βασικά θεωρήματα Αν τρεις τουλάχιστον παράλληλες ευθείες τέμνουν δύο άλλες ευθείες, ορίζουν σε αυτές τμήματα ανάλογα. (αντίστροφο Θεωρήματος Θαλή) Θεωρούμε δύο ευθείες δ και
Διαβάστε περισσότεραΕρωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος
Εγγράψιμα και περιγράψιμα τετράπλευρα Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος 1. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι παραλληλόγραμμο.. Ένα τετράπλευρο είναι εγγράψιμο σε κύκλο αν είναι
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ
Ο ΓΕΛ ΣΤΑΥΡΟΥΠΟΛΗΣ ΣΧΟΛΙΚΟ ΕΤΟΣ 015-016 ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΕΠΙΜΕΛΕΙΑ ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ ΚΕΦΑΛΑΙΟ 9 Ο : ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΟΡΘΕΣ ΠΡΟΒΟΛΕΣ Το τμήμα ΒΔ λέγεται προβολή του.. πάνω στην Το τμήμα
Διαβάστε περισσότεραΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ ΘΕΩΡΙΑ : Μήκος κύκλου: L = Εμβαδόν κύκλου: Ε = ( όπου π = 3,14) Γνωρίζοντας ότι σε γωνία 360 0 αντιστοιχεί κύκλος με μήκος L και εμβαδόν Ε έχουμε : α) ημικύκλιο
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Τράπεζα Θεμάτων
Γεωμετρία Β Λυκείου Τράπεζα Θεμάτων ASKISOPOLIS Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Βλαχόπουλος Αποστόλης, Δικαιοσυνόπουλος Νίκος Κολλινιάτη Γιωργία, Μάκος Σπύρος Μαρωνίτη Ειρήνη, Μαρωνίτης Λάμπρος
Διαβάστε περισσότεραΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ
ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ 1) Ο λόγος των μηκών δύο κύκλων ( Ο, ρ ) και ( Ο, ρ ) είναι 1 3. Αν ρ = 1,15 cm να βρείτε : Την ακτίνα ρ. Το μήκος του ( Ο, ρ ) Το λόγο των διαμέτρων τους. 2) Οι περίμετροι
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ
ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ Θεώρημα οξείας γωνίας Το τετράγωνο πλευράς τριγώνου, που βρίσκεται απέναντι από οξεία γωνία, είναι ίσο με το άθροισμα των τετραγώνων των δύο άλλων πλευρών του, ελαττωμένο
Διαβάστε περισσότεραΑπαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων. Μάθημα: Γεωμετρία Α Λυκείου
Απαντήσεις Λύσεις σε Θέματα από την Τράπεζα Θεμάτων Μάθημα: Γεωμετρία Α Λυκείου Παρουσιάζουμε συνοπτικές λύσεις σε επιλεγμένα Θέματα («Θέμα 4 ο») από την Τράπεζα θεμάτων. Το αρχείο αυτό τις επόμενες ημέρες
Διαβάστε περισσότεραΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ. ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ Κεφάλαιο 9ο: Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΕΩΜΕΤΡΙΑ Β ΥΚΕΙΟΥ Κεφάλαιο 9ο: ΜΕΤΡΙΚΕ ΧΕΕΙ Ερωτήσεις του τύπου «ωστό-άθος» Να χαρακτηρίσετε με (σωστό) ή (λάθος) τις παρακάτω προτάσεις. 1. * Αν σε τρίγωνο ΑΒ ισχύει ΑΒ = Α + Β, τότε το τρίγωνο είναι:
Διαβάστε περισσότεραΓεωμετρία Βˊ Λυκείου. Κεφάλαιο 9 ο. Μετρικές Σχέσεις
Γεωμετρία Β Λυκείου Κεφάλαιο 9 Γεωμετρία Βˊ Λυκείου Κεφάλαιο 9 ο Μετρικές Σχέσεις ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΑ ΤΡΙΓΩΝΑ Μετρικές σχέσεις ονομάζουμε τις σχέσεις μεταξύ των μέτρων των στοιχείων
Διαβάστε περισσότεραΘΕΜΑΤΑ. β. ΜΗΔ = 45 Μονάδες 5. Θέμα 4 ο Δίνεται ορθογώνιο τρίγωνο ΑΒΓ ( Α = 90 ) με ΑΓ > ΑΒ, η διάμεσός του ΑΖ και έστω Δ και
Α. Να χαρακτηρίσετε Σωστές (Σ) ή Λάθος (Λ) τις παρακάτω προτάσεις: α. Οι διχοτόμοι δύο διαδοχικών και παραπληρωματικών γωνιών σχηματίζουν ορθή γωνία. β. Οι διαγώνιες κάθε παραλληλογράμμου είναι ίσες μεταξύ
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 013-014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότερα1 ο Αχαρνών 197 Αγ. Νικόλαος 210.8651962. 2 ο Αγγ. Σικελιανού 43 Περισσός 210.2718688
1 ο Αχαρνών 197 Αγ. Νικόλαος 10.865196 ο Αγγ. Σικελιανού 4 Περισσός 10.718688 AΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α =90Ο ) και Α το ύψος του. Αν Ε και Ζ είναι οι προβολές του
Διαβάστε περισσότερα1=45. β) Να υπολογίσετε τη γωνία φ.
1. Στο σχήµα που ακολουθεί, η Αx είναι εφαπτοµένη του κύκλου (Ο, ρ) σε σηµείο του Α και επιπλέον ισχύουν ΓΑ x =85 0 και BA =40 0. α) Να αποδείξετε ότι ˆΒ 1=45. β) Να υπολογίσετε τη γωνία φ. 2. Στο ακόλουθο
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ 1. Να επιλέξετε μια απάντηση για κάθε ερώτηση και να δικαιολογήσετε σύντομα την απάντησή σας. i. Αν η εξωτερική γωνία ενός κανονικού ν-γώνου ισούται με 0 ο, τότε το ν ισούται
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 Ο - Α ( απόδειξη θεωρήματος) 1 ) Να αποδειχθεί ότι : «Οι διαγώνιοι ορθογωνίου είναι ίσες». ( 5.3 σελ 100 ) 2 ) Να αποδειχθεί ότι τα εφαπτόμενα τμήματα κύκλου
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 9 ο ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ
1 ο Θεώρημα διαμέσου ΘΕΩΡΗΜΑΤΑ ΔΙΑΜΕΣΩΝ Σε κάθε τρίγωνο, το άθροισμα των τετραγώνων δύο πλευρών τριγώνου ισούται με το διπλάσιο του τετραγώνου της περιεχόμενης διαμέσου, αυξημένο κατά το μισό του τετραγώνου
Διαβάστε περισσότερα1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ
1 ΘΕΜΑΤΑ ΓΡΑΠΤΩΝ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ α). Να αποδείξετε ότι : Σε κάθε ορθογώνιο τρίγωνο το τετράγωνο του ύψους που αντιστοιχεί στην υποτείνουσα ισούται με το γινόμενο των προβολών
Διαβάστε περισσότεραΑναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)
Αναλογίες 2_20863. Στο παρακάτω σχήμα είναι 12 και 8. α) Να υπολογίσετε τους λόγους και. (Μονάδες 6) β) Να υπολογίσετε το ΑΓ συναρτήσει του κ. (Μονάδες 5) γ) Να υπολογίσετε τον λόγο. Σε τι λόγο λ διαιρείται
Διαβάστε περισσότεραα) Να αποδείξετε ότι = και = 2 (Μονάδες 15) β) Να υπολογίσετε τα μήκη των τμημάτων ΑΔ και ΓΕ. (Μονάδες 10)
Θεωρούμε τρίγωνο ΑΒΓ με ΑΒ=9 και ΑΓ=15. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε αντίστοιχα. ΑΔ 2 ΑΕ α) Να αποδείξετε ότι
Διαβάστε περισσότερακζντρου Ο. β) Να αποδείξετε ότι (Μονάδεσ 13)
ΘΕΜΑ 4 Δίνεται τρίγωνο ΑΒΓ. Θεωροφμε ΑΜ τη διάμεςό του και Ε τυχαίο ςημείο του τμήματοσ ΒΜ. Από το Ε φζρουμε ευθεία παράλληλη ςτην ΑΜ που τζμνει την πλευρά ΑΒ ςτο Δ και την προζκταςη τησ ΓΑ ςτο Ζ. α) Να
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ
ΓΕΩΜΕΤΡΙΑ Α ΛΥΚΕΙΟΥ ΘΕΩΡΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ ΟΡΙΣΜΟΙ Ευθύγραμμο τμήμα είναι το κομμάτι της ευθείας που έχει αρχή και τέλος. Ημιευθεια Είναι το κομμάτι της ευθείας που έχει αρχή αλλά όχι
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ
ΚΕΦΑΛΑΙΟ 8: ΟΜΟΙΟΤΗΤΑ 36 ΚΕΦΑΛΑΙΟ 9: ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ 37 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΤΥΧΑΙΟ ΤΡΙΓΩΝΟ 38 39 40 41 ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΚΥΚΛΟ 4 43 44 ΚΕΦΑΛΑΙΟ 10:ΕΜΒΑΔΑ ΕΠΙΠΕΔΩΝ ΣΧΗΜΑΤΩΝ 45 46 47 48 49 50 51 5 53
Διαβάστε περισσότεραΚεφάλαιο 6 Παράλληλες Ευθείες και Τετράπλευρα Ορισμός. Δύο ευθείες ονομάζονται παράλληλες όταν ανήκουν στο ίδιο επίπεδο και δεν τέμνονται. Δύο παράλληλες ευθείες ε και ζ συμβολίζονται ε ζ. Γωνίες δύο ευθειών
Διαβάστε περισσότεραΓεωμετρία. Κεφ 1 ο : Γεωμετρια.
Μαθηματικά Γ Γυμνασίου Γεωμετρία. Κεφ 1 ο : Γεωμετρια. Μέρος Α Θεωρία. 1. Με τι είναι ίσο το άθροισμα των γωνιών ενός τριγώνου; 2. Ποιο τρίγωνο λέγετε οξυγώνιο αμβλυγώνιο ορθογώνιο. 3. Ποιο τρίγωνο λέγετε
Διαβάστε περισσότεραΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.6 ΠΡΟΣΕΓΓΙΣΗ ΤΟΥ ΕΜΒΑΔΟΥ ΚΥΚΛΟΥ ΜΕ ΚΑΝΟΝΙΚΑ ΠΟΛΥΓΩΝΑ 11.7 ΕΜΒΑΔΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ ΚΑΙ ΚΥΚΛΙΚΟΥ ΤΜΗΜΑΤΟΣ 11.8 ΤΕΤΡΑΓΩΝΙΣΜΟΣ ΚΥΚΛΟΥ ΘΕΩΡΙΑ 1 (Εμβαδόν κυκλικού δίσκου) Θεωρούμε
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ 1 Σε τρίγωνο με > και ορθόκεντρο Η να δείξετε ότι: Δίνεται τρίγωνο στο οποίο ισχύει: α β γ βγ Να δείξετε ότι: A 10 Δίνεται τρίγωνο με πλευρές α, β, γ και διάμεσο μα ν ισχύει η
Διαβάστε περισσότεραΤράπεζα Θεμάτων Γεωμετρία Β Λυκείου
Τράπεζα Θεμάτων Γεωμετρία Β Λυκείου Θεώρημα Θαλή. Θεωρούμε τρίγωνο ΑΒΓ με και. Από το βαρύκεντρο Θ του τριγώνου, φέρουμε ευθεία ε παράλληλη στην πλευρά ΒΓ, που τέμνει τις ΑΒ και ΑΓ στα σημεία Δ και Ε
Διαβάστε περισσότερα2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.
Θαλής Β' Λυκείου 1995-1996 1. Έστω κύκλος ακτίνας 1, στον οποίο ορίζουμε ένα συγκεκριμένο σημείο Α 0. Στη συνέχεια ορίζουμε τα σημεία Α ν ως εξής: Το μήκος του τόξου Α 0 Α ν (όπου αυτό μπορεί να είναι
Διαβάστε περισσότεραβ) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε
ΘΕΜΑ 4 Στο διπλανό τραπέζιο ΑΒΓΔ η ευθεία ΜΛ είναι παράλληλη στις βάσεις ΑΒ και ΔΓ του τραπεζίου και ισχύει ότι = α) Να αποδείξετε ότι = και = (Μονάδες 8) β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι
Διαβάστε περισσότεραΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: A ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α Α1. Να αποδείξετε ότι σε κάθε ορθογώνιο τρίγωνο η διάμεσος που αντιστοιχεί στην υποτείνουσα ισούται με το μισό της.
Διαβάστε περισσότεραΘέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ
ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ ΣΧΟΛΙΚΟ ΕΤΟΣ: 2013-2014 Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Μαθηματικός Περιηγητής 1 ΠΡΟΛΟΓΟΣ Η συλλογή των θεμάτων
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 10.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0.5 ΛΟΓΟΣ ΕΜΒΑΔΩΝ ΟΜΟΙΩΝ ΤΡΙΓΩΝΩΝ - ΠΟΛΥΓΩΝΩΝ 0.6 ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ ΠΟΛΥΓΩΝΟΥ ΣΕ ΙΣΟΔΥΝΑΜΟ ΤΟΥ ΘΕΩΡΙΑ Αν θεωρήσουμε δύο τρίγωνα ΑΒΓ και Α Β Γ με εμβαδά Ε και Ε αντίστοιχα. Τότε είναι:
Διαβάστε περισσότεραΑσκήσεις - Πυθαγόρειο Θεώρηµα
Ασκήσεις - Πυθαγόρειο Θεώρηµα. Έστω ορθογώνιο τρίγωνο ΑΒΓ ( Â = 90 ο ) µε ΒΓ = 0 και ΑΓ =. Αν το µέσο της ΒΓ και Ε ΒΓ (Ε σηµείο της ΑΒ) τότε το µήκος της ΑΕ είναι: i) 3 3,5 i 4 iv) 4,5 v) 5. Έστω ορθογώνιο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ 1 (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου
Επαναληπτικό Διαγώνισµα Γεωµετρίας Β Λυκείου Θέµα 1 Α. Να υπολογίσετε την πλευρά λ και το απόστηµα α τετραγώνου εγγεγραµµένου σε κύκλο (Ο, R) συναρτήσει της ακτίνας R (10 Μονάδες) Β. Να χαρακτηρίσετε τις
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης
ΓΕΩΜΕΤΡΙΑ Γ γυμνασίου από Σχολικό Βιβλίο + Ασκήσεις Εξάσκησης ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Γρήγορη Επανάληψη Θεωρίας Ένα τρίγωνο ανάλογα με το είδος των γωνιών του ονομάζεται: Σε κάθε ορθογώνιο τρίγωνο η πλευρά που
Διαβάστε περισσότεραΔιαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 7. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ Ίσα τμήματα μεταξύ παραλλήλων ευθειών Αν παράλληλες ευθείες ορίζουν ίσα τμήματα σε μια ευθεία, τότε θα ορίζουν ίσα τμήματα και σε οποιαδήποτε
Διαβάστε περισσότεραΘΕΩΡΙA 5. Μονάδες 5x2=10 A2. Πότε ένα τετράπλευρο ονομάζεται τραπέζιο;
1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 14 ΘΕΩΡΙA 5 ΘΕΜΑ A 1. A1. Να μεταφέρετε στην κόλλα απαντήσεων το γράμμα που αντιστοιχεί σε κάθε πρόταση και δίπλα να σημειώσετε το γράμμα Σ αν
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 ο ΠΡΩΤΑΡΧΙΚΕΣ ΓΕΩΜΕΤΡΙΚΕΣ ΕΝΝΟΙΕΣ Τα αξιώματα είναι προτάσεις που δεχόμαστε ως αληθείς, χωρίς απόδειξη: Από δύο σημεία διέρχεται μοναδική ευθεία. Για κάθε ευθεία υπάρχει τουλάχιστον ένα σημείο
Διαβάστε περισσότεραΒ.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες
Β.1.6. Είδη γωνιών Κάθετες ευθείες 1. Ορθή γωνία λέγεται η γωνία της οποίας το μέτρο είναι ίσο με 90 ο. 2. Οξεία γωνία λέγεται κάθε γωνία με μέτρο μικρότερο των 90 ο. 3. Αμβλεία γωνία λέγεται κάθε γωνία
Διαβάστε περισσότεραΒασικές Γεωμετρικές έννοιες
Βασικές Γεωμετρικές έννοιες Σημείο Με την άκρη του μολυβιού μου ακουμπώντας την σε ένα κομμάτι χαρτί αφήνω ένα σημάδι το οποίο το λέω σημείο. Το σημείο το δίνω όνομα γράφοντας πάνω απ αυτό ένα κεφαλαίο
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 10 Ο ΕΜΒΑΔΑ 10.1 ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 10.2 ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 10.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ
ΚΕΦΑΛΑΙΟ 0 Ο ΕΜΒΑΔΑ 0. ΠΟΛΥΓΩΝΙΚΑ ΧΩΡΙΑ 0. ΕΜΒΑΔΟΝ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. ΙΣΟΔΥΝΑΜΑ ΕΥΘΥΓΡΑΜ. ΣΧΗΜ. 0.3 ΕΜΒΑΔΟΝ ΒΑΣΙΚΩΝ ΕΥΘΥΓΡΑΜΜΩΝ ΣΧΗΜΑΤΩΝ ΘΕΩΡΙΑ (Πολυγωνικά χωρία) Ας θεωρήσουμε ένα πολύγωνο, για παράδειγμα
Διαβάστε περισσότεραΕπαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου
Επαναληπτικό Διαγώνισμα Γεωμετρίας Α Λυκείου Θέμα Α. Να αποδείξετε ότι το ευθύγραμμο τμήμα που ενώνει τα μέσα των δύο πλευρών τριγώνου, είναι παράλληλο προς την τρίτη πλευρά και ίσο με το μισό της (7 μονάδες)
Διαβάστε περισσότεραΤράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός
Τράπεζα Θεμάτων Γεωμετρία Α Λυκείου Κεφάλαιο 3 Θέμα 2 Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός Θεωρία ως και το 3.2 Ασκήσεις: 1-8 Θεωρία ως και το 3.4 Ασκήσεις: 9-13 Θεωρία ως και το 3.7 Ασκήσεις: 14-29
Διαβάστε περισσότερα2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB
2ο ΘΕΜΑ 2845. Σε ισοσκελές τρίγωνο ΑΒΓ AB A φέρουμε τη ΑΔ και μια ευθεία (ε) παράλληλη προς τη ΒΓ, που τέμνει τις πλευρές ΑΒ και ΑΓ στα σημεία Ε και Ζ αντίστοιχα. Να αποδείξετε ότι: α) Το τρίγωνο ΑΕΖ είναι
Διαβάστε περισσότεραVERSION :00. α) Γνωρίζουμε από την Α Λυκείου 5.7 ότι οι διάμεσοι ενός τριγώνου διέρχονται από το ίδιο σημείο
VERSION 16-11-014 17:00 _18975 α) Γνωρίζουμε από την Α Λυκείου 5.7 ότι οι διάμεσοι ενός τριγώνου διέρχονται από το ίδιο σημείο του οποίου η απόσταση από κάθε κορυφή είναι τα 3 του μήκους της αντίστοιχης
Διαβάστε περισσότεραΑσκήσεις Επανάληψης Τάξη Δ Εν. 1: Διανύσματα
Ασκήσεις Επανάληψης Τάξη Δ 016-017 Εν. 1: Διανύσματα 1. Να ονομάσετε τα στοιχεία ενός διανύσματος.. Δίνεται το παραλληλόγραμμο ΑΒΓΔ, όπως φαίνεται στο σχήμα. Να χαρακτηρίσετε ΣΩΣΤΟ ή ΛΑΘΟΣ τις πιο κάτω
Διαβάστε περισσότεραΕισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H
Εισαγωγή 1. Εξωτερικά του παραλληλογράμμου ΑΒΓΔ κατασκευάζουμε τα τετράγωνα ΑΒΕΖ και ΔΓΘΗ. Να αποδείξετε ότι : α. ZH E, H, Z,. Τα τμήματα ΑΓ και ΗΕ έχουν κοινό μέσο γ. Το κέντρο του παραλληλογράμμου είναι
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ ( α μέρος )
Πυθαγόρειο ενικό Λύκειο Σάμου ΕΠΝΛΗΨΗ ΕΩΜΕΤΡΙΣ ΛΥΚΕΙΟΥ ( α μέρος ) Να βρείτε στην αντίστοιχη σελίδα του σχολικού σας βιβλίου το ζητούμενο της κάθε ερώτησης που δίνεται παρακάτω και να το γράψετε στο τετράδιό
Διαβάστε περισσότεραµ =. µονάδες 12+13=25
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΤΗ ΓΕΩΜΕΤΡΙΑ ΤΗΣ Β 1 ΓΕΝΙΚΗ ΑΣΚΗΣΗ 1. ίνεται τρίγωνο ΑΒΓ µε α=7, β=5, γ=4. Να βρείτε: 1. το είδος του τριγώνου. την προβολή της β πάνω στη γ 3. το µήκος της διαµέσου ΒΜ 4. την προβολή
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ
ΑΣΚΗΣΕΙΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ (Τελευταία ενηµέρωση: Νοέµβριος 2016) Ανέστης Τσοµίδης Κατερίνη Περιεχόµενα 1 Αναλογίες 2 1.1 Το ϑεώρηµα του Θαλή.......................... 2 1.2 Τα ϑεωρήµατα των διχοτόµων......................
Διαβάστε περισσότεραΜεθοδική Επανάληψη Γεωμετρίας Β Λυκείου
Μεθοδική Επανάληψη Γεωμετρίας Β Λυκείου Στέλιος Μιχαήλογλου www.askisopolis.gr 8ο Κεφάλαιο: Ομοιότητα. Πότε δύο ευθύγραμμα σχήματα λέγονται όμοια; Τι ονομάζεται λόγος ομοιότητας αυτών; Με τι ισούται ο
Διαβάστε περισσότερα6. Θεωρούµε ισοσκελές τραπέζιο ΑΒΓ (ΑΒ//Γ ). Φέρουµε τα ύψη του ΑΕ και ΒΖ. α) Ε=ΓΖ. β) ΑΖ=ΒΕ.
1. Θεωρούµε ισοσκελές τρίγωνο ΑΒΓ (ΑΒ=ΑΓ). Στο µέσο της πλευράς ΑΒ φέρουµε κάθετη ευθεία που τέµνει την ΑΓ στο Ε. Από το Ε φέρουµε ευθεία παράλληλη στη βάση ΒΓ που τέµνει την ΑΒ στο Ζ. α) Να αποδείξετε
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ
ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 1 Από εξωτερικό σημείο Σ κύκλου (Κ, ρ) θεωρούμε τις τέμνουσες ΣΑΒ και ΣΓΔ του κύκλου για τις οποίες ισχύει ΣΒ=ΣΔ. Τα ΚΛ και ΚΜ είναι τα αποστήματα των χορδών ΑΒ και ΓΔ του
Διαβάστε περισσότεραΚύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων.
ΜΕΡΟΣ Β 1.1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ 397 1. 1 ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ Κύρια και δευτερεύοντα στοιχεία τριγώνου Είδη τριγώνων. Σε κάθε τρίγωνο οι πλευρές και οι γωνίες του ονομάζονται κύρια στοιχεία του τριγώνου. Οι πλευρές
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 1 Ο ΓΕΩΜΕΤΡΙΑ
ΜΕΡΟΣ ΚΕΦΛΙΟ 1 Ο ΕΩΜΕΤΡΙ 1.1 ΙΣΟΤΗΤ ΤΡΙΩΝΩΝ 1. Ποια ονομάζονται κύρια και ποια δευτερεύοντα στοιχεία τριγώνων; Κύρια στοιχεία ενός τριγώνου ονομάζουμε τις πλευρές και τις γωνίες του. Δευτερεύοντα στοιχεία
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ λ + λ = + = + = = = λ.
ΚΦΑΛΑΙΟ 11. Παραθέτουμε για εύκολη αναφορά το πινακάκι με την αντιστοιχία χορδών-αποστημάτων-τόξων που χρειάζεται σε όλες σχεδόν τις παρακάτω ασκήσεις Κανονικό εξάγωνο Πλευρά λν Χορδή λ = Απόστημα α =
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
1ο Α. Nα αποδείξετε ότι το άθροισμα των γωνιών κάθε τριγώνου είναι 2 ορθές. Β. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που αντιστοιχεί
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ
ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 113 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ ΘΕΩΡΙΑ Θα ασχοληθούμε με την εγγραφή μερικών βασικών κανονικών πολυγώνων σε κύκλο και θα υπολογίσουμε
Διαβάστε περισσότερα24 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ
4 ΔΙΑΓΩΝΙΣΜΑΤΑ ΓΕΩΜΕΤΡΙΑΣ Α ΛΥΚΕΙΟΥ Δίνεται παραλληλόγραμμο ΑΒΓΔ με ΑΒ=ΒΓ. Φέρνουμε το ΑΕ ΒΓ και έστω Ζ,Η τα μέσα των ΔΓ και ΑΒ αντίστοιχα. Ν.δ.ο. α) το ΖΓΒΗ είναι ρόμβος ( 9 μον.) β) ΗΖ=ΗΕ ( 8 μον.) γ)
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα.
ΓΕΩΜΕΤΡΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ ΣΤΟΧΟΙ: Με τη συμπλήρωση του στόχου αυτού θα μπορείτε να: Σχεδιάζετε τρίγωνα, τετράπλευρα και πολύγωνα. ΓΕΝΙΚΑ: Οι γεωμετρικές κατασκευές εφαρμόζονται στην επίλυση σχεδιαστικών προβλημάτων
Διαβάστε περισσότεραΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια
ΓΕΩΜΕΤΡΙΑ - ΚΕΦΑΛΑΙΟ 3ο Παραλληλόγραµµα - Τραπέζια 184 ΕΡΩΤΗΣΕΙΣ ΑΝΑΠΤΥΞΗΣ ΚΑΙ ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ 1. Να αντιστοιχίσετε κάθε στοιχείο της στήλης (Α) µε ένα µόνο στοιχείο της στήλης (Β): στήλη (Α) τετράπλευρα
Διαβάστε περισσότερα1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: ii. Το ύψος ΒΚ
Ερωτήσεις ανάπτυξης 1. ** Σε ισοσκελές τρίγωνο ΑΒΓ µε κορυφή το Α, έχουµε ΒΓ = 4 cm και ΑΒ = 7 cm. Να υπολογίσετε: i. Το ύψος ΑΗ ii. Το ύψος ΒΚ. ** Σε ένα τετράγωνο ΑΒΓ ισχύει ΑΒ + ΑΓ = +. Να υπολογίσετε:
Διαβάστε περισσότεραΙΣΟΤΗΤΑ ΚΑΙ ΟΜΟΙΟΤΗΤΑ ΣΧΗΜΑΤΩΝ
ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ Ερώτηση 1 η Ποια καλούνται κύρια και ποια δευτερεύοντα στοιχεία ενός τριγώνου; Τι ονομάζεται τριγωνική ανισότητα; Κύρια στοιχεία ενός τριγώνου είναι οι πλευρές και οι γωνίες του. Οι
Διαβάστε περισσότεραΚΥΚΛΟΣ. Ερωτήσεις του τύπου «Σωστό-Λάθος»
ΚΥΚΛΟΣ Ερωτήσεις του τύπου «Σωστό-Λάθος» Σωστό Λάθος 1. Αν α είναι η απόσταση ευθείας ε από το κέντρο του κύκλου (Ο, ρ) τότε: αν α > ρ η ε λέγεται εξωτερική του κύκλου αν α = ρ η ε λέγεται τέμνουσα του
Διαβάστε περισσότεραΓεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων.
Γεωμετρία Β Λυκείου Θεωρήματα διχοτόμων Αρμονικά συζυγή Ομοιότητα τριγώνων. Καρδαμίτσης Σπύρος «Τὰ ὅμοια πολύγωνα εἴς τε ὅμοια τρίγωνα διαιρεῖται καὶ εἰς ἴσα τὸ πλῆθος καὶ ὁμόλογα τοῖς ὅλοις, καὶ τὸ πολύγωνον
Διαβάστε περισσότεραΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ
ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ Για τις λύσεις συνεργάστηκαν οι μαθηματικοί: Κολλινιάτη Γιωργία Μιχαήλογλου Στέλιος Παπαθανάση Κέλλυ Πατσιμάς Ανδρέας Πατσιμάς Δημήτρης Ραμαντάνης Βαγγέλης
Διαβάστε περισσότεραΌμοια τρίγωνα. Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες.
Όμοια τρίγωνα Ορισμός : Δύο τρίγωνα είναι όμοια όταν έχουν τις γωνίες τους ίσες και τις αντίστοιχες πλευρές τους ανάλογες. Συμβολισμός : Αν τα τρίγωνα ΑΒΓ, ΔΕΖ είναι όμοια γράφουμε Κριτήριο 1 Όταν δύο
Διαβάστε περισσότεραα <β +γ τότε είναι οξυγώνιο.
ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: ΓΕΩΜΕΤΡΙΑ ΘΕΜΑ Α A1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στην κόλλα σας τη λέξη Σωστό ή Λάθος δίπλα στο γράμμα που
Διαβάστε περισσότεραA λ υ τ ε ς Α σ κ η σ ε ι ς ( Π α ρ α λ λ η λ ε ς Ε υ θ ε ι ε ς ) 2. Aν α, β θετικοι, να συγκρινεται τους αριθμους Α = α + β, Β = α β + αβ.
1 Δινεται τριγωνο ΑΒΓ και η διχοτομος ΒΕ της γωνιας B του τριγωνου Απο το Α φερνουμε παράλληλη της ΒΕ, που τεμνει τη ΒΓ 3 Να δειχτει οτι α + 11 α Ποτε ισχυει ΑΔ ΒΕ το ισον; οποτε οι γωνιες 3 3 Aν α, β
Διαβάστε περισσότερα