Asymptotic behavior of solutions of mixed type impulsive neutral differential equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Asymptotic behavior of solutions of mixed type impulsive neutral differential equations"

Transcript

1 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 hp:// R E S E A R C H Open Acce Aympoic behavior of oluion of mixed ype impulive neural differenial equaion Jeada Tariboon 1*, Soiri K Nouya 2,3 Chahai Thaiprayoon 1 * Correpondence: jeada@kmunb.ac.h 1 Nonlinear Dynamic Analyi Reearch Cener, Deparmen of Mahemaic, Faculy of Applied Science, King Mongku Univeriy of Technology Norh Bangkok, Bangkok, 10800, Thail Full li of auhor informaion i available a he end of he aricle Abrac Thi paper inveigae he aympoic behavior of oluion of he mixed ype neural differenial equaion wih impulive perurbaion x+cx τ Dxα + Pfx δ + Q x=0,0< 0, k, x k =b k x k +1b k k k δ P + δfx d + k Q/β k x d, k =1,2,3,...Sufficien condiion are obained o guaranee ha every oluion end o a conan a. Example illuraing he abrac reul are alo preened. MSC: 34K25; 34K45 Keyword: aympoic behavior; nonlinear neural delay differenial equaion; impule; Lyapunov funcional 1 Inroducion The main purpoe of hi paper i o inveigae he aympoic behavior of oluion of he following mixed ype neural differenial equaion wih impulive perurbaion: x+cx τdxα + Pf x δ + Q x=0, 0< 0, k, x k =b k x k +1b k k k δ P + δf x d + k Q/β k x d, k =1,2,3,..., 1.1 where τ, δ >0,0<α, β <1,C, D PC 0,, R, P, Q PC 0,, R + 0, f CR, R, 0 < k < k+1 wih lim k k = b k, k =1,2,3,..., are given conan. For J R, PCJ, R denoe he e of all funcion h : J R uch ha h i coninuou for k < k+1 lim k h=h k exi for all k =1,2,... The heory of impulive differenial equaion appear a a naural decripion of everal real procee ubjec o cerain perurbaion whoe duraion i negligible in comparion wih he duraion of he proce. Differenial equaion involving impule effec occur in many applicaion: phyic, populaion dynamic, ecology, biological yem, bioechnology, indurial roboic, pharmacokineic, opimal conrol, ec. The reader may refer, for inance, o he monograph by Bainov Simeonov 1, Lakhmikanham e al. 2, Samoilenko Pereyuk 3, Benchohra e al. 4. In recen year, here ha been increaing inere in he ocillaion, aympoic behavior, abiliy heory of impulive delay differenial equaion many reul have been obained ee 520he reference cied herein Tariboon e al.; licenee Springer. Thi i an Open Acce aricle diribued under he erm of he Creaive Common Aribuion Licene hp://creaivecommon.org/licene/by/2.0, which permi unrericed ue, diribuion, reproducion in any medium, provided he original work i properly cied.

2 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 2 of 16 hp:// Le u menion ome paper from which are moivaion for our work. By he conrucion of Lyapunov funcional, he auhor in 8 udied he aympoic behavior of oluion of he nonlinear neural delay differenial equaion under impulive perurbaion, x+cx τ + Pf x δ = 0, 0 < 0, k, x k =b k x k +1b k k k δ P + δf x d, k =1,2,3, A imilar mehod wa ued in 21 by conidering an impulive Euler ype neural delay differenial equaion wih imilar impulive perurbaion xdxα + Q x=0, 0< 0, k, x k =b k x k +1b k k Q/β k x d, k =1,2,3, In hi paper we combine he wo paper 8, 21 we udy he mixed ype impulive neural differenial equaion problem 1.1. By uing a imilar mehod wih he help of four Lyapunov funcional, ufficien condiion are obained o guaranee ha every oluion of 1.1endoaconana.Wenoehaproblem1.21.3canbederived from he problem 1.1apecialcae,i.e.,ifD 0Q 0, hen 1.1reduceo 1.2whileifC 0P 0, hen 1.1reduceo1.3. Therefore, he mixed ype of nonlinear delay wih an Euler form of impulive neural differenial equaion give more general reul han he previou one. Seing η 1 = maxτ, δ}, η 2 = minα, β},η = min 0 η 1, η 2 0 }, we define an iniial funcion a x=ϕ, η, 0, 1.4 where ϕ PCη, 0, R =ϕ :η, 0 R ϕ i coninuou everywhere excep a a finie number of poin,ϕ ϕ + =lim + ϕexiwihϕ + =ϕ}. Afuncionx i aid o be a oluionof 1.1 aifying he iniial condiion 1.4 if i x=ϕ for η 0, x i coninuou for 0 k, k =1,2,3,...; ii x+cx τdxα i coninuouly differeniable for > 0, k, k =1,2,3,..., aifie he fir equaion of yem 1.1; iii x k + x k exi wih x+ k =x k aifyheecondequaionofyem 1.1. Aoluionof1.1 i aid o be nonocillaory if i i evenually poiive or evenually negaive. Oherwie, i i aid o be ocillaory. 2 Main reul We are now in a poiion o eablih our main reul. Theorem 2.1 Aume ha: H 1 There exi a conan M >0uch ha x f x M x, x R, xf x>0, for x

3 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 3 of 16 hp:// H 2 The funcion C, D aify lim C = μ <1, lim D = γ <1 wih μ + γ < 1, 2.2 C k =b k C k, Dk =b k D k. 2.3 H 3 k τ α k arenoimpulivepoin, 0<b k 1, k =1,2,..., k=1 1 b k<. H 4 The funcion P, Q aify lim up +δ P + δ d + +δ Q/β d + μ1 + P+τ+δ +γ1 + P/α+δ < 2 P+δ αp+δ M 2.4 lim up /β P + δ d + /β Q/β d + μ1 + Q+τ/β +τq/β +γ 1 + Q/αβ Q/β < Then every oluion of 1.1 end o a conan a. Proof Le x be any oluion of yem 1.1. We will prove ha he lim xexi i finie. Indeed, he yem 1.1can be wrien a x +Cx τ Dxα P + δf x d Q/β x d + P + δf x + Q/β x=0, 0, k, 2.6 x k =b k x k k +1bk P + δf x d k δ k Q/β + x d, k =1,2, k From H 2 H 4, we chooe conan ε, λ, υ, ρ >0ufficienlymalluchhaμ + ε <1 γ + λ <1T > 0 ufficienly large, for T, +δ /β +δ P + δ d + Q/β +γ + λ 1+ P/α+δ αp + δ /β Q/β P + δ d + +γ + λ, for T, 1+ Q/αβ Q/β d +μ + ε 1+ P + τ + δ P + δ 2 υ, 2.8 M d +μ + ε 1+ Q + τ/β + τq/β 2ρ, 2.9 C μ + ε, D γ + λ. 2.10

4 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 4 of 16 hp:// From 2.1, 2.10, we have C μ + ε 1 f 2 x τ, x 2 τ D γ + λ 1 f 2 xα, T, x 2 α which lead o C x 2 τ μ + εf 2 x τ, D x 2 α γ + λf 2 xα, T In he following, for convenience, he expreion of funcional equaliie inequaliie will be wrien wihou i domain. Thi mean ha he relaion hold for all ufficienly large. Le V =V 1 +V 2 +V 3 +V 4, where V 1 = x +Cx τ Dxα P + δf x d V 2 = V 3 = + + P +2δ P + βδ/β β Q + δ/β + δ Q/β 2 V 4 =μ + ε +γ + λ τ Pu + δf 2 xu du d Qu/β x 2 u du d, u Pu + δf 2 xu du d Qu/β x 2 u du d, u P + τ + δf 2 x d +μ + ε α Q/αβ x 2 d + γ + λ α α τ Q + τ/β x 2 d + τ P /α+δ f 2 x d. Q/β 2 x d, Compuing dv 1 /d along he oluion of 1.1 uing he inequaliy 2ab a 2 + b 2,we have dv 1 d =2 x +Cx τ Dxα P + δf x Q/β d x d P + δf x + Q/β x P + δ 2xf x C x 2 τ C f 2 x D x 2 α D f 2 x P + δf 2 x d f 2 x P + δ d

5 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 5 of 16 hp:// Q/β d Q/β x 2 d f 2 x Q/β 2x 2 C x 2 C x 2 τ D x 2 D x 2 α Q/β x 2 d x 2 P + δf 2 x d x 2 Q/β d. Calculaing direcly for dv i /d, i =2,3,4, k,wehave dv 2 d dv 3 d = P + δf 2 x + Q/β x 2 P +2δ d P + δ P + βδ/β d P + δ = P + δf 2 x Q + δ/β d Q/β + δ + Q/β x 2 Q/β 2 d Q/β P + δ d P + δf 2 x d Q/β x 2 d, P + δf 2 x d Q/β x 2 d, dv 4 d =μ + εp + τ + δf 2 x μ + εp + δf 2 x τ + μ + ε + τ Q + τ/β x 2 +γ + λ Q/αβ + μ + ε Q/βx 2 τ x 2 γ + λ Q/β x 2 α γ + λ P /α+δ f 2 x γ + λp + δf 2 xα. α Summing for dv i /d, i =1,2,3,weobain dv 1 + dv 2 + dv 3 d d d P + δ 2xf x C x 2 τ C f 2 x D x 2 α D f 2 x f 2 x P + δ d f 2 x Q/β d f 2 x P +2δ d f 2 x Q + δ/β d + δ Q/β 2x 2 C x 2 C x 2 τ D x 2 D x 2 αx 2 x2 β P + βδ/β d x 2 P + δ d x 2 Q/β Q/β 2 d. d

6 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 6 of 16 hp:// Since P +2δ d = Q + δ/β + δ +δ d = P + δ d, +δ Q/β d, Q/β 2 1 β /β Q/β d = P + βδ/β d = d, /β P + δ d, i follow ha dv 1 + dv 2 + dv 3 d d d P + δ 2xf x C x 2 τ C f 2 x D x 2 α D f 2 x f 2 x +δ P + δ d f 2 x +δ Q/β 2x 2 C x 2 C x 2 τ D x 2 D x 2 αx 2 /β Q/β /β P + δ d x 2 Q/β d. Adding he above inequaliy wih dv 4 /d uing condiion 2.11, we have d dv 1 + dv 2 + dv 3 + dv 4 d d d d P + δ 2xf x C f 2 x D f 2 x f 2 x +δ P + δ d f 2 x +δ Q/β x 2 /β 2x 2 C x 2 D x 2 Q/β /β P + δ d x 2 Q/β d +μ + εp + τ + δf 2 x + +γ + λ Q/αβ x 2 + Applying 2.8, 2.9, 2.10, i follow ha d μ + ε + τ Q + τ/β x 2 γ + λ P /α+δ f 2 x. α dv d = dv 1 d + dv 2 d + dv 3 d + dv 4 d P + δf 2 x 2x f x C D +δ Q/β P + τ + δ d μ + ε P + δ Q/β x 2 2 C D /β +δ γ + λ α P + δ d P + δ d P/α+δ P + δ

7 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 7 of 16 hp:// /β Q/β μ + ε Q + τ/β d + τ Q/β Q/β μ + ε +δ P + δf 2 x 2 M P + τ + δ μ + ε 1+ P + δ /β x 2 2 For = k,wehave 1+ + τ P + δ d γ + λ /β P + δ d Q + τ/β Q/β γ + λ Q/αβ Q/β +δ Q/β d 1+ P/α+δ αp + δ γ + λ Q/β d 1+ Q/αβ Q/β P + δf 2 x υ Q/β x 2 ρ V 1 k = x k +C k x k τd k xα k k P + δf x k d k δ Q/β k 2 x d = b k x k + bk C k x k τ b k D k x α k b k k k δ = b 2 k V 1 k. P + δf x k d + Q/β k 2 x d I i eay o ee ha V 2 k =V 2 k, V 3 k =V 3 k, V 4 k =V 4 k. Therefore, V k =V 1 k +V 2 k +V 3 k +V 4 k = b 2 k V 1 k + V2 k + V3 k + V4 k V 1 k + V2 k + V3 k + V4 k = V k From , we conclude ha V i decreaing. In view of he fac ha V 0, we have lim V =ψ exi ψ 0. By uing 2.8, 2.9, 2.12, 2.13, we have υ T which yield P + δf 2 x d + ρ T P + δf 2 x, Q/β x 2 L 1 0,. Q/β x 2 d V T,

8 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 8 of 16 hp:// Hence, for any φ >0ξ 0, 1, we ge lim P + δf 2 x d =0, φ lim ξ Q/β x 2 d =0. Thu, i follow from ha P +2δ P + βδ/β + β +δ + 2 M /β + 2 M Pu + δf 2 xu du d Qu/β x 2 u du d u P + δ d Pu + δf 2 xu du P + δ d Q + δ/β + δ + Pu + δf 2 xu du d Qu/β x 2 u du u Qu/β x 2 u du 0, u Q/β 2 +δ Q/β + 2 M +2 /β d Q/β Pu + δf 2 xu du d d Qu/β x 2 u du d u Pu + δf 2 xu du Qu/β x 2 u du 0, u a, Pu + δf 2 xu du Qu/β x 2 u du u a, μ + ε P + τ + δf 2 x d +μ + ε τ τ +γ + λ =μ + ε +μ + ε +γ + λ α τ τ α Q/αβ x 2 d + γ + λ α P + τ + δ P + δf 2 x d P + δ α Q + τ/β Q/β + τ Q/β x 2 d Q/αβ Q/β Q/β x 2 d Q + τ/β x 2 d + τ P /α+δ f 2 x d

9 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 9 of 16 hp:// + γ + λ α 2 M +2 τ α α P/α+δ P + δf 2 x d P + δ P + δf 2 x d +2 Q/β x 2 d + 2 M α τ Q/β x 2 d P + δf 2 x d 0, a. Therefore, from he above eimaion, we have lim V 2 =0,lim V 3 =0, lim V 4 =0,repecively. Thu, lim V 1 =lim V =ψ,hai, lim x+cx τ Dxα P + δf x d Q/β 2 x d = ψ Now, we will prove ha he limi lim x+cx τ Dxα P + δf x d Q/β x d 2.15 exi i finie. Seing y =x+cx τ Dxα P + δf x d uing 1.1 condiion H 3, we have y k =x k +C k x k τd k xα k k k δ P + δf x d k Q/β x d, 2.16 Q/β k = b k x k + C k x k τ D k x α k k P + δf x k d k δ Q/β k x d x d = b k y k In view of 2.14, i follow ha lim y2 =ψ. In addiion, from , yem can be wrien a y +P + δf x + Q/β x=0, 0< 0, k, y k =b k y k, k =1,2,3,

10 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 10 of 16 hp:// If ψ =0,henlim y =0.Ifψ > 0, hen here exi a ufficienly large T uch ha y 0forany > T.Oherwie,hereiaequencea k } wih lim k a k = uch ha ya k =0,oy 2 a k 0ak. Thi conradic ψ > 0. Therefore, for any k > T, k, k+1, we have y>0ory<0fromheconinuiyofy on k, k+1. Wihou lo of generaliy, we aume ha y>0on k, k+1. I follow from H 3 ha y k+1 =b k y k+1 >0,huy>0on k+1, k+2. By uing mahemaical inducion, we deduce ha y>0on k,. Therefore, from 2.14, we have lim y= lim x+cx τ Dxα P + δf x d Q/β x d = κ, 2.19 where κ = ψ i finie. In view of 2.18, for ufficien large,wehave P + δf x Q/β d + x d β = y δy yk y k β β< k < = y δy β< k < 1 b k y k. Taking uing H 3, we have lim P + δf x d + β β Q/β x d =0, which lead o lim P + δf x d =0 lim Q/β x d =0. Thi implie ha lim x+cx τdxα = κ Nex, we hall prove ha lim xexiifinie Furher, we fir how ha x i bounded. Acually, if x i unbounded, hen here exi a equence z n } uch ha z n, xz n,an x z n = up x, z n

11 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 11 of 16 hp:// where, if z n i no an impulive poin, hen xz n =xz n. Thu, we have x z n + C z n x z n τ D z n x αz n x z n C z n x z n τ D z n x αz n x z n 1 μ ε γ λ, a n, which conradic Therefore, x i bounded. If μ =0γ =0,henlim x=κ, which implie ha 2.21hold.If0<μ <1 0<γ <1,henwededucehaCD are evenually poiive or evenually negaive. Oherwie, here are wo equence w k } w j } wih lim k w k = lim j w j = uch ha Cw k =0Dw j = 0. Therefore, Cw k 0Dw j 0ak, j. I i a conradicion o μ >0γ >0. Now, we will how ha 2.21 hold. By condiion H 2, we can find a ufficienly large T 1 uch ha for > T 1, C + D <1.Se ω = lim inf x, θ = lim up x. Then we can chooe wo equence u n } v n } uch ha u n, v n a n, lim n xu n=ω, lim xv n=θ. n For > T 1, we conider he following eigh poible cae. Cae 1. When lim C=01<D<0for > T 1,wehave κ = lim xun Du n xαu n ω + γθ, n κ = lim xvn Dv n xαv n θ + γω. n Thu, we obain ω + γθ θ + γω, ha i, ω1 γ θ1 γ. Since 0 < γ <1θ ω, i follow ha θ = ω.by2.20, we obain θ = ω = κ 1γ, which how ha 2.21hold.

12 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 12 of 16 hp:// Cae 2. When lim D=01<C<0for > T 1,wege κ = lim xun +Cu n xu n τ ω μω n κ = lim xvn +Cv n xv n τ θ μθ, n which lead o ω1 μ θ1 μ. Since 0 < μ <1θ ω,weconcludeha θ = ω = κ 1μ, which implie ha 2.21hold. Cae 3. lim C =0,0<D <1for > T 1. The mehod of proof i imilar o he above wo cae. Therefore, we omi i. Cae 4. lim D =0,0<C <1for > T 1. The mehod of proof i imilar o he above wo fir cae. Therefore, we omi i. Cae 5. When 1 < D<00<C<1for > T 1,wehave κ = lim xun +Cu n xu n τdu n xαu n ω + μθ + γθ n κ = lim xvn +Cv n xv n τdv n xαv n θ + μω + γω, n which yield ω1 μ γ θ1 μ γ. Since 0 < μ + γ <1θ ω,wehaveθ = ω.thu θ = ω = κ 1μ γ, o 2.21hold. Uing imilar argumen, we can prove ha 2.21 alo hold for he following cae: Cae 6. 1 < C<0,0<D<1. Cae 7. 1 < C<0,1<D<0. Cae 8. 0 < C<1,0<D<1. Summarizing he above inveigaion, we conclude ha 2.21 hold o he proof i compleed. Theorem 2.2 Le condiion H 1 -H 4 of Theorem 2.1 hold. Then every ocillaory oluion of 1.1 end o zero a.

13 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 13 of 16 hp:// Corollary 2.1 Aume ha H 3 hold +δ +δ Q/β lim up P + δ d + d < /β /β Q/β lim up P + δ d + d < Then every oluion of he equaion x +Px δ+ Q x=0, 0< 0, k, x k =b k x k +1b k k k δ P + δx d + k Q/β k x d, k =1,2,3,..., 2.25 end o a conan a. Corollary 2.2 The condiion imply ha every oluion of he equaion x +Px δ+ Q x=0, 0< 0, 2.26 end o a conan a. Theorem 2.3 The condiion H 1 -H 4 of Theorem 2.1 ogeher wih 0 P + δ d =, 0 Q/β d =, 2.27 imply ha every oluion of 1.1 end o zero a. Proof From Theorem 2.2, we only have oprove haevery nonocillaoryoluion of 1.1 end o zero a. Wihou lo of generaliy, we aume ha x i an evenually poiive oluion of 1.1. A in he proof of Theorem 2.1,1.1canbewrienainheform Inegraing from 0 o boh ide of he fir equaion of 2.18, one ha 0 P + δf x d + 0 Q/β x d = y 0 y 1 b k y k. 0 < k < Applying 2.19H 3, we have 0 P + δf x d < 0 Q/β x d <. Thi, ogeher wih 2.27, implie ha lim inf f x = 0 lim inf x =0.By Theorem 2.1, lim x=0.thicompleeheproof.

14 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 14 of 16 hp:// Corollary 2.3 Aume ha 2.1, 2.2, 2.4, 2.5, 2.27 hold. Then every oluion of he equaion Q x+cx τdxα + Pf x δ + x=0, < 0, end o zero a. 3 Example In hi ecion, we preen wo example o illurae our reul. Example 3.1 Conider he following mixed ype neural differenial equaion wih impulive perurbaion: x+ k+3 x 1 3k+9 3k 2 +3k6 2 x 8k 2 +8k16 e co2 x πx π xk= k2 +6k+8 k+3 2 xk +1 k2 +6k+8 k+3 2 k k π co2 xx d + k k e 2 1 ln +2 x 2++π 5+π 2 1 lne 2 +2 e 2 =0, 1, x d, k =2,3,4, Here C =k +3 /3k 2 +3k 6,D = 3k +9 /8k 2 +8k 16,P =2+ /5 2, Q = 1/ln +2, k 1,k, b k =k 2 +6k + 8/k +3 2, 0 =1,k =2,3,4,..., f x=x1 + 1/4co 2 x, τ = 1/2, δ = π, α =1/e,β =1/e 2. We can find ha i x co2 xx 5 4 x, x R, co2 xx 2 >0for x 0; ii lim C = 1 3 = μ <1, lim D = 3 17 = γ <1wih μ + γ = 8 24 <1, Ck= k2 +6k+8 Ck, Dk= k2 +6k+8 Dk ; k+3 2 k+3 2 iii k 1/2 1/e k are no impulive poin, 0<k 2 +6k + 8/k for k =1,2,..., k=1 1 k2 +6k +8 k +3 2 = k=1 1 k +3 2 < ; iv lim up +δ P + δ d + +δ Q/β d + μ1 + P+τ+δ +γ1 + P/α+δ = 17 P+δ αp+δ 12 < 8 5 lim up /β P + δ d + /β Q/β d + μ1 + Q+τ/β +τq/β +γ 1 + Q/αβ Q/β = <2. Hence, by i-iv all aumpion of Theorem 2.1 are aified. Therefore, we conclude ha every oluion of 3.1endoaconana.

15 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 15 of 16 hp:// Example 3.2 Conider he following mixed ype neural differenial equaion wih impulive perurbaion x+ 12k+16 12k+16 42k 2 +21k21 x 2e 3 x 2 54k 2 +27k in2 x π 2 x π ln +3 x 3e xk= 6k2 +17k+7 6k 2 +17k+12 xk +1 6k2 +17k+7 6k 2 +17k+12 k in2 xx d + k k 3e k π ln3e π 4+3+2π 2 =0, 1, x d, k =2,3,4, Here C = 12k +16 /54k 2 +27k 27,D = 12k +16 /42k 2 +21k 21, P =2 + 1/4 +3 2, Q =4/2ln +3, k 1,k, b k =6k 2 +17k + 7/6k k +12, 0 =1,k =2,3,4,...,f x=x1 + 2/5 in 2 x, τ = 2/3, δ = π/2, α = 1/2e 3, β = 1/3e. We can how ha i x in2 xx 7 5 x, x R, in2 xx 2 >0for x 0; ii lim C = 2 9 = μ <1, lim D = 2 32 = γ <1wih μ + γ = 7 63 <1, Ck= 6k2 +17k+7 6k 2 +17k+12 Ck, Dk= 6k2 +17k+7 6k 2 +17k+12 Dk ; iii k 2/3 1/2e 3 k are no impulive poin, iv v 0<6k 2 +17k + 7/6k 2 +17k for k =1,2,..., k=1 1 6k2 +17k +7 6k 2 +17k +12 = k=1 5 6k 2 +17k +12 < ; lim up +δ P + δ d + +δ Q/β d + μ1 + P+τ+δ +γ1 + P/α+δ = 64 P+δ αp+δ 63 < 10 7 lim up /β P + δ d + /β Q/β d μ1 + Q+τ/β +τq/β +γ 1 + Q/αβ Q/β = < 2; 2 +1+π P + δ d = π d = 2 Q/β 4 d = d =. 1 2 ln3e+3 Hence, all aumpion of Theorem 2.3 are aified herefore every oluion of 3.2 end o zero a. Compeing inere The auhor declare ha hey have no compeing inere.

16 Tariboon e al. Advance in Difference Equaion 2014, 2014:327 Page 16 of 16 hp:// Auhor conribuion All auhor conribued equally in hi aricle. They read approved he final manucrip. Auhor deail 1 Nonlinear Dynamic Analyi Reearch Cener, Deparmen of Mahemaic, Faculy of Applied Science, King Mongku Univeriy of Technology Norh Bangkok, Bangkok, 10800, Thail. 2 Deparmen of Mahemaic, Univeriy of Ioannina, Ioannina, , Greece. 3 Nonlinear Analyi Applied Mahemaic NAAM-Reearch Group, Deparmen of Mahemaic, Faculy of Science, King Abdulaziz Univeriy, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. Acknowledgemen We would like o hank he reviewer for heir valuable commen uggeion on he manucrip. Thi reearch wa funded by King Mongku Univeriy of Technology Norh Bangkok. Conrac no. KMUTNB-GOV Received: 29 Augu 2014 Acceped: 9 December 2014 Publihed: 22 Dec 2014 Reference 1. Bainov, DD, Simeonov, PS: Syem wih Impule Effec. Elli Horwood, Chicheer Lakhmikanham, V, Bainov, DD, Simeonov, PS: Theory of Impulive Differenial Equaion. World Scienific, Singapore Samoilenko, AM, Pereyuk, NA: Impulive Differenial Equaion. World Scienific, Singapore Benchohra, M, Henderon, J, Nouya, SK: Impulive Differenial Equaion Incluion, vol. 2. Hindawi Publihing Corporaion, New York Bainov, DD, Dinirova, MB, Dihliev, AB: Ocillaion of he oluion of impulive differenial equaion inequaliie wih a rearded argumen. Rocky M. J. Mah. 28, Luo, Z, Shen, J: Sabiliy boundedne for impulive differenial equaion wih infinie delay. Nonlinear Anal. 46, Liu, X, Shen, J: Aympoic behavior of oluion of impulive neural differenial equaion. Appl. Mah. Le. 12, Shen, J, Liu, Y, Li, J: Aympoic behavior of oluion of nonlinear neural differenial equaion wih impule. J. Mah. Anal. Appl. 332, Shen, J, Liu, Y: Aympoic behavior of oluion for nonlinear delay differenial equaion wih impule. J. Appl. Mah. Compu. 213, Wei, G, Shen, J: Aympoic behavior of oluion of nonlinear impulive delay differenial equaion wih poiive negaive coefficien. Mah. Compu. Model. 44, Luo, J, Debnah, L: Aympoic behavior of oluion of forced nonlinear neural delay differenial equaion wih impule. J. Appl. Mah. Compu. 12, Jiang, F, Sun, J: Aympoic behavior of neural delay differenial equaion of Euler form wih conan impulive jump. Appl. Mah. Compu. 219, Pian, S, Balachran, Y: Aympoic behavior reul for nonlinear impulive neural differenial equaion wih poiive negaive coefficien. Bonfring In. J. Daa Min. 2, Wang, QR: Ocillaion crieria for fir-order neural differenial equaion. Appl. Mah. Le. 8, Tariboon, J, Thiramanu, P: Ocillaion of a cla of econd-order linear impulive differenial equaion. Adv. Differ. Equ. 2012, Jiang, F, Shen, J: Aympoic behavior of oluion for a nonlinear differenial equaion wih conan impulive jump. Aca Mah. Hung. 138, Jiang, F, Shen, J: Aympoic behavior of nonlinear neural impulive delay differenial equaion wih forced erm. Kodai Mah. J. 35, Gunaekar, T, Samuel, FP, Arjunan, MM: Exience reul for impulive neural funcional inegrodifferenial equaion wih infinie delay. J. Nonlinear Sci. Appl. 6, Kumar, P, Pey, DN, Bahuguna, D: On a new cla of abrac impulive funcional differenial equaion of fracional order. J. Nonlinear Sci. Appl. 7, Samuel, FP, Balachran, K: Exience of oluion for quai-linear impulive funcional inegrodifferenial equaion in Banach pace. J. Nonlinear Sci. Appl. 7, Guan, K, Shen, J: Aympoic behavior of oluion of a fir-order impulive neural differenial equaion in Euler form. Appl. Mah. Le. 24, / Cie hi aricle a: Tariboon e al.: Aympoic behavior of oluion of mixed ype impulive neural differenial equaion. Advance in Difference Equaion 2014, 2014:327

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a

Διαβάστε περισσότερα

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model

Global Attractor for a Class of Nonlinear Generalized Kirchhoff-Boussinesq Model Inernaional Journal of Modern Nonlinear Theory and Applicaion, 6, 5, 8-9 Publihed Online March 6 in SciRe hp://wwwcirporg/journal/ijmna hp://dxdoiorg/36/ijmna659 Global Aracor for a la of Nonlinear Generalized

Διαβάστε περισσότερα

Approximation of the Lerch zeta-function

Approximation of the Lerch zeta-function Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion

Διαβάστε περισσότερα

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t). Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L

Διαβάστε περισσότερα

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey

I.I. Guseinov. Department of Physics, Faculty of Arts and Sciences, Onsekiz Mart University, Çanakkale, Turkey Epanion and one-range addiion heore for coplee orhonoral e of pinor wave funcion and Slaer pinor orbial of arbirary half-inegral pin in poiion oenu and four-dienional pace I.I. Gueinov Deparen of Phyic

Διαβάστε περισσότερα

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations

Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations J. Mah. Anal. Appl. 321 (2006) 553 568 www.elsevier.com/locae/jmaa Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of

Διαβάστε περισσότερα

Xiaoquan (Michael) Zhang

Xiaoquan (Michael) Zhang RESEARCH ARTICLE HO DOES THE INTERNET AFFECT THE FINANCIAL MARKET? AN EQUILIBRIUM MODEL OF INTERNET-FACILITATED FEEDBACK TRADING Xiaoquan (Michael) Zhang School of Buine and Managemen, Hong Kong Unieriy

Διαβάστε περισσότερα

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8] Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(

Διαβάστε περισσότερα

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales

Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic

Διαβάστε περισσότερα

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat

Fractional Calculus. Student: Manal AL-Ali Dr. Abdalla Obeidat Fracional Calculu Suen: Manal AL-Ali Dr. Aballa Obeia Deignaion Deignaion mean inegraion an iffereniaion of arbirary orer, In oher ereion i mean ealing wih oeraor like,, i arbirary real or Comle value.

Διαβάστε περισσότερα

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016 4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s

Διαβάστε περισσότερα

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems

Research Article Existence of Positive Solutions for Fourth-Order Three-Point Boundary Value Problems Hindawi Publihing Corporation Boundary Value Problem Volume 27, Article ID 68758, 1 page doi:1.1155/27/68758 Reearch Article Exitence of Poitive Solution for Fourth-Order Three-Point Boundary Value Problem

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Appendix A. Stability of the logistic semi-discrete model.

Appendix A. Stability of the logistic semi-discrete model. Ecological Archiv E89-7-A Elizava Pachpky, Rogr M. Nib, and William W. Murdoch. 8. Bwn dicr and coninuou: conumr-rourc dynamic wih ynchronizd rproducion. Ecology 89:8-88. Appndix A. Sabiliy of h logiic

Διαβάστε περισσότερα

GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED MITTAG-LEFFLER FUNCTIONS APPLIED TO ANOMALOUS RELAXATION

GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED MITTAG-LEFFLER FUNCTIONS APPLIED TO ANOMALOUS RELAXATION Yang X. e al.: General Fracional Calculu Operaor Conaining he Generalize... THERMAL SCIENCE: Year 217 Vol. 21 Suppl. 1 pp. S317-S326 S317 GENERAL FRACTIONAL CALCULUS OPERATORS CONTAINING THE GENERALIZED

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations

Oscillation criteria for two-dimensional system of non-linear ordinary differential equations Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary

Διαβάστε περισσότερα

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION

EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL BOUNDARY CONDITION Journal of Fractional Calculu and Application, Vol. 3, July 212, No. 6, pp. 1 9. ISSN: 29-5858. http://www.fcaj.web.com/ EXISTENCE AND UNIQUENESS THEOREM FOR FRACTIONAL DIFFERENTIAL EQUATION WITH INTEGRAL

Διαβάστε περισσότερα

α ]0,1[ of Trigonometric Fourier Series and its Conjugate

α ]0,1[ of Trigonometric Fourier Series and its Conjugate aqartvelo mecierebata erovuli aademii moambe 3 # 9 BULLETIN OF THE GEORGIN NTIONL CDEMY OF SCIENCES vol 3 o 9 Mahemaic Some pproimae Properie o he Cezàro Mea o Order ][ o Trigoomeric Fourier Serie ad i

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) =

Vidyalankar. Vidyalankar S.E. Sem. III [BIOM] Applied Mathematics - III Prelim Question Paper Solution. 1 e = 1 1. f(t) = . (a). (b). (c) f() L L e i e Vidyalakar S.E. Sem. III [BIOM] Applied Mahemaic - III Prelim Queio Paper Soluio L el e () i ( ) H( ) u e co y + 3 3y u e co y + 6 uy e i y 6y uyy e co y 6 u + u yy e co y

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,

Nonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4, Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

On the Galois Group of Linear Difference-Differential Equations

On the Galois Group of Linear Difference-Differential Equations On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Αλγόριθμοι και πολυπλοκότητα Maximum Flow

Αλγόριθμοι και πολυπλοκότητα Maximum Flow ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Maximm Flo Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Maximm Flo χ 3/5 4/6 4/7 1/9 3/5 5/11/2008 11:05 PM Maximm Flo 1 Oline and Reading

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Managing Production-Inventory Systems with Scarce Resources

Managing Production-Inventory Systems with Scarce Resources Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,

Διαβάστε περισσότερα

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,

Διαβάστε περισσότερα

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.

16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral. SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he

Διαβάστε περισσότερα

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form:

RG Tutorial xlc3.doc 1/10. To apply the R-G method, the differential equation must be represented in the form: G Tuorial xlc3.oc / iear roblem i e C i e C ( ie ( Differeial equaio for C (3 Thi fir orer iffereial equaio ca eaily be ole bu he uroe of hi uorial i o how how o ue he iz-galerki meho o fi ou he oluio.

Διαβάστε περισσότερα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

ω = radians per sec, t = 3 sec

ω = radians per sec, t = 3 sec Secion. Linear and Angular Speed 7. From exercise, =. A= r A = ( 00 ) (. ) = 7,00 in 7. Since 7 is in quadran IV, he reference 7 8 7 angle is = =. In quadran IV, he cosine is posiive. Thus, 7 cos = cos

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Deterministic Policy Gradient Algorithms: Supplementary Material

Deterministic Policy Gradient Algorithms: Supplementary Material Determinitic Policy Gradient lgorithm: upplementary Material. Regularity Condition Within the text we have referred to regularity condition on the MDP: Regularity condition.1: p(, a), a p(, a), µ θ (),

Διαβάστε περισσότερα

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1) Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as

Διαβάστε περισσότερα

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional

Positive solutions for a multi-point eigenvalue. problem involving the one dimensional Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu

Διαβάστε περισσότερα

Linear singular perturbations of hyperbolic-parabolic type

Linear singular perturbations of hyperbolic-parabolic type BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v. hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i d d S = ()SI d d I = ()SI ()I d d R = ()I d d S = ()SI μs + fi + hr d d I = + ()SI (μ + + f + ())I d d R = ()I (μ + h)r d d P(S,I,) = ()(S +1)(I 1)P(S +1, I 1, ) +()(I +1)P(S,I +1, ) (()SI + ()I)P(S,I,)

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10 Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

On Strong Product of Two Fuzzy Graphs

On Strong Product of Two Fuzzy Graphs Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of

Διαβάστε περισσότερα

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

Galatia SIL Keyboard Information

Galatia SIL Keyboard Information Galatia SIL Keyboard Information Keyboard ssignments The main purpose of the keyboards is to provide a wide range of keying options, so many characters can be entered in multiple ways. If you are typing

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

ECE145a / 218a Tuned Amplifier Design -basic gain relationships ca note, M. Rodwe, copyrighted 009 ECE45a / 8a uned Ampifier Deign -aic ga reationhip -deign the (impe) uniatera imit it Mark Rodwe Univerity of Caifornia, anta Barara rodwe@ece.uc.edu 805-893-344, 805-893-36

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Lecture 12 Modulation and Sampling

Lecture 12 Modulation and Sampling EE 2 spring 2-22 Handou #25 Lecure 2 Modulaion and Sampling The Fourier ransform of he produc of wo signals Modulaion of a signal wih a sinusoid Sampling wih an impulse rain The sampling heorem 2 Convoluion

Διαβάστε περισσότερα

Commutative Monoids in Intuitionistic Fuzzy Sets

Commutative Monoids in Intuitionistic Fuzzy Sets Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1 Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Riemann Hypothesis: a GGC representation

Riemann Hypothesis: a GGC representation Riemann Hypohesis: a GGC represenaion Nicholas G. Polson Universiy of Chicago Augus 8, 8 Absrac A GGC Generalized Gamma Convoluion represenaion for Riemann s reciprocal ξ-funcion is consruced. This provides

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0) Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions. Luevorasirikul, Kanokrat (2007) Body image and weight management: young people, internet advertisements and pharmacists. PhD thesis, University of Nottingham. Access from the University of Nottingham repository:

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Empirical best prediction under area-level Poisson mixed models

Empirical best prediction under area-level Poisson mixed models Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date

Διαβάστε περισσότερα

Mellin transforms and asymptotics: Harmonic sums

Mellin transforms and asymptotics: Harmonic sums Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi

Διαβάστε περισσότερα