J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
|
|
- Χλόη Ζαΐμης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : (216) d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x( k ) = I k (x( k )), k = 1, 2, (13), [3, 4] Lyapunov (11), (12), [5] (11), (12), (13), [6 8],, : d d [u() g(, u )] = A[u() g(, u )] + f(, u ), (14) u = ϕ(), [ r, ], (15) u( k ) = I k (u( k )), k = 1, 2,, (16) Banach, A T (), u = u( + θ), r θ, = ([ r, ], ), ϕ ϕ = sup r θ ϕ : : : (1982 ),,,, :
2 592 Vol 36 : H 1 ) A Banach T (), K >, ω > > s, T ( s) Ke ω( s) H 2 ) f : R +, f(, ) =, F (R + R +, R + ) f(, ϕ F (, ϕ ), (, ϕ) R + ϕ 1, ϕ 2, : f(, ϕ 1 ) f(, ϕ 2 ) P (, ϕ 1, ϕ 2 ) ϕ 1 ϕ 2, P (, x, y) >, x, y, g(, ) =, L() [ r, ), g(, u 1 ) g(, u 2 ) L() u 1 u 2 H 3 ) I k : ([ r, ) ), I k (ϕ()) =, I k () =, q k > I k (x 1 ) I k (x 2 ) q k x 1 x 2, q k, Q = Kq k, < L() + Q < 1 k=1 k=1 H 4 ) h(, α) ([ r, ) R +, R + ) α, h() := h(, α), h() 1 δ Ke ω (1 + L())α + 1 Ke ω( s) F (s, h s )ds,, δ (17) h() α, [ r, ], h = sup r θ h( + θ), δ = inf [ r, ) (1 L() Q) 11 u( ) : [ r, ) (14), (15), u() u() = T ()[ϕ() g(, u )] + g(, u ) + u() = ϕ(), [ r, ] 2 T ( s)f(s, u s )ds,, (18) 21 u( ) : [ r, ) (14), (15), (16), u() : u() =T ()[ϕ() g(, u )] + g(, u ) + + T ( i )I i (u( i )),, < i< u() =ϕ(), [ r, ] T ( s)f(s, u s )ds (21) [ r, ], u() = ϕ(), (, 1 ],, u() = T ()[ϕ() g(, u )] + g(, u ) + T ( s)f(s, u s )ds,
3 No 3 : 593 ( 1, 2 ], 1 u( 1 ) = T ( 1 )[ϕ() g(, u )] + g( 1, u 1 ) + T ( 1 s)f(s, u s )ds + I 1 (u( 1 )), (22) ( 1, 2 ] (14), (22) u() = T ( 1 )[ϕ() g(, u )] + g(, u ) + T ( s)f(s, u s )ds + T ( 1 )I 1 (u( 1 )), (23) ( 2, 3 ], ( 3, 4 ], (21) 22 H 1 ) H 4 ), (14), (15), (16) u(, ϕ) : [ r, ) u() h(, ϕ ), [ r, ) (24) T, { u () () = T ()[ϕ() g(, u )] + g(, u () ), T, u () () = ϕ(), [ r, ], (25) [ r, ] u () () ϕ() K ϕ h(, ϕ ) T, I k (ϕ()) =, u () () = ϕ(), u () () T () ϕ() g(, u ) + g(, u () + < i< Ke ω ( ϕ + L() ϕ ) + L() u () + < i< T ( i ) Ik (u () ( i )) Ke ω( i) q k (u () ( i )) (26) η() = sup{ u () (s) : r s }, T (27) [ r, ] η() = u () ( ), [, ], < L() + Q < 1, δ = inf (1 L() Q) 1 > 1, (26), (27) [ r, ) δ H 3 ) η() Ke ω (1 + L()) ϕ + L()η() + Qη(), 1 η() (1 L() Q) Ke ω (1 + L()) ϕ 1 δ Ke ω (1 + L()) ϕ, (28) u () () 1 δ Ke ω (1 + L()) ϕ h(, ϕ ) (29) [ r, ], η() = ϕ, (28) (29) u () () h(, ϕ ), [ r, T ] u () h, T
4 594 Vol 36 u (k) () =T ()[ϕ() g(, ϕ())] + g(, u (k) ) + T ( s)f(s, u (k 1) s )ds + T ( i )I i (u (k) ( i )), T, < i< u (k) () = ϕ(), [ r, ], k = 1, 2, k = 1, [, T ], (21) (21) u (1) () T () ϕ() g(, u ) + g(, u (1) g(, )) + T ( s) f(s, () us ) ds + T ( i ) Ii (u (1) ( i )) < i< Ke ω ( ϕ + L() ϕ ) + L() (1) u + Ke ω( s) F (s, u () s )ds + Kq i e ω( i) u (1) ( i ) < i< (211) η() = sup{ u (1) (s) : r s }, T [ r, ] η() = u (1) ( ), [, ], η() Ke ω (1 + L()) ϕ + L()η() + + Kq i e ω( i) η(), < i< u (1) () 1 δ Ke ω (1 + L()) ϕ + 1 δ Ke ω( s) F (s, us () ) ds Ke ω( s) F (s, us () )ds h(, ϕ ) [ r, ], η() = ϕ, [ r, ], u (1) () ϕ() ϕ h(, ϕ ) u (1) () h(, ϕ ), [ r, T ] u (1) h, T k u (k) () h(, ϕ ), [ r, T ] u (k) h, T, (212), T, u (k+1) () T () ϕ() g(, ϕ()) + g(, (k+1) u ) g(, ) + T ( s) f(s, us (k) ) ds + < i< T ( i ) Ii (u (k+1) ( i )) Ke ω ( ϕ + L() ϕ ) + L() (k+1) u + Ke ω( s) F (s, u (k) s )ds + Kq i e ω( i) u (k+1) ( i ) < i< (213)
5 No 3 : 595 u (k+1) () 1 δ Ke ω (1 + L()) ϕ + 1 δ Ke ω( s) F (s, h s )ds h(, ϕ ) [ r, ], u (k+1) () ϕ() ϕ h(, ϕ ), (212) {u (k) ()} [, T ] T, (25) (21), u (1) () u () () g(, (1) u ) g(, u () ) + + < i< T ( i ) Ii (u (1) ( i )) I i (u () ( i )) T ( s) f(s, us () ) f(s, ) ds L() (1) u u () + Ke ω( s) P (s, () us, ) () us ds + Kq i e ω( i) u (1) ( i ) u () ( i ) < i< (214) ξ() = sup{ u (1) (s) u () (s) : r s }, T, [ r, ] ξ() = u (1) ( ) u () ( ), [, ], [, T ] ξ() L()ξ() + u (1) () u () () 1 δ Ke ω( s) P (s, () us, ) () us ds + Qξ(), 1 δ Ke ω( s) P (s, us (), ) us () ds Ke ω( s) P (s, h s, h s )h s ds (215) [ r, ], η() =, (215) h, P (, h, h ), [, T 1 ], M >, N > h N, KP (, h δ, h ) M (215) u (1) () u () MN, u (1) u () MN, u (2) () u (1) 1 δ u (2) u (1) N M N M 2 T 2 2! Ke ω( s) P ( s, u (1) s N M 2 T 2 2!, u () s ) u (1) s u () s ds (216)
6 596 Vol 36, u (k) () u (k 1) () N M k T k, k! u (k) u (k 1) N M k T k k!, { u (k) () } [, T ], u(), lim k u (k) () = u(), u() (14), (15), (16) u() v() (14), (15), (16) v h, v() =T ()[ϕ() g(, v )] + g(, v ) + + T ( i )I i (v( i )),, < i< v() =ϕ(), [ r, ] T ( s)f(s, v s )ds (217) T, (25) (21) u() v() g(, u ) g(, v ) + T ( s) f(s, u s ) f(s, v s ) ds + T ( i ) I i (u( i )) I i (v( i )) < i< L() u v + Ke ω( s) P (s, u s, v s ) u s v s ds + Kq i e ω( i) u( i ) v( i ) < i< (218) ζ() = sup{ u(s) v(s) : r s }, T, ε >, ζ() 1 δ Ke ω( s) P (s, u s, v s )ζ(s)ds M ζ(s)ds + ε Gronwall ζ() εe M εe MT, u() v() εe MT, u() v() 22 3,,,,,,
7 No 3 : 597 [1] [M] :, 21 [2] [M] :, 1994 [3] Arino O, Benkhali R, Ezzinbi K Exisence resuls for iniial value problems for neural funcional differenial equaions[j] J Diff Equ, 1997, 138(2): [4] Wu Huachen, Zhi Hongguan Uniform asympoic sabiliy for perurbed neural delay differenial equaions[j] J Mah Anal Appl, 24, 291(3): [5], [J] ( ), 21, 23(4): [6] He Mengxing, Liu Anping, Ou Zhuoling Sabiliy for large sysems of parial funcional differenial equaions: ieraive analysis mehod[j] Appl Mah ompu, 22, 132(2): [7] He Mengxing Global exisence and sabiliy of soluions for reacion diffusion funcional differenial equaions[j] J Mah Anal Appl, 1996, 199(2): [8] He Mengxing, Luo Ronggui Asympoic behavior and convergence of Soluions of a semilinear ranspor equaion wih delay[j] J Mah Anal Appl, 21, 254(1): [9] He Lianhua, Liu Anping Periodic soluions of firs-order impulsive differenial equaion[j] J Mah, 212, 32(5): [1] Tang iaoping, Li Jingyun, Gao Wenjie Exisence of posiive periodic soluions of an impulsive holling-ii predaor-prey sysem wih ime delay[j] J Mah, 29, 29(6): THE EISTENE AND UNIQUENESS OF THE SOLUTION FOR NEUTRAL IMPULSIVE EVOLUTION EQUATIONS WANG iao-mei 1, ZHANG Zhi-qiang 2, ZHU Hua 3 (1Deparmen of Mahemaics and Physics, Miliary Economics Academy, Wuhan 4335, hina) (2ollege of Informaion Engineering, Wuchang Insiue of Technology, Wuhan 4365, hina) (3Deparmen of Basic Sciences, Zhixing ollege, HuBei Universiy, Wuhan 431, hina) Absrac: In his paper, he exisence and uniqueness of soluions are obained By sudying he srucure of ieraive sequence of soluions o a class of nonlinear impulsive evoluion equaions wih ieraive analysis mehod and semigroup heorem, we show ha he exisence and uniqueness of soluions are inseparable linked wih impulsive delay condiion I has cerain superioriy o solve such problems wih ieraive analysis Keywords: impulsive; ieraive; exisence; uniqueness 21 MR Subjec lassificaion: 35A1; 35A2
Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016
4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s
Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations
J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of
Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,
Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary
Positive solutions for a multi-point eigenvalue. problem involving the one dimensional
Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales
Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic
Multiple positive periodic solutions of nonlinear functional differential system with feedback control
J. Mah. Anal. Appl. 288 (23) 819 832 www.elsevier.com/locae/jmaa Muliple posiive periodic soluions of nonlinear funcional differenial sysem wih feedback conrol Ping Liu and Yongkun Li Deparmen of Mahemaics,
Existence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems
INSTITUTE OF PHYSICS PUBLISHING Nonlineariy 9 (2006) 253 273 NONLINEARITY doi:0.088/095-775/9/6/003 Exisence of ravelling wave soluions in delayed reacion diffusion sysems wih applicaions o diffusion compeiion
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Oscillation criteria for two-dimensional system of non-linear ordinary differential equations
Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary
Linear singular perturbations of hyperbolic-parabolic type
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions
Analysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity
ES Web of Confeences 7, 68 (8) hps://doiog/5/esconf/8768 ICEIS 8 nalsis of opimal havesing of a pe-pedao fishe model wih he limied souces of pe and pesence of oici Suimin,, Sii Khabibah, and Dia nies Munawwaoh
( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
A New Approach to Bounded Real Lemma Representation for Linear Neutral Systems
46-57 388 4 3 3 sariai@ee.knu. ac.ir agira@knu. ac.ir 3 labibi@knu. ac.ir (388// 388/9/8 :. -..... :. A New Approac o Boune Real Lemma Represenaion for Linear Neural Sysems Ala Sariai, Hami Reza agira
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R
2017 : msjmeeting-2017sep-05i002 ( ) 1.. u = g(u) in R N, u > 0 in R N, u H 1 (R N ). (1), N 2, g C 1 g(0) = 0. g(s) = s + s p. (1), [8, 9, 17],., [15] g. (1), E(u) := 1 u 2 dx G(u) dx : H 1 (R N ) R 2
The third moment for the parabolic Anderson model
The hird momen for he parabolic Anderson model Le Chen Universiy of Kansas Thursday nd Augus, 8 arxiv:69.5v mah.pr] 5 Sep 6 Absrac In his paper, we sudy he parabolic Anderson model saring from he Dirac
16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
Pricing Asian option under mixed jump-fraction process
3 17 ( ) Journal of Eas China Normal Universiy (Naural Science) No. 3 May 17 : 1-641(17)3-9-1 - ( 18) : -. Iô.... : -; ; : O11.6 : A DOI: 1.3969/j.issn.1-641.17.3.3 Pricing Asian opion under mixed jump-fracion
TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<
TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4
Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR
EVA M, SWEEEY R 3,. ;. McDonough ; 3., 3006 ; ; F4.0 A Levin Lin(99) Im, Pesaran Shin(996) Levin Lin(99) Oh(996),Wu(996) Paell(997) Im, Pesaran Shin(996) Canzoner Cumby Diba(999) Levin Lin(99) Coe Helman(995)
A Control Method of Errors in Long-Term Integration
1,a) Hamilon Runge Kua Hamilonian 1/2 Runge Kua (Brouwer s law) Runge Kua Runge Kua Hamilonian 1/2 Brouwer 3 A Conrol Mehod of Errors in Long-Term Inegraion Ozawa Kazufumi 1,a) Absrac: When solving he
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
A Simple Version of the Lucas Model
Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Center Manifold Theory and Computation Using a Forward Backward Approach
College of William and Mary W&M Publish Undergraduae Honors Theses Theses, Disseraions, & Maser Projecs 4-217 Cener Manifold Theory and Compuaion Using a Forward Backward Approach Emily E. Schaal College
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
Non-Markovian dynamics of an open quantum system in fermionic environments
Non-Marovian dynamics of an open quanum sysem in fermionic environmens J. Q. You Deparmen of Physics, Fudan Universiy, Shanghai, and Beijing Compuaional Science Research Cener, Beijing Mi Chen (PhD suden
Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling
Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion
6.003: Signals and Systems. Modulation
6.3: Signals and Sysems Modulaion December 6, 2 Subjec Evaluaions Your feedback is imporan o us! Please give feedback o he saff and fuure 6.3 sudens: hp://web.mi.edu/subjecevaluaion Evaluaions are open
arxiv: v1 [math.ap] 10 Apr 2017
C 1,θ -Esimaes on he disance of Inerial Manifolds José M. Arriea and Esperanza Sanamaría arxiv:1704.03017v1 [mah.ap] 10 Apr 2017 Absrac: In his paper we obain C 1,θ -esimaes on he disance of inerial manifolds
ON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1.
opological Mehods in Nonlinear Analysis Journal of he Juliusz Schauder Cener Volume 1, 1997, 195 223 ON LOCAL MOION OF A COMPRESSIBLE BAROROPIC VISCOUS FLUID WIH HE BOUNDARY SLIP CONDIION Marek Burna Wojciech
On shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes
Available online a www.sciencedirec.com ScienceDirec Sochasic Processes and heir Applicaions 15 (15) 3851 3878 www.elsevier.com/locae/spa On shif Harnack inequaliies for subordinae semigroups and momen
ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS
Electronic Journal of Differential Equations, Vol. 28(28), No. 146, pp. 1 9. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) EXISTENCE
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
INDIRECT ADAPTIVE CONTROL
INDIREC ADAPIVE CONROL OULINE. Inroducion a. Main properies b. Running example. Adapive parameer esimaion a. Parameerized sysem model b. Linear parameric model c. Normalized gradien algorihm d. Normalized
Strong global attractors for non-damping weak dissipative abstract evolution equations
17 3 Journal of East China Normal University Natural Science No. Mar. 17 : 1-564117-8-1,, 737 :,, V θ V θ L µr + ; V θ. : ; ; : O175.9 : A DOI: 1.3969/j.issn.1-5641.17.. Strong global attractors for non-amping
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM
Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS
Appendix A. Stability of the logistic semi-discrete model.
Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic
Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Vulnerable European option pricing with the time-dependent for double jump-diffusion process
1 014 1 Journal of Eas China Normal Universiy Naural Science No. 1 Jan. 014 : 1000-564101401-0013-08 -,, 1116 :,., r σ d ;, Iô,. : ; ; : O11.6 : A DOI: 10.3969/j.issn.1000-5641.014.01.003 Vulnerable European
ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55
37 5 Ó Ä Ä Vol. 37 No. 5 014 9 ACTA MATHEMATICAE APPLICATAE SINICA Sep., 014 É Ì - Î Dirichle ÓÆ ÞÝÜ ÎÞÈÅÔÅ ÅÅ 100048 E-mail: wyin@mail.cnu.edu.cn Ñ - ƱРÑĐ» ³Æ Ð Û Ò ÌĐ Ø ÕÃ Ý Caran-Harogs ÚÆ - ƱРDirichle
6.003: Signals and Systems
6.3: Signals and Sysems Modulaion December 6, 2 Communicaions Sysems Signals are no always well mached o he media hrough which we wish o ransmi hem. signal audio video inerne applicaions elephone, radio,
Cubic Γ-n normed linear spaces
Malaya Journal of Maemaik, Vol. 6, No. 3, 643-647, 18 hps://doi.org/1.6637/mjm63/8 Cubic Γ-n normed linear spaces P. R. Kavyasree1 * and B. Surender Reddy Absrac This paper is aimed o propose he noion
Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales
Hindawi Publishing Corporation Discrete Dynamics in Nature and Society Volume 29, Article ID 189768, 12 pages doi:1.1155/29/189768 Research Article Existence of Positive Solutions for m-point Boundary
Riesz ( ) Vol. 47 No u( x, t) 5 x u ( x, t) + b. 5 x u ( x, t), 5 x = R D DASSL. , Riesz. , Riemann2Liouville ( R2L ) = a
47 () Vo. 47 No. 008 Joura of Xiame Uiversiy (Na ura Sciece) Ja. 008 Riesz, 3 (., 36005 ;.,,400, ) : Riesz. Iic,Liu, Riesz. Riesz.,., Riesz.. : Riesz ; ; ; ; :O 4. 8 :A :04380479 (008) 000005,, [ - 3 ].,.
On local motion of a general compressible viscous heat conducting fluid bounded by a free surface
ANNALE POLONICI MAHEMAICI LIX.2 (1994 On local moion of a general compressible viscous hea conducing fluid bounded by a free surface by Ewa Zadrzyńska ( Lódź and Wojciech M. Zaja czkowski (Warszawa Absrac.
Bulletin of the. Iranian Mathematical Society
ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 43 (2017), No. 2, pp. 515 534. Title: Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
α ]0,1[ of Trigonometric Fourier Series and its Conjugate
aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i
Symmetry Group Theorem of the Lin-Tsien Equation and Conservation Laws Relating to the Symmetry of the Equation. Xi-Zhong Liu.
CHINESE JOURNAL OF PHYSICS VOL. 51, NO. 6 December 01 Symmery Group Theorem of he Lin-Tsien Equaion and Conservaion Laws Relaing o he Symmery of he Equaion Xi-Zhong Liu and Jun Yu Insiue of Nonlinear Science,
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION
STABILITY FOR RAYLEIGH-BENARD CONVECTIVE SOLUTIONS OF THE BOLTZMANN EQUATION L.Arkeryd, Chalmers, Goteborg, Sweden, R.Esposito, University of L Aquila, Italy, R.Marra, University of Rome, Italy, A.Nouri,
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)
Acta Phys. Sin. Vol. 6, No. 5 () 553 (II) * (, 543 ) ( 3 ; 5 ),,,,,,,, :,,, PACS: 5.45. a, 45..Hj 3,, 5., /,,, 3 3 :,,, ;, (memory hereditary),,, ( ) 6 9 ( ) 3 ( ) 6 3.,, Deng 4,5,,,,, * ( : 758,936),
Managing Production-Inventory Systems with Scarce Resources
Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
On Strong Product of Two Fuzzy Graphs
Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of
WTO. ( Kanamori and Zhao,2006 ;,2006), ,,2005, , , 1114 % 1116 % 1119 %,
: 3 :,, (VAR),,, : 997, 200, WTO,, 2005 7 2, 2,, ( Kanamori and Zhao,2006 ;,2006),,, 2005 7 2,,,,, :,,2005, 2007 265,200 0,,,2005 2006 2007, 4 % 6 % 9 %,,,,,,,, 3,, :00836, zhaozhijun @yahoo. com ;,, :25000,
Asymptotic behavior of solutions of mixed type impulsive neutral differential equations
Tariboon e al. Advance in Difference Equaion 2014, 2014:327 hp://www.advanceindifferenceequaion.com/conen/2014/1/327 R E S E A R C H Open Acce Aympoic behavior of oluion of mixed ype impulive neural differenial
Representation of Five Dimensional Lie Algebra and Generating Relations for the Generalized Hypergeometric Functions
Represenaion of Five Diensional Lie Algebra and Generaing Relaions for he Generalized Hypergeoeric Funcions V.S.BHAGAVAN Deparen of Maheaics FED-I K.L.Universiy Vaddeswara- Gunur Dis. A.P. India. E-ail
I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»
Τα μητρώα καταρτίστηκαν με απόφαση της Ακαδημαϊκής Συνέλευσης της ΣΝΔ της 18ης Απριλίου 2013. Η ανάρτησή τους στον ιστότοπο της ΣΝΔ εγκρίθηκε με απόφαση του Εκπαιδευτικού Συμβουλίου της 24ης Απριλίου 2013.
Envelope Periodic Solutions to Coupled Nonlinear Equations
Commun. Theor. Phys. (Beijing, China) 39 (2003) pp. 167 172 c International Academic Publishers Vol. 39, No. 2, February 15, 2003 Envelope Periodic Solutions to Coupled Nonlinear Equations LIU Shi-Da,
326. Dynamic synchronization of the unbalanced rotors for the excitation of longitudinal traveling waves
. Dynamic synchonizaion of he unbalanced oos fo he exciaion of longiudinal aveling waves. Saseeyeva K. Ragulsis Z. Navicas Kazah Naional Pedagogical Univesiy named afe bay Tole bi s. 8 lmay Kazahsan E-mail:
Approximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
Research on real-time inverse kinematics algorithms for 6R robots
25 6 2008 2 Control Theory & Applications Vol. 25 No. 6 Dec. 2008 : 000 852(2008)06 037 05 6R,,, (, 30027) : 6R. 6 6R6.., -, 6R., 2.03 ms, 6R. : 6R; ; ; : TP242.2 : A Research on real-time inverse kinematics
(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017
34 4 17 1 JOURNAL OF SHANGHAI POLYTECHNIC UNIVERSITY Vol. 34 No. 4 Dec. 17 : 11-4543(174-83-8 DOI: 1.1957/j.cnki.jsspu.17.4.6 (, 19 :,,,,,, : ; ; ; ; ; : O 41.8 : A, [1],,,,, Jung [] Legendre, [3] Chebyshev
The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Local Approximation with Kernels
Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider
J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.
Vol. 35 ( 205 ) No. 4 J. of Math. (PRC), (, 243002) : a.s. Marov Borel-Catelli. : Marov ; Borel-Catelli ; ; ; MR(200) : 60F5 : O2.4; O236 : A : 0255-7797(205)04-0969-08 Shao-McMilla,. Shao 948 [],, McMilla
[1-3] : [12-13] [4-5] x ( H K x x ) + x ( H K y y ) H +w=u s t ( 1) ; :H ;K x K y x y ;w ;u s ;t [6] (2) [7] KH+MH t=q (2) :K ;M ;Q ;H ;H
25 3 20125 ChinaJournalofHighwayandTransport Vol.25 No.3 May2012 :1001-7372(2012)03-0059-06 ( 410004) : : ; ; : ; ; ; ; :U416.14 :A DevelopingLawofTransientSaturatedAreasofHighwaySlope UnderRainfalConditions
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
Product Innovation and Optimal Capital Investment under Uncertainty. by Chia-Yu Liao Advisor Ching-Tang Wu
Produc Innovaion and Opimal Capial Invesmen under Uncerainy by Chia-Yu Liao Advisor Ching-Tang Wu Insiue of Saisics, Naional Universiy of Kaohsiung Kaohsiung, Taiwan 8 R.O.C. July 2006 Conens Z`Š zz`š
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
arxiv: v3 [math.ca] 4 Jul 2013
POSITIVE SOLUTIONS OF NONLINEAR THREE-POINT INTEGRAL BOUNDARY-VALUE PROBLEMS FOR SECOND-ORDER DIFFERENTIAL EQUATIONS arxiv:125.1844v3 [math.ca] 4 Jul 213 FAOUZI HADDOUCHI, SLIMANE BENAICHA Abstract. We
is the home less foreign interest rate differential (expressed as it
The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model
ω = radians per sec, t = 3 sec
Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos
'ΗΠΙΕΣ' ΜΕΘΟΔΟΙ ΠΡΟΣΤΑΣΙΑΣ ΑΚΤΩΝ: ΥΦΑΛΟΙ ΠΡΟΒΟΛΟΙ ΠΕΡΙΛΗΨΗ
Η εργασία θα παρουσιαστεί στο 8 ο Πανελλήνιο Συμπόσιο Ωκεανογραφίας και Αλιείας, ΕΛ.ΚΕ.Θ.Ε., Θεσσαλονίκη Ιούνιος, 006 'ΗΠΙΕΣ' ΜΕΘΟΔΟΙ ΠΡΟΣΤΑΣΙΑΣ ΑΚΤΩΝ: ΥΦΑΛΟΙ ΠΡΟΒΟΛΟΙ Δ. Ιωαννίδης 1, Θ. Καραμπάς, Αικ.
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL BOUNDED DOMAIN. Xue-Li Song.
DISCRETE AND CONTINUOUS doi:10.3934/dcds.2012.32.991 DYNAMICAL SYSTEMS Volume 32, Number 3, March 2012 pp. 991 1009 PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL
Errata (Includes critical corrections only for the 1 st & 2 nd reprint)
Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y
Lotka Volterra. Stability Analysis of Delayed Periodic Lotka Volterra Systems
Lotka Volterra Stability Analysis of Delayed Periodic Lotka Volterra Systems 25 4 ii iii 1 1.1 1 1.2 2 1.3 5 8 2.1 8 2.2 12 2.3 14 2 3.1 2 3.2 21 26 4.1 26 4.2 28 32 35 36 Lotka Volterra 2 2 Lotka Volterra
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
Oscillation of nonlinear second-order neutral delay differential equations
Available online at wwwisr-publicationscom/jnsa J Nonlinear Sci Appl, 0 07, 77 734 Research Article Journal Homepage: wwwtjnsacom - wwwisr-publicationscom/jnsa Oscillation of nonlinear second-order neutral
OSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM
DIFFERENIAL EQUAIONS AND CONROL PROCESSES 4, 8 Elecroic Joural, reg. P375 a 7.3.97 ISSN 87-7 hp://www.ewa.ru/joural hp://www.mah.spbu.ru/user/diffjoural e-mail: jodiff@mail.ru Oscillaio, Secod order, Half-liear
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).
Vol. 34 ( 2014 ) No. 4 J. of Math. (PRC) (, 710123) :. -,,, [8].,,. : ; - ; ; MR(2010) : 91A30; 91B30 : O225 : A : 0255-7797(2014)04-0779-08 1,. [1],. [2],.,,,. [3],.,,,.,,,,.., [4].,.. [5] -,. [6] Markov.
PACS: Pj, Gg
* 1)2) 2) 3) 2) 1) 1) (, 310023 ) 2) (, 315211 ) 3) (, 510006 ) ( 2011 6 16 ; 2011 10 31 ),..,,.,.,. :,,, PACS: 07.05.Pj, 05.45.Gg 1,.,, [1,2].,,, [3,4].,, [5,6].,. [7 9]., [10 17].,.,, [10]., [18 20],
Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution
i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion
Riemann Hypothesis: a GGC representation
Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides