A unit system based on binary multipliers and parameters of the universe. Łukasz Komsta. Revision I. October 1, 2017

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "A unit system based on binary multipliers and parameters of the universe. Łukasz Komsta. Revision I. October 1, 2017"

Transcript

1 b SYSTÈME BINAIRE D UNITÉS A unit system based on binary multipliers and parameters of the universe Łukasz Komsta Revision I. October 1, 2017 Abstract The Binary System of Units (SBI - Système binairie d unites) is based on binary multipliers, binary unit prefixes and known physical constants characterizing the universe. However, binary units are not designed to be natural and are not normalized to unity, but chosen to be similar in quantities to existing units. It is built on the following base quantities: mass, length, amount of substance, time, electric charge, thermodynamic temperature and luminuous intensity. It may be used for educational purposes, science fiction literature and simply for fun. Nevertheless, this system is fully consistent and serious, so scientific applications are not excluded. 1

2 Contents 1 Introduction Unit names Prefixes Binary logarithmic scale Base units Mass Length Amount of substance Time Electric charge Temperature Luminous intensity Named derived units Force Pressure Energy Power Electric voltage Electric capacitance Electric resistance Electric conductance Electric current Electric inductance Magnetic flux Magnetic field strength Unnamed derived units Angle Area Volume Density Speed Other units A Appendix 19 B Beginnings of binary years 123 C Changelog 125 2

3 1 Introduction The creation of the SBI system has no serious aim. It is a result of a long spare time mental entertainment. SBI can be used by programmers for fun (yes, it is binary!) or studied together with the SI system in comparative way (to enhance the understanding and knowledge about the physical relationships). Last, but not least, it is a good candidate to an official system of a science-fiction book or movie. However, it is restricted to our universe and will be quite meaningless if the physical constants are different in a parallel spacetime. In short, it can be treated as an alternative to the International System of Units (SI - Système international d unites) and as another consistent system with the following features: 1. Every base unit is derived from a chosen physical constant, additionally the relationship between the constant and the unit is binary (i.e. it can be expressed as a power of two) Unit prefixes, which indicate a multiple or a fraction of the base unit, are also defined to be powers of two. 3. The multipliers in definitions of base units are carefully chosen to make binary units as much similar as possible to existing metric SI units. 4. To make the new system easier to learn, no new unit names are introduced and binary names are simple derivatives of the existing ones (bimeter, bisecond etc.). 5. For the same reason, binary multipliers are an extension of the known system introduced in computer science (kibi, mebi etc.). 1.1 Unit names The name of a binary unit is created from the name of analogous SI unit by adding the prefix bi in the beginning of its name, for instance: bimeter, bisecond, bihenry, bipascal etc. The symbol of a unit is created in analogous manner by adding the b letter (b m, b s, b H, b Pa etc.). The prefix letter is the latin small letter b with cedilla 2. Exponents are pronounced in the beginning: Kib m 3 is cubic kibimeter (kee-bee-meter). Electronbivolt (eb V) is the only exception with the letter b in the middle. 1 However, the SBI system is not intended to be another system of natural units, as units are not intended to be normalized to one and their definitions are chosen to set their quantities as close as possible to existing units. 2 There is no such character in Unicode, but it can be created with combining cedilla (U+0327) following by latin small letter b (U+0062). \c{b} can be used in LATEX to typeset this character. When technical difficulties disallow to typeset this character (old operating systems, mechanical typewriters etc.), it can be replaced by small latin letter b. 3

4 At present stage, no rules for languages other than English are created. 1.2 Prefixes In analogous manner to decimal prefixes of the SI system, the SBI system uses its own binary prefixes. They are an extension of already existing and known binary prefixes (kibi, mebi, gibi etc.), used in computer science. They contain the bi prefix preceeded by another syllable 3. Abbreviation Name Quantity Abbreviation Name Quantity dai dabi 2 3 di dibi 2 3 hi hebi 2 7 ci cebi 2 7 Ki kibi 2 10 mi mibi 2 10 Mi mebi 2 20 ui mubi 2 20 Gi gibi 2 30 ni nabi 2 30 Ti tebi 2 40 pi pibi 2 40 Pi pebi 2 50 fi febi 2 50 Ei exbi 2 60 ai atbi 2 60 Zi zetbi 2 70 zi zebi 2 70 Yi yotbi 2 80 yi yocbi Binary logarithmic scale In analogous way to bel (B) and decibel (db), the SBI system introduces the duo unit, expressed with letter đ. The letter for this unit is latin small letter d with stroke 4. The duo unit is allowed to be used only without any prefix (there are no dibiduos analogous to decibels!). As the duo unit is relative, it should be given with the unit name. For example 10 đb m = 2 10 b m = 1 Kib m. The unit name could be omitted when power is expressed (đui is relative to uib W and đ alone is relative to 1 b W). The unit should be pronounced in singular, for example 10 đb m is ten duo bimeter, 0 đui is zero duo mubi. 2 Base units 2.1 Mass Definition 1. One bigram (1 b g) is defined as 2 24 m P g, where m P is the Planck mass 5. 3 Classical decimal prefixes can be used with binary units, for example 1 kb g (one kilobigram) = 1000 b g; 1 cb m (one centibimeter) = 0.01 b m. However, to avoid confusion and multiplication of possible combinations, it is allowed only in exceptional cases. 4 Unicode U+0111, present in almost all fonts. \dj is the LATEX way of typesetting. Only in exceptional cases (retro systems, typewriters) it could be replaced with pure small latin d letter. 5 Therefore, m P = 2 16 b g (16 uib g). 4

5 Although bigram is the base mass unit b y definition, the other units are based on kibigram (1 Kib g kg). The following relationships exist between binary mass units and gram, pound ( g) and ounce ( g): 1 nib g = e-9 g 1 g = e+8 nib g 1 nib g = e-12 lb 1 lb = e+11 nib g 1 nib g = e-11 oz 1 oz = e+10 nib g 1 uib g = e-6 g 1 g = e+5 uib g 1 uib g = e-9 lb 1 lb = e+8 uib g 1 uib g = e-8 oz 1 oz = e+7 uib g 1 mib g = e-3 g 1 g = e+2 mib g 1 mib g = e-6 lb 1 lb = e+5 mib g 1 mib g = e-5 oz 1 oz = e+4 mib g 1 cib g = e-2 g 1 g = e+1 cib g 1 cib g = e-5 lb 1 lb = e+4 cib g 1 cib g = e-4 oz 1 oz = e+3 cib g 1 dib g = e-1 g 1 g = e+0 dib g 1 dib g = e-4 lb 1 lb = e+3 dib g 1 dib g = e-3 oz 1 oz = e+2 dib g 1 b g = e+0 g 1 g = e-1 b g 1 b g = e-3 lb 1 lb = e+2 b g 1 b g = e-2 oz 1 oz = e+1 b g 1 daib g = e+1 g 1 g = e-2 daib g 1 daib g = e-2 lb 1 lb = e+1 daib g 1 daib g = e-1 oz 1 oz = e+0 daib g 1 hib g = e+2 g 1 g = e-3 hib g 1 hib g = e-1 lb 1 lb = e+0 hib g 1 hib g = e+0 oz 1 oz = e-1 hib g 1 Kib g = e+3 g 1 g = e-4 Kib g 1 Kib g = e+0 lb 1 lb = e-1 Kib g 1 Kib g = e+1 oz 1 oz = e-2 Kib g 1 Mib g = e+6 g 1 g = e-7 Mib g 1 Mib g = e+3 lb 1 lb = e-4 Mib g 1 Mib g = e+4 oz 1 oz = e-5 Mib g 1 Gib g = e+9 g 1 g = e-10 Gib g 1 Gib g = e+6 lb 1 lb = e-7 Gib g 1 Gib g = e+7 oz 1 oz = e-8 Gib g 2.2 Length Definition 2. One bimeter (1 b m) is defined as l P m, where l P is the Planck length 6. The following relationships exist between binary length units and meter, inch (2.54 cm), foot (30.48 cm), yard (91.44 cm) and mile ( m): 1 nib m = e-9 m 1 m = e+8 nib m 1 nib m = e-8 inch 1 inch = e+7 nib m 1 nib m = e-9 ft 1 ft = e+8 nib m 1 nib m = e-9 yard 1 yard = e+8 nib m 1 nib m = e-13 mile 1 mile = e+12 nib m 1 uib m = e-6 m 1 m = e+5 uib m 1 uib m = e-5 inch 1 inch = e+4 uib m 1 uib m = e-6 ft 1 ft = e+5 uib m 1 uib m = e-6 yard 1 yard = e+5 uib m 1 uib m = e-10 mile 1 mile = e+9 uib m 1 mib m = e-3 m 1 m = e+2 mib m 1 mib m = e-2 inch 1 inch = e+1 mib m 1 mib m = e-3 ft 1 ft = e+2 mib m 6 Therefore, l P = b m. 5

6 1 mib m = e-3 yard 1 yard = e+2 mib m 1 mib m = e-7 mile 1 mile = e+6 mib m 1 cib m = e-2 m 1 m = e+1 cib m 1 cib m = e-1 inch 1 inch = e+0 cib m 1 cib m = e-2 ft 1 ft = e+1 cib m 1 cib m = e-2 yard 1 yard = e+1 cib m 1 cib m = e-6 mile 1 mile = e+5 cib m 1 dib m = e-1 m 1 m = e+0 dib m 1 dib m = e+0 inch 1 inch = e-1 dib m 1 dib m = e-1 ft 1 ft = e+0 dib m 1 dib m = e-1 yard 1 yard = e+0 dib m 1 dib m = e-4 mile 1 mile = e+3 dib m 1 b m = e+0 m 1 m = e-1 b m 1 b m = e+1 inch 1 inch = e-2 b m 1 b m = e+0 ft 1 ft = e-1 b m 1 b m = e+0 yard 1 yard = e-1 b m 1 b m = e-4 mile 1 mile = e+3 b m 1 daib m = e+1 m 1 m = e-2 daib m 1 daib m = e+2 inch 1 inch = e-3 daib m 1 daib m = e+1 ft 1 ft = e-2 daib m 1 daib m = e+1 yard 1 yard = e-2 daib m 1 daib m = e-3 mile 1 mile = e+2 daib m 1 hib m = e+2 m 1 m = e-3 hib m 1 hib m = e+3 inch 1 inch = e-4 hib m 1 hib m = e+2 ft 1 ft = e-3 hib m 1 hib m = e+2 yard 1 yard = e-3 hib m 1 hib m = e-1 mile 1 mile = e+0 hib m 1 Kib m = e+3 m 1 m = e-4 Kib m 1 Kib m = e+4 inch 1 inch = e-5 Kib m 1 Kib m = e+3 ft 1 ft = e-4 Kib m 1 Kib m = e+3 yard 1 yard = e-4 Kib m 1 Kib m = e-1 mile 1 mile = e+0 Kib m 1 Mib m = e+6 m 1 m = e-7 Mib m 1 Mib m = e+7 inch 1 inch = e-8 Mib m 1 Mib m = e+6 ft 1 ft = e-7 Mib m 1 Mib m = e+6 yard 1 yard = e-7 Mib m 1 Mib m = e+2 mile 1 mile = e-3 Mib m 1 Gib m = e+9 m 1 m = e-10 Gib m 1 Gib m = e+10 inch 1 inch = e-11 Gib m 1 Gib m = e+9 ft 1 ft = e-10 Gib m 1 Gib m = e+9 yard 1 yard = e-10 Gib m 1 Gib m = e+5 mile 1 mile = e-6 Gib m 2.3 Amount of substance Definition 3. One bimole (1 b mol) is the amount of substance, which contains 2 79 molecules ( mol). The following relationships exist between binary units representing amount of substance and mol: 1 nib mol = E-10 mol 1 mol = E+9 nib mol 1 uib mol = E-7 mol 1 mol = E+6 uib mol 1 mib mol = E-4 mol 1 mol = E+3 mib mol 1 cib mol = E-3 mol 1 mol = E+2 cib mol 1 dib mol = E-1 mol 1 mol = E+0 dib mol 1 b mol = E+0 mol 1 mol = E-1 b mol 1 daib mol = E+0 mol 1 mol = E-1 daib mol 1 hib mol = E+2 mol 1 mol = E-3 hib mol 1 Kib mol = E+3 mol 1 mol = E-4 Kib mol 1 Mib mol = E+6 mol 1 mol = E-7 Mib mol 1 Gib mol = E+9 mol 1 mol = E-10 Gib mol 6

7 2.4 Time Definition 4. One bisecond (1 b s) is defined as t P s, where t P is the Planck time 7. Definition 5. One biminute (1 b min) is defined as 2 6 biseconds (4 daib s s). Definition 6. One bihour (1 b h) is defined as 2 12 biseconds (4 Kib s min). Definition 7. One biday (1 b d) is defined as h). biseconds (64 Kib s Definition 8. One bimonth (1 b mo) is defined as 2 21 biseconds (2 Mib s days). Definition 9. One biyear (1 b y) is defined as days). bimonths (32 Mib s, These units are not connected with any known astronomical phenomena, so the starting time point for binary dates and times is the Unix epoch 8. For example, the beginning of the 21th century in UTC can be represented as biseconds since epoch. Converting this number to binary gives biyear bimonth biday bihour biminute bisecond (24) (4) (0) (2) (40) (10) The following relationships exist between binary time units and second, minute, hour, day and year: 1 nib s = e-9 s 1 s = e+8 nib s 1 nib s = e-11 min 1 min = e+10 nib s 1 nib s = e-13 h 1 h = e+12 nib s 1 nib s = e-14 d 1 d = e+13 nib s 1 nib s = e-17 y 1 y = e+16 nib s 1 uib s = e-6 s 1 s = e+5 uib s 1 uib s = e-8 min 1 min = e+7 uib s 1 uib s = e-10 h 1 h = e+9 uib s 1 uib s = e-11 d 1 d = e+10 uib s 1 uib s = e-14 y 1 y = e+13 uib s 1 mib s = e-3 s 1 s = e+2 mib s 1 mib s = e-5 min 1 min = e+4 mib s 1 mib s = e-7 h 1 h = e+6 mib s 1 mib s = e-8 d 1 d = e+7 mib s 1 mib s = e-11 y 1 y = e+10 mib s 1 cib s = e-3 s 1 s = e+2 cib s 7 Therefore, t P = b s. 8 00:00:00 Coordinated Universal Time (UTC), Thursday, 1 January

8 1 cib s = e-4 min 1 min = e+3 cib s 1 cib s = e-6 h 1 h = e+5 cib s 1 cib s = e-7 d 1 d = e+6 cib s 1 cib s = e-10 y 1 y = e+9 cib s 1 dib s = e-1 s 1 s = e+0 dib s 1 dib s = e-3 min 1 min = e+2 dib s 1 dib s = e-5 h 1 h = e+4 dib s 1 dib s = e-6 d 1 d = e+5 dib s 1 dib s = e-9 y 1 y = e+8 dib s 1 b s = e+0 s 1 s = e-1 b s 1 b s = e-2 min 1 min = e+1 b s 1 b s = e-4 h 1 h = e+3 b s 1 b s = e-5 d 1 d = e+4 b s 1 b s = e-8 y 1 y = e+7 b s 1 daib s = e+0 s 1 s = e-1 daib s 1 daib s = e-1 min 1 min = e+0 daib s 1 daib s = e-3 h 1 h = e+2 daib s 1 daib s = e-4 d 1 d = e+3 daib s 1 daib s = e-7 y 1 y = e+6 daib s 1 hib s = e+2 s 1 s = e-3 hib s 1 hib s = e+0 min 1 min = e-1 hib s 1 hib s = e-2 h 1 h = e+1 hib s 1 hib s = e-3 d 1 d = e+2 hib s 1 hib s = e-6 y 1 y = e+5 hib s 1 Kib s = e+3 s 1 s = e-4 Kib s 1 Kib s = e+1 min 1 min = e-2 Kib s 1 Kib s = e-1 h 1 h = e+0 Kib s 1 Kib s = e-2 d 1 d = e+1 Kib s 1 Kib s = e-5 y 1 y = e+4 Kib s 1 Mib s = e+6 s 1 s = e-7 Mib s 1 Mib s = e+4 min 1 min = e-5 Mib s 1 Mib s = e+2 h 1 h = e-3 Mib s 1 Mib s = e+1 d 1 d = e-2 Mib s 1 Mib s = e-2 y 1 y = e+1 Mib s 1 Gib s = e+9 s 1 s = e-10 Gib s 1 Gib s = e+7 min 1 min = e-8 Gib s 1 Gib s = e+5 h 1 h = e-6 Gib s 1 Gib s = e+4 d 1 d = e-5 Gib s 1 Gib s = e+1 y 1 y = e-2 Gib s 1 b min = e+1 s 1 s = e-2 b min 1 b min = e+0 min 1 min = e-1 b min 1 b min = e-2 h 1 h = e+1 b min 1 b min = e-4 d 1 d = e+3 b min 1 b min = e-6 y 1 y = e+5 b min 1 b h = e+3 s 1 s = e-4 b h 1 b h = e+1 min 1 min = e-2 b h 1 b h = e+0 h 1 h = e-1 b h 1 b h = e-2 d 1 d = e+1 b h 1 b h = e-4 y 1 y = e+3 b h 1 b d = e+4 s 1 s = e-5 b d 1 b d = e+3 min 1 min = e-4 b d 1 b d = e+1 h 1 h = e-2 b d 1 b d = e-1 d 1 d = e+0 b d 1 b d = e-3 y 1 y = e+2 b d 1 b mo = e+6 s 1 s = e-7 b mo 1 b mo = e+4 min 1 min = e-5 b mo 1 b mo = e+2 h 1 h = e-3 b mo 1 b mo = e+1 d 1 d = e-2 b mo 1 b mo = e-2 y 1 y = e+1 b mo 1 b y = e+7 s 1 s = e-8 b y 1 b y = e+7 s 1 s = e-8 b y 1 b y = e+5 min 1 min = e-6 b y 1 b y = e+4 h 1 h = e-5 b y 1 b y = e+2 d 1 d = e-3 b y 1 b y = e+0 y 1 y = e-1 b y 8

9 2.5 Electric charge Definition 10. One bicoulomb (1 bc) is defined as 2 26 e C, where e is the elementary charge 9. The following relationships exist between binary pressure units and coulomb: 1 nib C = e-9 C 1 C = e+8 nib C 1 uib C = e-6 C 1 C = e+5 uib C 1 mib C = e-3 C 1 C = e+2 mib C 1 cib C = e-2 C 1 C = e+1 cib C 1 dib C = e-1 C 1 C = e+0 dib C 1 b C = e+0 C 1 C = e-1 b C 1 daib C = e+1 C 1 C = e-2 daib C 1 hib C = e+2 C 1 C = e-3 hib C 1 Kib C = e+3 C 1 C = e-4 Kib C 1 Mib C = e+6 C 1 C = e-7 Mib C 1 Gib C = e+9 C 1 C = e-10 Gib C 2.6 Temperature Definition 11. One bikelvin (1 b K) is defined as 2 9 b where b is the Wien constant. 10. bm K, The following relationships exist between binary temperature units and kelvin: 1 nib K = e-9 K 1 K = e+8 nib K 1 uib K = e-6 K 1 K = e+5 uib K 1 mib K = e-3 K 1 K = e+2 mib K 1 cib K = e-3 K 1 K = e+2 cib K 1 dib K = e-1 K 1 K = e+0 dib K 1 b K = e+0 K 1 K = e-1 b K 1 daib K = e+0 K 1 K = e-1 daib K 1 hib K = e+2 K 1 K = e-3 hib K 1 Kib K = e+3 K 1 K = e-4 Kib K 1 Mib K = e+6 K 1 K = e-7 Mib K 1 Gib K = e+9 K 1 K = e-10 Gib K 2.7 Luminous intensity Definition 12. One bicandela (1 b cd cd) is defined as the luminosity of a source emitting monochromatic radiation of wavelength equal to nibm 11 with intensity of 2 10 binary watts (1 mib W) per steradian. The following relationships exist between binary luminous intensity units and candela: 9 e = 2 64 b C 10 One bikelvin is 2 7 of the temperature needed for the black body to have maximum of its radiation at wavelength 2 16 of bimeter. 11 It equals to 540 nm and cannot be changed to a power of two as it s connected with human perception. 9

10 1 nib cd = e-10 cd 1 cd = e+9 nib cd 1 uib cd = e-7 cd 1 cd = e+6 uib cd 1 mib cd = e-4 cd 1 cd = e+3 mib cd 1 cib cd = e-3 cd 1 cd = e+2 cib cd 1 dib cd = e-1 cd 1 cd = e+0 dib cd 1 b cd = e+0 cd 1 cd = e-1 b cd 1 daib cd = e+0 cd 1 cd = e-1 daib cd 1 hib cd = e+2 cd 1 cd = e-3 hib cd 1 Kib cd = e+3 cd 1 cd = e-4 Kib cd 1 Mib cd = e+6 cd 1 cd = e-7 Mib cd 1 Gib cd = e+9 cd 1 cd = e-10 Gib cd 3 Named derived units 3.1 Force Definition 13. One binewton (b N N) is defined as kibigram bimeter per square bisecond. The following relationships exist between binary force units and newton, pound-force ( N) and kilogram-force ( N): 1 nib N = e-9 N 1 N = e+8 nib N 1 nib N = e-10 lbf 1 lbf = e+9 nib N 1 nib N = e-10 kgf 1 kgf = e+9 nib N 1 uib N = e-6 N 1 N = e+5 uib N 1 uib N = e-7 lbf 1 lbf = e+6 uib N 1 uib N = e-7 kgf 1 kgf = e+6 uib N 1 mib N = e-3 N 1 N = e+2 mib N 1 mib N = e-4 lbf 1 lbf = e+3 mib N 1 mib N = e-4 kgf 1 kgf = e+3 mib N 1 cib N = e-2 N 1 N = e+1 cib N 1 cib N = e-3 lbf 1 lbf = e+2 cib N 1 cib N = e-3 kgf 1 kgf = e+2 cib N 1 dib N = e-1 N 1 N = e+0 dib N 1 dib N = e-2 lbf 1 lbf = e+1 dib N 1 dib N = e-2 kgf 1 kgf = e+1 dib N 1 b N = e+0 N 1 N = e-1 b N 1 b N = e-1 lbf 1 lbf = e+0 b N 1 b N = e-1 kgf 1 kgf = e+0 b N 1 daib N = e+1 N 1 N = e-2 daib N 1 daib N = e+0 lbf 1 lbf = e-1 daib N 1 daib N = e+0 kgf 1 kgf = e-1 daib N 1 hib N = e+2 N 1 N = e-3 hib N 1 hib N = e+1 lbf 1 lbf = e-2 hib N 1 hib N = e+1 kgf 1 kgf = e-2 hib N 1 Kib N = e+3 N 1 N = e-4 Kib N 1 Kib N = e+2 lbf 1 lbf = e-3 Kib N 1 Kib N = e+2 kgf 1 kgf = e-3 Kib N 1 Mib N = e+6 N 1 N = e-7 Mib N 1 Mib N = e+5 lbf 1 lbf = e-6 Mib N 1 Mib N = e+5 kgf 1 kgf = e-6 Mib N 1 Gib N = e+9 N 1 N = e-10 Gib N 1 Gib N = e+8 lbf 1 lbf = e-9 Gib N 1 Gib N = e+8 kgf 1 kgf = e-9 Gib N 10

11 3.2 Pressure Definition 14. One bipascal (b Pa Pa) is defined as kibigram per bimeter square bisecond. The following relationships exist between binary pressure units and pascal or pound-force per square inch ( Pa): 1 nib Pa = e-10 Pa 1 Pa = e+9 nib Pa 1 nib Pa = e-13 psi 1 psi = e+12 nib Pa 1 uib Pa = e-7 Pa 1 Pa = e+6 uib Pa 1 uib Pa = e-10 psi 1 psi = e+9 uib Pa 1 mib Pa = e-4 Pa 1 Pa = e+3 mib Pa 1 mib Pa = e-7 psi 1 psi = e+6 mib Pa 1 cib Pa = e-3 Pa 1 Pa = e+2 cib Pa 1 cib Pa = e-7 psi 1 psi = e+6 cib Pa 1 dib Pa = e-2 Pa 1 Pa = e+1 dib Pa 1 dib Pa = e-5 psi 1 psi = e+4 dib Pa 1 b Pa = e-1 Pa 1 Pa = e+0 b Pa 1 b Pa = e-4 psi 1 psi = e+3 b Pa 1 daib Pa = e+0 Pa 1 Pa = e-1 daib Pa 1 daib Pa = e-4 psi 1 psi = e+3 daib Pa 1 hib Pa = e+1 Pa 1 Pa = e-2 hib Pa 1 hib Pa = e-2 psi 1 psi = e+1 hib Pa 1 Kib Pa = e+2 Pa 1 Pa = e-3 Kib Pa 1 Kib Pa = e-1 psi 1 psi = e+0 Kib Pa 1 Mib Pa = e+5 Pa 1 Pa = e-6 Mib Pa 1 Mib Pa = e+2 psi 1 psi = e-3 Mib Pa 1 Gib Pa = e+8 Pa 1 Pa = e-9 Gib Pa 1 Gib Pa = e+5 psi 1 psi = e-6 Gib Pa 3.3 Energy Definition 15. One bijoule (b J J) is defined as kibigram square bimeter per square bisecond. Definition 16. One electronbivolt (eb V = 2 64 b J ev) is defined as the energy lost or gained by the charge of a single electron moving across an electric potential difference of one bivolt. In other words: 1 eb V = e 1 b V, where e is the elementary charge 12. The following relationships exist between binary energy units and joule or electronvolt: 1 nib J = e-9 J 1 J = e+8 nib J 1 nib J = e+10 ev 1 ev = e-11 nib J 1 uib J = e-6 J 1 J = e+5 uib J 1 uib J = e+13 ev 1 ev = e-14 uib J 1 mib J = e-3 J 1 J = e+2 mib J 1 mib J = e+16 ev 1 ev = e-17 mib J 1 cib J = e-2 J 1 J = e+1 cib J 1 cib J = e+16 ev 1 ev = e-17 cib J 1 dib J = e-1 J 1 J = e+0 dib J 1 dib J = e+18 ev 1 ev = e-19 dib J 1 b J = e+0 J 1 J = e-1 b J 1 b J = e+19 ev 1 ev = e-20 b J 1 daib J = e+1 J 1 J = e-2 daib J 1 daib J = e+19 ev 1 ev = e-20 daib J 12 e = 2 64 b C 11

12 1 hib J = e+2 J 1 J = e-3 hib J 1 hib J = e+21 ev 1 ev = e-22 hib J 1 Kib J = e+3 J 1 J = e-4 Kib J 1 Kib J = e+22 ev 1 ev = e-23 Kib J 1 Mib J = e+6 J 1 J = e-7 Mib J 1 Mib J = e+25 ev 1 ev = e-26 Mib J 1 Gib J = e+9 J 1 J = e-10 Gib J 1 Gib J = e+28 ev 1 ev = e-29 Gib J 1 nieb V = e-29 J 1 J = e+28 nieb V 1 nieb V = e-10 ev 1 ev = e+9 nieb V 1 uieb V = e-26 J 1 J = e+25 uieb V 1 uieb V = e-7 ev 1 ev = e+6 uieb V 1 mieb V = e-23 J 1 J = e+22 mieb V 1 mieb V = e-4 ev 1 ev = e+3 mieb V 1 cieb V = e-22 J 1 J = e+21 cieb V 1 cieb V = e-3 ev 1 ev = e+2 cieb V 1 dieb V = e-20 J 1 J = e+19 dieb V 1 dieb V = e-2 ev 1 ev = e+1 dieb V 1 eb V = e-20 J 1 J = e+19 eb V 1 eb V = e-1 ev 1 ev = e+0 eb V 1 daieb V = e-19 J 1 J = e+18 daieb V 1 daieb V = e+0 ev 1 ev = e-1 daieb V 1 hieb V = e-17 J 1 J = e+16 hieb V 1 hieb V = e+1 ev 1 ev = e-2 hieb V 1 Kieb V = e-16 J 1 J = e+15 Kieb V 1 Kieb V = e+2 ev 1 ev = e-3 Kieb V 1 Mieb V = e-13 J 1 J = e+12 Mieb V 1 Mieb V = e+5 ev 1 ev = e-6 Mieb V 1 Gieb V = e-10 J 1 J = e+9 Gieb V 1 Gieb V = e+8 ev 1 ev = e-9 Gieb V 3.4 Power Definition 17. One biwatt (b W W) is defined as kibigram square bimeter per cubic bisecond. The following relationships exist between binary power units and watt or metric horsepower unit ( W): 1 nib W = e-9 W 1 W = e+8 nib W 1 nib W = e-12 hpm 1 hpm = e+11 nib W 1 uib W = e-6 W 1 W = e+5 uib W 1 uib W = e-9 hpm 1 hpm = e+8 uib W 1 mib W = e-3 W 1 W = e+2 mib W 1 mib W = e-6 hpm 1 hpm = e+5 mib W 1 cib W = e-2 W 1 W = e+1 cib W 1 cib W = e-5 hpm 1 hpm = e+4 cib W 1 dib W = e-1 W 1 W = e+0 dib W 1 dib W = e-4 hpm 1 hpm = e+3 dib W 1 b W = e+0 W 1 W = e-1 b W 1 b W = e-3 hpm 1 hpm = e+2 b W 1 daib W = e+1 W 1 W = e-2 daib W 1 daib W = e-2 hpm 1 hpm = e+1 daib W 1 hib W = e+2 W 1 W = e-3 hib W 1 hib W = e-1 hpm 1 hpm = e+0 hib W 1 Kib W = e+3 W 1 W = e-4 Kib W 1 Kib W = e+0 hpm 1 hpm = e-1 Kib W 1 Mib W = e+6 W 1 W = e-7 Mib W 1 Mib W = e+3 hpm 1 hpm = e-4 Mib W 1 Gib W = e+9 W 1 W = e-10 Gib W 1 Gib W = e+6 hpm 1 hpm = e-7 Gib W 12

13 3.5 Electric voltage Definition 18. One bivolt (b V V) is defined as kibigram square bimeter per square bisecond bicoulomb. The following relationships exist between binary voltage units and volt: 1 nib V = e-10 V 1 V = e+9 nib V 1 uib V = e-7 V 1 V = e+6 uib V 1 mib V = e-4 V 1 V = e+3 mib V 1 cib V = e-3 V 1 V = e+2 cib V 1 dib V = e-2 V 1 V = e+1 dib V 1 b V = e-1 V 1 V = e+0 b V 1 daib V = e+0 V 1 V = e-1 daib V 1 hib V = e+1 V 1 V = e-2 hib V 1 Kib V = e+2 V 1 V = e-3 Kib V 1 Mib V = e+5 V 1 V = e-6 Mib V 1 Gib V = e+8 V 1 V = e-9 Gib V 3.6 Electric capacitance Definition 19. One bifarad (b F F) is defined as squared bicoulomb squared bisecond per kibigram squared bimeter. The following relationships exist between binary capacitance units and farad: 1 nib F = e-9 F 1 F = e+8 nib F 1 uib F = e-6 F 1 F = e+5 uib F 1 mib F = e-3 F 1 F = e+2 mib F 1 cib F = e-2 F 1 F = e+1 cib F 1 dib F = e-1 F 1 F = e+0 dib F 1 b F = e+0 F 1 F = e-1 b F 1 daib F = e+1 F 1 F = e-2 daib F 1 hib F = e+2 F 1 F = e-3 hib F 1 Kib F = e+3 F 1 F = e-4 Kib F 1 Mib F = e+6 F 1 F = e-7 Mib F 1 Gib F = e+9 F 1 F = e-10 Gib F 3.7 Electric resistance Definition 20. One biohm (b Ω Ω) is defined as kibigram squared bimeter per bisecond squared bicoulomb. The following relationships exist between binary resistance units and ohm: 1 nib Ω = e-10 Ω 1 Ω = e+9 nib Ω 1 uib Ω = e-7 Ω 1 Ω = e+6 uib Ω 1 mib Ω = e-4 Ω 1 Ω = e+3 mib Ω 1 cib Ω = e-3 Ω 1 Ω = e+2 cib Ω 1 dib Ω = e-2 Ω 1 Ω = e+1 dib Ω 1 b Ω = e-1 Ω 1 Ω = e+0 b Ω 1 daib Ω = e+0 Ω 1 Ω = e-1 daib Ω 1 hib Ω = e+1 Ω 1 Ω = e-2 hib Ω 1 Kib Ω = e+2 Ω 1 Ω = e-3 Kib Ω 1 Mib Ω = e+5 Ω 1 Ω = e-6 Mib Ω 1 Gib Ω = e+8 Ω 1 Ω = e-9 Gib Ω 13

14 3.8 Electric conductance Definition 21. One bisiemens (b S S) is defined as bicoulomb bisecond per kibigram squared meter 13. The following relationships exist between binary conductance units and siemens: 1 nib S = e-9 S 1 S = e+8 nib S 1 uib S = e-6 S 1 S = e+5 uib S 1 mib S = e-3 S 1 S = e+2 mib S 1 cib S = e-2 S 1 S = e+1 cib S 1 dib S = e-1 S 1 S = e+0 dib S 1 b S = e+0 S 1 S = e-1 b S 1 daib S = e+1 S 1 S = e-2 daib S 1 hib S = e+2 S 1 S = e-3 hib S 1 Kib S = e+3 S 1 S = e-4 Kib S 1 Mib S = e+6 S 1 S = e-7 Mib S 1 Gib S = e+9 S 1 S = e-10 Gib S 3.9 Electric current Definition 22. One biampere (b A A) is defined as bicoulomb per bisecond. The following relationships exist between binary current units and ampere: 1 nib A = e-9 A 1 A = e+8 nib A 1 uib A = e-6 A 1 A = e+5 uib A 1 mib A = e-3 A 1 A = e+2 mib A 1 cib A = e-2 A 1 A = e+1 cib A 1 dib A = e-1 A 1 A = e+0 dib A 1 b A = e+0 A 1 A = e-1 b A 1 daib A = e+1 A 1 A = e-2 daib A 1 hib A = e+2 A 1 A = e-3 hib A 1 Kib A = e+3 A 1 A = e-4 Kib A 1 Mib A = e+6 A 1 A = e-7 Mib A 1 Gib A = e+9 A 1 A = e-10 Gib A 3.10 Electric inductance Definition 23. One bihenry (b H H) is defined as kibigram square meter per square bicoulomb. The following relationships exist between binary inductance units and henry: 13 b S = 1/b Ω 1 nib H = e-10 H 1 H = e+9 nib H 1 uib H = e-7 H 1 H = e+6 uib H 1 mib H = e-4 H 1 H = e+3 mib H 1 cib H = e-3 H 1 H = e+2 cib H 1 dib H = e-2 H 1 H = e+1 dib H 14

15 1 b H = e-1 H 1 H = e+0 b H 1 daib H = e+0 H 1 H = e-1 daib H 1 hib H = e+1 H 1 H = e-2 hib H 1 Kib H = e+2 H 1 H = e-3 Kib H 1 Mib H = e+5 H 1 H = e-6 Mib H 1 Gib H = e+8 H 1 H = e-9 Gib H 3.11 Magnetic flux Definition 24. One biweber (b Wb Wb) is defined as kibigram square meter per bicoulomb bisecond. The following relationships exist between binary magnetic flux units and weber: 1 nib Wb = e-10 Wb 1 Wb = e+9 nib Wb 1 uib Wb = e-7 Wb 1 Wb = e+6 uib Wb 1 mib Wb = e-4 Wb 1 Wb = e+3 mib Wb 1 cib Wb = e-3 Wb 1 Wb = e+2 cib Wb 1 dib Wb = e-2 Wb 1 Wb = e+1 dib Wb 1 b Wb = e-1 Wb 1 Wb = e+0 b Wb 1 daib Wb = e+0 Wb 1 Wb = e-1 daib Wb 1 hib Wb = e+1 Wb 1 Wb = e-2 hib Wb 1 Kib Wb = e+2 Wb 1 Wb = e-3 Kib Wb 1 Mib Wb = e+5 Wb 1 Wb = e-6 Mib Wb 1 Gib Wb = e+8 Wb 1 Wb = e-9 Gib Wb 3.12 Magnetic field strength Definition 25. One bitesla (b T T) is defined as kibigram per bicoulomb bisecond. The following relationships exist between binary magnetic field strength units and tesla: 1 nib T = e-10 T 1 T = e+9 nib T 1 uib T = e-7 T 1 T = e+6 uib T 1 mib T = e-4 T 1 T = e+3 mib T 1 cib T = e-3 T 1 T = e+2 cib T 1 dib T = e-2 T 1 T = e+1 dib T 1 b T = e-1 T 1 T = e+0 b T 1 daib T = e+0 T 1 T = e-1 daib T 1 hib T = e+1 T 1 T = e-2 hib T 1 Kib T = e+2 T 1 T = e-3 Kib T 1 Mib T = e+5 T 1 T = e-6 Mib T 1 Gib T = e+8 T 1 T = e-9 Gib T 4 Unnamed derived units 4.1 Angle Definition 26. One bidegree (1 b ) is equal to 2 16 of the full angle (= ) Definition 27. One biminute (1 b ) is equal to 2 6 of bidegree (= ) 15

16 Definition 28. One bisecond 14 (1 b ) is equal to 2 6 of biminute (= ) Units connected with geometry of the Euclidean space (radian, steradian) are used without any changes. 4.2 Area The main unit of area is square bimeter (b m m 2 ). The following relationships exist between binary area units and square meter, square inch ( cm 2 ), square foot ( cm 2 ), square yard ( m 2 ), square mile ( km 2 ) and acre ( m 2 ): 1 nib m 2 = e-18 m 2 1 m 2 = e+17 nib m 2 1 nib m 2 = e-15 inch 2 1 inch 2 = e+14 nib m 2 1 nib m 2 = e-17 ft 2 1 ft 2 = e+16 nib m 2 1 nib m 2 = e-18 yard 2 1 yard 2 = e+17 nib m 2 1 nib m 2 = e-25 mile 2 1 mile 2 = e+24 nib m 2 1 nib m 2 = e-22 acre 1 acre = e+21 nib m 2 1 uib m 2 = e-12 m 2 1 m 2 = e+11 uib m 2 1 uib m 2 = e-9 inch 2 1 inch 2 = e+8 uib m 2 1 uib m 2 = e-11 ft 2 1 ft 2 = e+10 uib m 2 1 uib m 2 = e-12 yard 2 1 yard 2 = e+11 uib m 2 1 uib m 2 = e-19 mile 2 1 mile 2 = e+18 uib m 2 1 uib m 2 = e-16 acre 1 acre = e+15 uib m 2 1 mib m 2 = e-6 m 2 1 m 2 = e+5 mib m 2 1 mib m 2 = e-3 inch 2 1 inch 2 = e+2 mib m 2 1 mib m 2 = e-5 ft 2 1 ft 2 = e+4 mib m 2 1 mib m 2 = e-6 yard 2 1 yard 2 = e+5 mib m 2 1 mib m 2 = e-13 mile 2 1 mile 2 = e+12 mib m 2 1 mib m 2 = e-10 acre 1 acre = e+9 mib m 2 1 cib m 2 = e-4 m 2 1 m 2 = e+3 cib m 2 1 cib m 2 = e-1 inch 2 1 inch 2 = e+0 cib m 2 1 cib m 2 = e-3 ft 2 1 ft 2 = e+2 cib m 2 1 cib m 2 = e-4 yard 2 1 yard 2 = e+3 cib m 2 1 cib m 2 = e-11 mile 2 1 mile 2 = e+10 cib m 2 1 cib m 2 = e-8 acre 1 acre = e+7 cib m 2 1 dib m 2 = e-2 m 2 1 m 2 = e+1 dib m 2 1 dib m 2 = e+1 inch 2 1 inch 2 = e-2 dib m 2 1 dib m 2 = e-1 ft 2 1 ft 2 = e+0 dib m 2 1 dib m 2 = e-2 yard 2 1 yard 2 = e+1 dib m 2 1 dib m 2 = e-8 mile 2 1 mile 2 = e+7 dib m 2 1 dib m 2 = e-6 acre 1 acre = e+5 dib m 2 1 b m 2 = e+0 m 2 1 m 2 = e-1 b m 2 1 b m 2 = e+3 inch 2 1 inch 2 = e-4 b m 2 1 b m 2 = e+1 ft 2 1 ft 2 = e-2 b m 2 1 b m 2 = e+0 yard 2 1 yard 2 = e-1 b m 2 1 b m 2 = e-7 mile 2 1 mile 2 = e+6 b m 2 1 b m 2 = e-4 acre 1 acre = e+3 b m 2 1 daib m 2 = e+2 m 2 1 m 2 = e-3 daib m 2 1 daib m 2 = e+5 inch 2 1 inch 2 = e-6 daib m 2 1 daib m 2 = e+3 ft 2 1 ft 2 = e-4 daib m 2 1 daib m 2 = e+2 yard 2 1 yard 2 = e-3 daib m 2 1 daib m 2 = e-5 mile 2 1 mile 2 = e+4 daib m 2 1 daib m 2 = e-2 acre 1 acre = e+1 daib m 2 1 hib m 2 = e+4 m 2 1 m 2 = e-5 hib m 2 1 hib m 2 = e+7 inch 2 1 inch 2 = e-8 hib m 2 1 hib m 2 = e+5 ft 2 1 ft 2 = e-6 hib m 2 1 hib m 2 = e+4 yard 2 1 yard 2 = e-5 hib m 2 14 not to be confused with time unit! 16

17 1 hib m 2 = e-2 mile 2 1 mile 2 = e+1 hib m 2 1 hib m 2 = e+0 acre 1 acre = e-1 hib m 2 1 Kib m 2 = e+6 m 2 1 m 2 = e-7 Kib m 2 1 Kib m 2 = e+9 inch 2 1 inch 2 = e-10 Kib m 2 1 Kib m 2 = e+7 ft 2 1 ft 2 = e-8 Kib m 2 1 Kib m 2 = e+6 yard 2 1 yard 2 = e-7 Kib m 2 1 Kib m 2 = e-1 mile 2 1 mile 2 = e+0 Kib m 2 1 Kib m 2 = e+2 acre 1 acre = e-3 Kib m 2 1 Mib m 2 = e+12 m 2 1 m 2 = e-13 Mib m 2 1 Mib m 2 = e+15 inch 2 1 inch 2 = e-16 Mib m 2 1 Mib m 2 = e+13 ft 2 1 ft 2 = e-14 Mib m 2 1 Mib m 2 = e+12 yard 2 1 yard 2 = e-13 Mib m 2 1 Mib m 2 = e+5 mile 2 1 mile 2 = e-6 Mib m 2 1 Mib m 2 = e+8 acre 1 acre = e-9 Mib m 2 1 Gib m 2 = e+18 m 2 1 m 2 = e-19 Gib m 2 1 Gib m 2 = e+21 inch 2 1 inch 2 = e-22 Gib m 2 1 Gib m 2 = e+19 ft 2 1 ft 2 = e-20 Gib m 2 1 Gib m 2 = e+18 yard 2 1 yard 2 = e-19 Gib m 2 1 Gib m 2 = e+11 mile 2 1 mile 2 = e-12 Gib m 2 1 Gib m 2 = e+14 acre 1 acre = e-15 Gib m Volume The main unit of volume is cubic bimeter (b m m 2 ). Definition 29. One biliter (1 b l l) is equal to one cubic dibimeter (1 dib m 3 ). The following relationships exist between binary volume units and cubic meter, cubic inch ( cm 3 ), cubic foot ( dm 3 ), and gallon ( dm 3 ): 1 nib m 3 = e-27 m 3 1 m 3 = e+26 nib m 3 1 nib m 3 = e-22 inch 3 1 inch 3 = e+21 nib m 3 1 nib m 3 = e-26 ft 3 1 ft 3 = e+25 nib m 3 1 nib m 3 = e-25 gallon 1 gallon = e+24 nib m 3 1 uib m 3 = e-18 m 3 1 m 3 = e+17 uib m 3 1 uib m 3 = e-13 inch 3 1 inch 3 = e+12 uib m 3 1 uib m 3 = e-17 ft 3 1 ft 3 = e+16 uib m 3 1 uib m 3 = e-16 gallon 1 gallon = e+15 uib m 3 1 mib m 3 = e-9 m 3 1 m 3 = e+8 mib m 3 1 mib m 3 = e-4 inch 3 1 inch 3 = e+3 mib m 3 1 mib m 3 = e-8 ft 3 1 ft 3 = e+7 mib m 3 1 mib m 3 = e-7 gallon 1 gallon = e+6 mib m 3 1 cib m 3 = e-6 m 3 1 m 3 = e+5 cib m 3 1 cib m 3 = e-2 inch 3 1 inch 3 = e+1 cib m 3 1 cib m 3 = e-5 ft 3 1 ft 3 = e+4 cib m 3 1 cib m 3 = e-4 gallon 1 gallon = e+3 cib m 3 1 dib m 3 = e-3 m 3 1 m 3 = e+2 dib m 3 1 dib m 3 = e+2 inch 3 1 inch 3 = e-3 dib m 3 1 dib m 3 = e-1 ft 3 1 ft 3 = e+0 dib m 3 1 dib m 3 = e+0 gallon 1 gallon = e-1 dib m 3 1 b m 3 = e+0 m 3 1 m 3 = e-1 b m 3 1 b m 3 = e+5 inch 3 1 inch 3 = e-6 b m 3 1 b m 3 = e+1 ft 3 1 ft 3 = e-2 b m 3 1 b m 3 = e+2 gallon 1 gallon = e-3 b m 3 1 daib m 3 = e+3 m 3 1 m 3 = e-4 daib m 3 1 daib m 3 = e+7 inch 3 1 inch 3 = e-8 daib m 3 1 daib m 3 = e+4 ft 3 1 ft 3 = e-5 daib m 3 1 daib m 3 = e+5 gallon 1 gallon = e-6 daib m 3 1 hib m 3 = e+6 m 3 1 m 3 = e-7 hib m 3 17

18 1 hib m 3 = e+11 inch 3 1 inch 3 = e-12 hib m 3 1 hib m 3 = e+8 ft 3 1 ft 3 = e-9 hib m 3 1 hib m 3 = e+9 gallon 1 gallon = e-10 hib m 3 1 Kib m 3 = e+9 m 3 1 m 3 = e-10 Kib m 3 1 Kib m 3 = e+14 inch 3 1 inch 3 = e-15 Kib m 3 1 Kib m 3 = e+10 ft 3 1 ft 3 = e-11 Kib m 3 1 Kib m 3 = e+11 gallon 1 gallon = e-12 Kib m 3 1 Mib m 3 = e+18 m 3 1 m 3 = e-19 Mib m 3 1 Mib m 3 = e+23 inch 3 1 inch 3 = e-24 Mib m 3 1 Mib m 3 = e+19 ft 3 1 ft 3 = e-20 Mib m 3 1 Mib m 3 = e+20 gallon 1 gallon = e-21 Mib m 3 1 Gib m 3 = e+27 m 3 1 m 3 = e-28 Gib m 3 1 Gib m 3 = e+32 inch 3 1 inch 3 = e-33 Gib m 3 1 Gib m 3 = e+29 ft 3 1 ft 3 = e-30 Gib m 3 1 Gib m 3 = e+29 gallon 1 gallon = e-30 Gib m Density The main density unit is kibigram per cubic bimeter (1 Kib g/b m kg/m 3 ). An useful recommended unit is b g/cib m 3 ( g/cm 3 ). 4.5 Speed The main speed unit is bimeter per bisecond (1 b m/b s m/s). An useful unit is Kib m/b h ( km/h). The speed of light in vacuum is equal to 2 28 b m/b s = 28 đ[b m/b s]. 4.6 Other units Unit Abbreviation Quantity Value square bimeter b m 2 area m 2 cubic bimeter b m 3 volume m 3 bimeter / bisecond b m/b s speed, velocity m s 1 cubic bimeter / bisecond b m 3 /b s volumetric flow m 3 s 1 bimeter / square bisecond b m/b s 2 acceleration m s 2 bimeter / cubic bisecond b m/b s 3 jerk, jolt m s 3 bimeter / quartic bisecond b m/b s 4 snap, jounce m s 4 binewton bisecond b N b s momentum, impulse kg m s 1 binewton bimeter bisecond b N b m b s angular momentum kg m 2 s 1 binewton meter b N b m torque, moment of force kg m 2 s 2 binewton / bisecond b N/b s yank kg m s 3 kibigram / square bimeter Kib g/b m 2 area density kg m 2 kibigram / cubic bimeter Kib g/b m 3 density, mass density kg m 3 cubic bimeter / kibigram b m 3 /Kib g specific volume m 3 kg 1 bimole / cubic bimeter b mol/b m 3 molarity mol m 3 cubic bimeter / bimole b m 3 /b mol molar volume mol 1 m 3 bijoule second b J b s action kg m 2 s 1 bijoule / bikelvin b J/b K heat capacity, entropy kg m 2 s 2 K 1 bijoule / bikelvin mole b J/(b K b mol) molar heat capacity kg m 2 mol 1 s 2 K 1 bijoule / kibigram bikelvin b J/(Kib g bk) specific heat capacity m 2 s 2 K 1 bijoule / bimole b J/b mol molar energy kg m 2 mol 1 s 2 bijoule / kibigram b J/Kib g specific energy m 2 s 2 bijoule / cubic bimeter b J/b m 3 energy density kg m 1 s 2 binewton / bimeter b N/b m surface tension, stiffness kg s 2 biwatt / square bimeter b W/b m 2 heat flux density, irradiance kg s 3 biwatt / bimeter bikelvin b W/(b m bk) thermal conductivity kg m s 3 K 1 square bimeter / bisecond b m 2 /b s kinematic viscosity m 2 s 1 bipascal bisecond b Pa b s dynamic viscosity kg m 1 s 1 bicoulomb / square bimeter b C/b m 2 electric displacement field s A m 2 bicoulomb / cubic bimeter b C/b m 3 electric charge density s A m 3 bicoulomb / square bimeter bisecond b C/(b m 2 b s) electric current density A m 2 bisiemens / bimeter b S/b m electrical conductivity s 3 A 2 kg 1 m 3 bisiemens square bimeter / bimole (b S b m 2 )/b mol molar conductivity kg 1 s 3 mol 1 A 2 18

19 bifarad / bimeter b F/b m permittivity m 3 kg 1 s 4 A 2 bihenry / bimeter b H/b m magnetic permeability kg m s 2 A 2 bivolt / bimeter b V/b m electric field strength m kg s 3 A 1 biampere / bimeter b A/b m magnetic field strength A m 1 bicoulomb / kibigram b C/Kib g exposure s A kg 1 biohm bimeter b Ω b m resistivity m 3 kg s 3 A 2 kibigram / bimeter Kib g/b m linear mass density m 1 kg bicoulomb / bimeter b C/b m linear charge density m 1 C bimole / kibigram b mol/kib g molality kg 1 mol kibigram / bimole Kib g/b mol molar mass kg mol 1 kibigram / bisecond Kib g/b s mass flow rate kg s 1 bijoule / bitesla b J/b T magnetic dipole moment m 2 A biwatt / cubic bimeter b W/b m 3 spectral irradiance m 1 kg s 3 bikelvin / biwatt b K/b W thermal resistance m 2 kg 1 s 3 K bikelvin / bimeter b K/b m temperature gradient m 1 K square meter / volt second b m 2 /(b V b s) electron mobility kg 1 s 2 A bijoule / square bimeter bisecond b J/(b m 2 b s) energy flux density kg s 3 biweber / bimeter b Wb/b m magnetic vector potential kg m s 2 A 1 biweber bimeter b Wb b m magnetic moment kg m 3 s 2 A 1 bitesla bimeter b T b m magnetic rigidity kg m s 2 A 1 bijoule / square bimeter b J/b m 2 radiant exposure kg s 2 cubic bimeter / bimole bisecond b m 3 /(b mol b s) catalytic efficiency m 3 s 1 mol 1 kibigram square bimeter Kib g b m 2 moment of inertia m 2 kg binewton bimeter bisecond / kibigram (b N b m b s)/kib g specific angular momentum m 2 s 1 bhertz / bisecond b Hz/b s frequency drift s 2 bimeter / bihenry b m/b H magnetic susceptibility m 1 kg 1 s 2 A 2 A Appendix The following table contains conversion coefficients for product combinations of kibigram, bimeter, bimole, bisecond, bicoulomb and bikelvin, with various exponents. Most of them are never used in practice, however they were computed for a reference. The following ranges of the exponents were considered: 1 1 for kibigram, 3 3 for bimeter, 1 1 for b mol, 3 1 for bisecond, 2 2 for bicoulomb and 3 0 for bikelvin. Exponents e b K e+0 K /b K e-1 1/K /b K e-1 1/K /b K e-1 1/K b C e+0 s*a b C*b K e+0 s*a*k b C/b K e+0 (s*a)/k b C/b K e+0 (s*a)/k b C/b K e+0 (s*a)/k /b C e-1 1/(s*A) b K/b C e-1 K/(s*A) /(b C*bK) e-1 1/(s*A*K) /(b C*b K 2 ) e-1 1/(s*A*K 2 ) /(b C*b K 3 ) e-1 1/(s*A*K 3 ) b C e+0 s 2 *A b C 2 *b K e+0 s 2 *A 2 *K b C 2 /b K e+0 (s 2 *A 2 )/K b C 2 /b K e+0 (s 2 *A 2 )/K b C 2 /b K e+0 (s 2 *A 2 )/K /b C e-1 1/(s 2 *A 2 ) b K/b C e-1 K/(s 2 *A 2 ) /(b C 2 *bk) e-1 1/(s 2 *A 2 *K) /(b C 2 *b K 2 ) e-2 1/(s 2 *A 2 *K 2 ) /(b C 2 *b K 3 ) e-2 1/(s 2 *A 2 *K 3 ) b s e+0 s b s*b K e+0 s*k b s/b K e+0 s/k b s/b K e-1 s/k b s/b K e-1 s/k b s*b C e+0 s 2 *A b s*b C*b K e+0 s 2 *A*K (b s*b C)/b K e+0 (s 2 *A)/K 19

20 (b s*b C)/b K e+0 (s 2 *A)/K (b s*b C)/b K e+0 (s 2 *A)/K b s/b C e-1 1/A (b s*bk)/b C e-1 K/A b s/(b C*bK) e-1 1/(A*K) b s/(b C*b K 2 ) e-1 1/(A*K 2 ) b s/(b C*b K 3 ) e-1 1/(A*K 3 ) b s*b C e+1 s 3 *A b s*b C 2 *b K e+1 s 3 *A 2 *K (b s*b C 2 )/b K e+0 (s 3 *A 2 )/K (b s*b C 2 )/b K e+0 (s 3 *A 2 )/K (b s*b C 2 )/b K e+0 (s 3 *A 2 )/K b s/b C e-1 1/(s*A 2 ) (b s*bk)/b C e-1 K/(s*A 2 ) b s/(b C 2 *bk) e-1 1/(s*A 2 *K) b s/(b C 2 *b K 2 ) e-1 1/(s*A 2 *K 2 ) b s/(b C 2 *b K 3 ) e-1 1/(s*A 2 *K 3 ) /b s e-1 1/s b K/b s e-1 K/s /(b s*bk) e-1 1/(s*K) /(b s*b K 2 ) e-1 1/(s*K 2 ) /(b s*b K 3 ) e-1 1/(s*K 3 ) b C/b s e+0 A (b C*bK)/b s e+0 A*K b C/(b s*bk) e+0 A/K b C/(b s*b K 2 ) e+0 A/K b C/(b s*b K 3 ) e+0 A/K /(b s*b C) e-1 1/(s 2 *A) b K/(b s*b C) e-1 K/(s 2 *A) /(b s*b C*bK) e-1 1/(s 2 *A*K) /(b s*b C*b K 2 ) e-1 1/(s 2 *A*K 2 ) /(b s*b C*b K 3 ) e-1 1/(s 2 *A*K 3 ) b C 2 /b s e+0 s*a (b C 2 *bk)/b s e+0 s*a 2 *K b C 2 /(b s*bk) e+0 (s*a 2 )/K b C 2 /(b s*b K 2 ) e+0 (s*a 2 )/K b C 2 /(b s*b K 3 ) e+0 (s*a 2 )/K /(b s*b C 2 ) e-2 1/(s 3 *A 2 ) b K/(b s*b C 2 ) e-1 K/(s 3 *A 2 ) /(b s*b C 2 *bk) e-2 1/(s 3 *A 2 *K) /(b s*b C 2 *b K 2 ) e-2 1/(s 3 *A 2 *K 2 ) /(b s*b C 2 *b K 3 ) e-2 1/(s 3 *A 2 *K 3 ) /b s e-1 1/s b K/b s e-1 K/s /(b s 2 *bk) e-1 1/(s 2 *K) /(b s 2 *b K 2 ) e-1 1/(s 2 *K 2 ) /(b s 2 *b K 3 ) e-1 1/(s 2 *K 3 ) b C/b s e+0 A/s (b C*bK)/b s e+0 (A*K)/s b C/(b s 2 *bk) e+0 A/(s*K) b C/(b s 2 *b K 2 ) e+0 A/(s*K 2 ) b C/(b s 2 *b K 3 ) e+0 A/(s*K 3 ) /(b s 2 *b C) e-1 1/(s 3 *A) b K/(b s 2 *b C) e-1 K/(s 3 *A) /(b s 2 *b C*bK) e-1 1/(s 3 *A*K) /(b s 2 *b C*b K 2 ) e-1 1/(s 3 *A*K 2 ) /(b s 2 *b C*b K 3 ) e-1 1/(s 3 *A*K 3 ) b C 2 /b s e+0 A (b C 2 *bk)/b s e+0 A 2 *K b C 2 /(b s 2 *bk) e+0 A 2 /K b C 2 /(b s 2 *b K 2 ) e+0 A 2 /K b C 2 /(b s 2 *b K 3 ) e+0 A 2 /K /(b s 2 *b C 2 ) e-2 1/(s 4 *A 2 ) b K/(b s 2 *b C 2 ) e-2 K/(s 4 *A 2 ) /(b s 2 *b C 2 *bk) e-2 1/(s 4 *A 2 *K) /(b s 2 *b C 2 *b K 2 ) e-2 1/(s 4 *A 2 *K 2 ) /(b s 2 *b C 2 *b K 3 ) e-2 1/(s 4 *A 2 *K 3 ) /b s e-1 1/s b K/b s e-1 K/s /(b s 3 *bk) e-1 1/(s 3 *K) /(b s 3 *b K 2 ) e-1 1/(s 3 *K 2 ) /(b s 3 *b K 3 ) e-1 1/(s 3 *K 3 ) b C/b s e+0 A/s (b C*bK)/b s e+0 (A*K)/s b C/(b s 3 *bk) e+0 A/(s 2 *K) b C/(b s 3 *b K 2 ) e+0 A/(s 2 *K 2 ) b C/(b s 3 *b K 3 ) e+0 A/(s 2 *K 3 ) 20

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΑΣ ΓΕΩΠΟΝΙΑΣ ΤΜΗΜΑ ΦΥΤΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΓΕΩΡΓΙΚΩΝ ΚΑΙ ΘΕΡΜΟΚΗΠΙΑΚΩΝ ΚΑΤΑΣΚΕΥΩΝ ΜΕΡΟΣ ΠΡΩΤΟ ΓΕΩΡΓΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ Δρ. Μενέλαος Θεοχάρης Πολιτικός Μηχανικός

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Answers to practice exercises

Answers to practice exercises Answers to practice exercises Chapter Exercise (Page 5). 9 kg 2. 479 mm. 66 4. 565 5. 225 6. 26 7. 07,70 8. 4 9. 487 0. 70872. $5, Exercise 2 (Page 6). (a) 468 (b) 868 2. (a) 827 (b) 458. (a) 86 kg (b)

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

APPENDIX A. Summary of the English Engineering (EE) System of Units

APPENDIX A. Summary of the English Engineering (EE) System of Units Appendixes A. Summary of the English Engineering (EE) System of Units B. Summary of the International System (SI) of Units C. Friction-Factor Chart D. Oblique-Shock Charts (γ = 1.4) (Two-Dimensional) E.

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Κλίμακα των δυνάμεων του 10.

Κλίμακα των δυνάμεων του 10. Κλίμακα των δυνάμεων του 10. Πρόθεμα (Prefix) Σύμβολο 1000 m 10 n Αριθμητική αναπαράσταση Αμερικανική απόδοση του όρου (short scale) yotta Y 1000 8 10 24 1000000000000000000000000 septillion 1991 zetta

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

DuPont Suva 95 Refrigerant

DuPont Suva 95 Refrigerant Technical Information T-95 SI DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG Technical Information T-410A ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 410A Refrigerant (R-410A) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)] d Suva refrigerants Technical Information T-9100SI Thermodynamic Properties of Suva 9100 Refrigerant [R-410A (50/50)] Thermodynamic Properties of Suva 9100 Refrigerant SI Units New tables of the thermodynamic

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Calculating the propagation delay of coaxial cable

Calculating the propagation delay of coaxial cable Your source for quality GNSS Networking Solutions and Design Services! Page 1 of 5 Calculating the propagation delay of coaxial cable The delay of a cable or velocity factor is determined by the dielectric

Διαβάστε περισσότερα

STEAM TABLES. Mollier Diagram

STEAM TABLES. Mollier Diagram STEAM TABLES and Mollier Diagram (S.I. Units) dharm \M-therm\C-steam.pm5 CONTENTS Table No. Page No. 1. Saturated Water and Steam (Temperature) Tables I (ii) 2. Saturated Water and Steam (Pressure) Tables

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Block Ciphers Modes. Ramki Thurimella

Block Ciphers Modes. Ramki Thurimella Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6 1 Τ.Ε.Ι. ΑΘΗΝΑΣ / Σ.ΤΕ.Φ. ΤΜΗΜΑ ΕΝΕΡΓΕΙΑΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΟΣ Οδός Αγ.Σπυρίδωνος,12210 Αιγάλεω,Αθήνα Τηλ.: 2105385355, email: ptsiling@teiath.gr H ΕΠΙΔΡΑΣΗ ΠΑΡΟΧΗΣ ΟΓΚΟΥ ΣΤΗΝ

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

MATSEC Intermediate Past Papers Index L. Bonello, A. Vella

MATSEC Intermediate Past Papers Index L. Bonello, A. Vella 2009 MATSEC Intermediate Past Papers Index Louisella Bonello Antonia Vella The Junior College Physics Department 2009 MATSEC INTERMEDIATE PAST PAPERS INDEX WITH ANSWERS TO NUMERICAL PROBLEMS by Louisella

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

Από τις διαλέξεις του μαθήματος του Α εξαμήνου σπουδών του Τμήματος. Κ. Παπαθεοδώρου, Αναπληρωτής Καθηγητής Οκτώβριος Δεκέμβριος 2013

Από τις διαλέξεις του μαθήματος του Α εξαμήνου σπουδών του Τμήματος. Κ. Παπαθεοδώρου, Αναπληρωτής Καθηγητής Οκτώβριος Δεκέμβριος 2013 Συγγραφή Τεχνικών Κειμένων Σχήματα, Πίνακες, Εικόνες, Αριθμοί Από τις διαλέξεις του μαθήματος του Α εξαμήνου σπουδών του Τμήματος Πολιτικών Μηχανικών και Μηχανικών Τοπογραφίας & Γεωπληροφορικής Κ. Παπαθεοδώρου,

Διαβάστε περισσότερα

Démographie spatiale/spatial Demography

Démographie spatiale/spatial Demography ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας ΠΕΡΙΛΗΨΗ Αριστείδης Κοσιονίδης Η κατανόηση των εννοιών ενός επιστημονικού πεδίου απαιτεί

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices No. 3 + 1,**- Technical Research Report, Earthquake Research Institute, University of Tokyo, No. 3, pp. + 1,,**-. MT * ** *** Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ Προοπτικές Εναρμόνισης της Ελληνικής Αγοράς Ηλεκτρικής Ενέργειας με τις Προδιαγραφές του Μοντέλου

Διαβάστε περισσότερα

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1

Gearmotor Data. SERIES GM9000: We have the GM9434H187-R1 SERIES GM9: We have the GM9434H187-R1 Gearmotor Data Item Parameter Symbol Units 5.9:1 11.5:1 19.7:1 38.3:1 65.5:1 127.8:1 218.4:1 425.9:1 728.1:1 1419.8:1 2426.9:1 4732.5:1 1 Max. Load Standard Gears

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης Α.Τ.Ε.Ι. ΙΟΝΙΩΝ ΝΗΣΩΝ ΠΑΡΑΡΤΗΜΑ ΑΡΓΟΣΤΟΛΙΟΥ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Η διαμόρφωση επικοινωνιακής στρατηγικής (και των τακτικών ενεργειών) για την ενδυνάμωση της εταιρικής

Διαβάστε περισσότερα

Φυσική Αντικείμενο: χαρακτηριστικά της φύσης που μπορούν να μετρηθούν Σκοπός ποσοτική κ ορθολογική περιγραφή φυσικών φαινομένων

Φυσική Αντικείμενο: χαρακτηριστικά της φύσης που μπορούν να μετρηθούν Σκοπός ποσοτική κ ορθολογική περιγραφή φυσικών φαινομένων Φυσική Αντικείμενο: χαρακτηριστικά της φύσης που μπορούν να μετρηθούν Σκοπός ποσοτική κ ορθολογική περιγραφή φυσικών φαινομένων Ποσοτική περιγραφή μέτρηση τιμή σε φυσική ποσότητα μέτρηση με κατάλληλα όργανα

Διαβάστε περισσότερα

Code Breaker. TEACHER s NOTES

Code Breaker. TEACHER s NOTES TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Whitaker, Jerry C. Chapter 12 Reference Data Power Vacuum Tubes Handbook 2 nd Edition. Ed. Jerry C. Whitaker Boca Raton: CRC Press LLC, 2000

Whitaker, Jerry C. Chapter 12 Reference Data Power Vacuum Tubes Handbook 2 nd Edition. Ed. Jerry C. Whitaker Boca Raton: CRC Press LLC, 2000 Whitaker, Jerry C. Chapter 12 Reference Data Power Vacuum Tubes Handbook 2 nd Edition. Ed. Jerry C. Whitaker Boca Raton: CRC Press LLC, 2000 Chapter 12 Reference Data Standard Units Name Symbol Quantity

Διαβάστε περισσότερα

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Case 1: Original version of a bill available in only one language.

Case 1: Original version of a bill available in only one language. currentid originalid attributes currentid attribute is used to identify an element and must be unique inside the document. originalid is used to mark the identifier that the structure used to have in the

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

Exercises in Electromagnetic Field

Exercises in Electromagnetic Field DR. GYURCSEK ISTVÁN Exercises in Electromagnetic Field Sources and additional materials (recommended) Gyurcsek I. Elmer Gy.: Theories in Electric Circuits, Globe Edit 206, ISBN:97833307343 Simonyi K.:

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ Γηπισκαηηθή Δξγαζία ηνπ Φνηηεηή ηνπ ηκήκαηνο Ζιεθηξνιόγσλ Μεραληθώλ θαη Σερλνινγίαο Ζιεθηξνληθώλ

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor Technical Report General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor Tasos Lazaridis Electrical Engineer CAD/CAE Engineer tasoslazaridis13@gmail.com Three-Phase Induction Machine

Διαβάστε περισσότερα

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων Εξάμηνο 7 ο Procedures and Functions Stored procedures and functions are named blocks of code that enable you to group and organize a series of SQL and PL/SQL

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Surface Mount Multilayer Chip Capacitors for Commodity Solutions Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF

Διαβάστε περισσότερα

ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία

ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία University of Cyprus ptical Diagnostics ΗΜΜΥ 100 Εισαγωγή στην Τεχνολογία Διάλεξη 7 Αριθμοί με Σημασία! Μετρήσεις Μετρολογία Η επιστήμη των μετρήσεων Περιλαμβάνει τόσο πειραματικούς όσο και θεωρητικούς

Διαβάστε περισσότερα

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin. Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

ΥΒΡΙΔΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕ ΙΣΤΙΟΠΛΟΪΚΑ ΣΚΑΦΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΥΒΡΙΔΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕ ΙΣΤΙΟΠΛΟΪΚΑ ΣΚΑΦΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΩΝ ΒΙΟΜΗΧΑΝΙΚΩΝ ΔΙΑΤΑΞΕΩΝ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΑΠΟΦΑΣΕΩΝ ΥΒΡΙΔΙΚΟ ΣΥΣΤΗΜΑ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΣΕ ΙΣΤΙΟΠΛΟΪΚΑ

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση»

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. «Προστασία ηλεκτροδίων γείωσης από τη διάβρωση» ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «Προστασία ηλεκτροδίων

Διαβάστε περισσότερα

Γενική Φυσική. Μεγέθη & μονάδες. Φυσικά φαινόμενα. Μεγέθη και μονάδες 24/9/2014. Κωνσταντίνος Χ. Παύλου 1

Γενική Φυσική. Μεγέθη & μονάδες. Φυσικά φαινόμενα. Μεγέθη και μονάδες 24/9/2014. Κωνσταντίνος Χ. Παύλου 1 Γενική Φυσική Κωνσταντίνος Χ. Παύλου Φυσικός Ραδιοηλεκτρολόγος (MSc) Καστοριά, Σεπτέμβριος 14 Μεγέθη & μονάδες 1. Φυσικό μέγεθος κατηγορίες μεγεθών 2. Αριθμητική τιμή σύστημα μονάδων 3. Το ιεθνές Σύστημα

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα