Necessary and sufficient conditions for oscillation of first order nonlinear neutral differential equations
|
|
- Κρέων Γιάνναρης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 J. Mah. Anal. Appl. 321 (2006) Necessary sufficien condiions for oscillaion of firs order nonlinear neural differenial equaions X.H. ang a,, Xiaoyan Lin b a School of Mahemaical Sciences Compuing echnology, Cenral Souh Universiy, Changsha, Hunan , PR China b Deparmen of Mahemaics, Huaihua Universiy, Huaihua, Hunan , PR China Received 17 March 2005 Available online 19 Sepember 2005 Submied by William F. Ames Absrac In his paper, we prove ha every soluion of he firs order nonlinear neural differenial equaion ] m x() px( τ) + q() x( σj ) βj sign x( σ 1 ) ] = 0,, oscillaes if only if ( m ) ] q(s)exp τ 1 ln p β j 1 s ds =, when ( m β j 1) ln p<0, q(s)ds =, when ( m β j 1) ln p>0, where p, τ>0, β j > 0, σ j 0, j = 1, 2,...,m, q C(, ), 0, )) Published by Elsevier Inc. his work is parially suppored by he NNSF (No ) of China. * Corresponding auhor. addresses: angxh@mail.csu.edu.cn (X.H. ang), xiaoyanlin98@homail.com (X. Lin) X/$ see fron maer 2005 Published by Elsevier Inc. doi: /j.jmaa
2 554 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) Keywords: Firs order neural differenial equaion; Superlinear; Sublinear; Oscillaion 1. Inroducion Consider he firs nonlinear neural delay differenial equaion ] m x() px( τ) + q() x( σj ) βj sign x( σ 1 ) ] = 0,, (1.1) where p,τ > 0, β j > 0, σ j 0, j = 1, 2,...,m, q C(, )), 0, )). When m β j = 1, he oscillaory behavior of soluions of Eq. (1.1) is similar o he linear neural delay differenial equaion, which has been sudied by many auhors, see 1,2,5,7,8] he references cied herein. When m β j 1, we only find hree papers 3,4,6] which deal wih he oscillaory behavior of soluions of some special forms of Eq. (1.1). he resuls obained here are he following. heorem ] Assume ha p = 0 m β j > 1. hen he following conclusions hold: (i) If here exiss λ>0 such ha m β j e λσ j < 1, (1.2) lim inf q()exp( e λ ) ] > 0, (1.3) hen every soluion of Eq. (1.1) oscillaes. (ii) If, for large, q(s) 0, s, + σ ], (1.4) where σ = max{σ 1,σ 2,...,σ m }, ha exiss μ>0 such ha m β j e μσ j > 1, (1.5) lim sup q()exp( e μ ) ] <, (1.6) hen Eq. (1.1) has an evenually posiive soluion. heorem ] Assume ha p = 1 m β j < 1. hen every soluion of Eq. (1.1) oscillaes if only if s β q(s)ds =, where β = m β j. (1.7)
3 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) heorem ] Assume ha p = 1 m β j > 1. hen every soluion of Eq. (1.1) oscillaes if only if sq(s)ds =. (1.8) heorem 1.4. (6], see also 1, heorem 3.4.6]) Assume ha p<1 m β j < 1. hen every soluion of Eq. (1.1) oscillaes if only if q(s)ds =. Besides he several cases menioned in he above four heorems, we find no resuls in he lieraure on he oscillaion of soluions of Eq. (1.1) in he following wo cases: (i) p (0, 1) (1, ) m β j > 1; (ii) p (1, ) m β j < 1. In his paper, we shall esablish some necessary sufficien condiions for oscillaion of soluions of Eq. (1.1) in he above case (i) case (ii), respecively. As is cusomary, a soluion x() of Eq. (1.1) is said o be oscillaory if i has arbirarily large zeros. Oherwise, i is said o be nonoscillaory. hroughou of his paper, we denoe β = m β j. 2. he superlinear case m β j > 1 heorem 2.1. Assume ha <p<1 m β j > 1. hen every soluion of Eq. (1.1) oscillaes if only if ( m ) ] q(s)exp τ 1 ln p β j 1 s ds =. (2.1) Proof. Sufficiency. Lex() be a nonoscillaory soluion of Eq. (1.1). We may wihou loss of generaliy assume ha x() > 0for 1 for some 1. Se z() = x() px( τ). (2.2) hen i follows from (1.1), (2.1) (2.2) ha m z () = q() x( σj ) βj 0 ( 0), 2 = 1 + ρ, (2.3) here in he sequel, ρ = max{τ,σ 1,...,σ m }. his shows ha z() is nonincreasing on 2, ). Hence, z() > 0, 2, (see 1, Lemma 5.1.4]), from (2.2) (2.3), we have n x() = p i z( iτ) + p n+1 x( nτ τ) i=0 (1.9)
4 556 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) = 1 τ n p i z( iτ) 1 τ i=0 +ρ (n+1)τ+ρ n iτ+ρ i=0 (i+1)τ+ρ p (+ρ s)/τ z(s) ds 1 τ 2 + nτ 2 + (n + 1)τ, n = 1, 2,..., which yields x( σ j ) 1 τ 1 τ +ρ σ j 2 +ρ 3 p (+ρ s)/τ z(s) ds +ρ 2 +ρ p (+ρ σ j s)/τ z(s) ds 1 τ p (+ρ s)/τ z(s) ds, p (+ρ s)/τ z(s) ds, 2 +ρ p (+ρ s)/τ z(s) ds 3 := 2 + 2ρ, j = 1, 2,...,m. (2.4) Subsiuing (2.4) ino (2.3), we obain z 1 ] β () q() p (+ρ s)/τ z(s) ds, τ 3. (2.5) 3 Se y() = z(s) ds, 3. (2.6) 3 hen i follows from (2.5) ha z () τ β p β(+ρ)/τ q() y() ] β, 3, (2.7) so z(s) τ β Subsiuing his ino (2.6), we have s y() τ β 3 τ β 3 p β(u+ρ)/τ q(u) y(u) ] β du, s 3. s p β(u+ρ)/τ q(u) y(u) ] β duds u p β(u+ρ)/τ ] β q(u) y(u) dsdu 3 = τ β+1 p β(s+ρ)/τ( p 3/τ ) ] β q(s) y(s) ds, ln p 3. (2.8) 3
5 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) Se w() = p β(+ρ)/τ( p /τ p 3/τ ) q() y() ] β, 3. (2.9) hen (2.8) yields ( ) β ( τ β+1 ) β w() w(s)ds p β(+ρ)/τ( p /τ p 3/τ ) q(), ln p 3. (2.10) 3 Choose a 1 > 3 such ha 1 3 w(s)ds > 0. hen from (2.10), we have ( τ β+1 ln p 1 I follows ha ) β w() 1 ( 3 p β(+ρ)/τ( p /τ p 3/τ ) q()d 3 w(s)ds ) β ( d = 1 1 β 1 ( 1 1 ) 1 β w(s)ds, > 1. β 1 3 w(s)ds ) 1 β ( 3 w(s)ds ) 1 β ] 1 p β(+ρ)/τ( p /τ p 3/τ ) q()d <. (2.11) Noe ha p /τ p 3/τ p /τ 1 p ( 1 3 )/τ ], 1. hen (2.11) implies ha 1 p (β 1)s/τ q(s)ds <, (2.12) which conradics o (2.1) so he sufficiency is proved. Necessiy. We only need o prove ha he condiion q(s)exp τ 1 ln p(β 1)s ] ds < (2.13) implies ha Eq. (1.1) has an evenually posiive soluion. Noe ha s = τ ln p p βu/τ q(u)duds p βu/τ ( q(u) p u/τ p /τ ) du
6 (p /τ y () ) = τ β p β( ρ τ)/τ q() y() ] β 0,. (2.20) 558 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) τ p (β 1)s/τ τ q(s)ds = ln p ln p Hence, from (2.13), we have Choose > + ρ such ha ( ) 2 β p βρ/τ τ s q(s)exp τ 1 ln p(β 1)s ] ds. p βu/τ q(u)duds <. (2.14) Define he sequence of funcions {y n ()} as follows: y 0 () = 2,, y n+1 () = 1 + τ β p βρ/τ s p β(u τ)/τ q(u)duds < 1. (2.15) s p β(u τ)/τ q(u) y n (u) ] β duds, (2.16), n= 1, 2,.... (2.17) By (2.15) (2.17) by inducion, i is easy o verify ha 1 y n+1 () y n () y 0 () = 2,, n= 1, 2,.... hen he limi lim n y n () = y() exiss for, ) 1 y() 2for, ). Applying Lebesgue s monoone convergence heorem o (2.17), we obain y() = 1 + τ β p βρ/τ I follows ha p /τ y () = τ β p βρ/τ s p β(u τ)/τ q(u) y(u) ] β duds,. (2.18) p β(s τ)/τ q(s) y(s) ] β ds,, (2.19) I follows from (2.15) ha here exiss a 1 > + τ such ha τ β p βρ/τ p 1/τ 1 p β(s τ)/τ ] β q(s) y(s) ds < τ 1. (2.21) If q() 0forlarge, hen x() = e ln p/τ is an evenually posiive soluion of Eq. (1.1). So, in he sequel, we only consider he case when q() 0 evenually, so p β(s τ)/τ q(s) y(s) ] β ds > 0,. (2.22)
7 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) u(s) ds + y( 1 ), 1. (2.25) Se u() = p /τ y (),. (2.23) hen from (2.19) (2.23), we have 0 <u()<τ 1 p 1/τ, u () 0, 1, (2.24) y() = 1 Define a funcion v() as follows: τ 1 u( 1 + τ)( 1 ), τ, v() = p v( + τ) u( + τ)], < 1, (2.26) u() + pv( τ), 1 + iτ < 1 + (i + 1)τ, i = 1, 2,... I is easy o see ha v() coninues on, ) v() > 0for> 1 v() = u() + pv( τ), 1 + τ. (2.27) From (2.24) (2.26), we have v() u( 1 + τ) u( 1 )<τ 1 p 1/τ, τ. (2.28) hen from (2.24), (2.25), (2.27) (2.28) by using he fac y() 1for,wehave n 1 n 1 v() = p i u( iτ) + p n v( nτ) p i u( iτ) + p n τ 1 p 1/τ 1 τ = 1 τ i=0 n 1 iτ i=0 (i+1)τ nτ i=0 p ( τ s)/τ u(s) ds + τ 1 p n+ 1/τ p ( τ s)/τ u(s) ds + τ 1 p n+ 1/τ 1 p ( τ s)/τ u(s) ds + τ 1 p ( τ)/τ 1 = τ τ p( τ)/τ u(s) ds ] 1 τ p( τ)/τ u(s) ds + y( 1 ) = 1 τ p( τ)/τ y(), nτ 1 + (n + 1)τ, n = 1, 2,.... Noe ha y () 0for, i follows from he above ha v( σ j ) 1 τ p( τ σ j )/τ y( σ j ) 1 τ p( τ σ j )/τ y(), 1 + 2ρ, j = 1, 2,...,m. (2.29) ]
8 560 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) By (2.19), (2.23), (2.27) (2.29), we obain v() = pv( τ)+ u() = pv( τ)+ τ β p βρ/τ pv( τ)+ τ β p βρ/τ pv( τ)+ his shows ha he inequaliy v() pv( τ)+ q(s) q(s) p β(s τ)/τ q(s) p β(s τ)/τ q(s) y(s) ] β ds m τp ( s+τ+σ j )/τ v(s σ j ) ] β j ds m v(s σj ) ] β j ds, 1 + 2ρ. m v(s σ j ) βj sign v(s σ 1 ) ] ds, 1 + 2ρ, (2.30) has a posiive soluion v() on 1 + 2ρ, ). Similar o he proof of 1, Lemma 5.1.5], we can prove ha he corresponding equaion x() = px( τ)+ q(s) m x(s σ j ) βj sign x(s σ 1 ) ] ds, 1 + 2ρ, (2.31) has also a posiive soluion x() on 1 + 2ρ, ). Obviously, x() is also he evenually posiive soluion of Eq. (1.1), so he necessiy is proved. he proof is complee. heorem 2.2. Assume ha p>1 m β j > 1. hen every soluion of Eq. (1.1) oscillaes if only if q(s)ds =. (2.32) Proof. Sufficiency. Lex() be a nonoscillaory soluion of Eq. (1.1). We may wihou loss of generaliy assume ha x() > 0for 1 for some 1. Se z() as in (2.2). hen i follows from p>1 (2.32) ha z() < 0 z () 0for 2 for some 2 > 1, see 1, heorem 3.2.9]. Choose a posiive ineger n such ha nτ ρ. hen from (2.2), we have so x() > 1 p n z( + nτ), 2, (2.33) x( σ j )> 1 p n z( + nτ σ j ) 1 p n z(), 2 + ρ, j = 1, 2,...,m. Subsiuing his ino (2.3), we have ( z () q() 1 ) β p n z(), 2 + ρ. I follows ha
9 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) ρ q(s)ds p nβ 2 +ρ ( z(s) ) βz (s) ds = p nβ (β 1) 1( z( 2 + ρ) ) 1 β ( z() ) 1 β ] <p nβ (β 1) 1 z( 2 + ρ) ] 1 β, 2 + ρ, so 2 +ρ q(s)ds <, which conradics o (2.32) so he sufficiency is proved. Necessiy. We only need o prove ha he condiion q(s)ds < (2.34) implies ha Eq. (1.1) has an evenually posiive soluion. By (2.34), we can choose > +τ +σ such ha q(s)ds p 1. 2 (2.35) Define he sequence of funcions {x n ()} as follows: x 0 () = 1,, p 1 { p x n ( + τ) x n+1 () = + +τ q(s) m x n (s σ j )] β j ds},, x n+1 ( ), <. (2.36) (2.37) n = 1, 2,... By (2.35) (2.37) by inducion, i is easy o verify ha p 1 2p x n+1() x n () x 0 () = 1,, n= 1, 2,.... hen he limi lim n x n () = x() exiss for, ) (p 1)/2p x() 1for, ). Applying Lebesgue s monoone convergence heorem o (2.37), we obain { +τ x() = p 1 p 1 + x( + τ)+ q(s) 2 m x(s σj ) ] } β j ds,. (2.38) I is easy o see ha x() is also he evenually posiive soluion of Eq. (1.1), so he necessiy is proved. he proof is complee.
10 562 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) he sublinear case m β j < 1 heorem 3.1. Assume ha p>1 m β j < 1. hen every soluion of Eq. (1.1) oscillaes if only if ( m ) ] q(s)exp τ 1 ln p β j 1 s ds =. (3.1) Proof. Sufficiency. Lex() be a nonoscillaory soluion of Eq. (1.1). We may wihou loss of generaliy assume ha x() > 0 for all 1. Se z() = px( τ) x(). hen i follows from (1.1) (3.1) ha m z () = q() x( σ j ) βj 0 ( 0), 2 = 1 + ρ. (3.3) his shows ha z() is nondecreasing on 2, ). Hence, z() > 0, 2, (see 1, heorem 3.2.9]), from (3.2) (3.3), we have x() = 1 τ which yields p i z( + iτ) 1 τ i=1 i=1 p i +iτ +(i 1)τ p (s+τ )/τ z(s) ds = 1 τ p( τ)/τ x( σ j ) 1 τ p( τ σ j )/τ σ j z(s) ds z(s) ds 1 τ +iτ i=1 +(i 1)τ z(s) ds, 2, 1 τ p( τ ρ)/τ (3.2) p (s+τ )/τ z(s) ds z(s) ds, 2 + ρ, j = 1, 2,...,m. (3.4) Subsiuing (3.4) ino (3.3), we obain z 1 β () q() τ p( τ ρ)/τ z(s) ds], 3 = 2 + ρ. (3.5) Se y() = hen i follows from (3.5) ha z(s) ds, 3. (3.6) z () τ β p β( τ ρ)/τ q() y() ] β, 3, (3.7)
11 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) so s z(s) τ β 3 Subsiuing his ino (3.6), we have p β(u τ ρ)/τ ] β q(u) y(u) du, s 3. Se y() τ β τ β s 3 p β(u τ ρ)/τ ] β q(u) y(u) duds p β(u τ ρ)/τ q(u) y(u) ] β = τ β+1 p β(τ+ρ)/τ ln p u dsdu p (β 1)s/τ q(s) y(s) ] β ds, 3. (3.8) w() = p (β 1)/τ q() y() ] β, 3. (3.9) hen (3.8) yields w() ( β ( τ w(s)ds) β+1 p β(τ+ρ)/τ ) β p (β 1)/τ q(), 3. (3.10) ln p Inegraing (3.10) from 3 o,wehave ( τ β+1 p β(τ+ρ)/τ I follows ha ln p ) β 3 p (β 1)/τ q()d 3 w() = 1 1 β ( ( 3 w(s)ds) β d w(s)ds ) 1 β. 3 p (β 1)/τ q()d <, (3.11) which conradics o (3.1) so he sufficiency is proved. Necessiy. We only need o prove ha he condiion q(s)exp τ 1 ln p(β 1)s ] ds < (3.12) implies ha Eq. (1.1) has an evenually posiive soluion. Noe ha
12 564 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) s p βu/τ q(u)duds = Hence, from (3.12), we have s τ ln p = τ ln p p (β 1)s/τ q(s)ds q(s)exp τ 1 ln p(β 1)s ] ds. p βu/τ q(u)duds <. (3.13) Choose > + ρ such ha ( ) 2 β s p β(u+ρ)/τ q(u)duds < 1. (3.14) τ If q() 0for, hen x() = e ln p/τ is an evenually posiive soluion of Eq. (1.1). So, in he sequel, we only consider he case when q() 0for. Define he sequence of funcions {y n ()} as follows: y 0 () = 2,, y n+1 () = 1 + τ β, n= 1, 2,.... s p β(u+ρ)/τ q(u) y n (u) ] β duds, By (3.14) (3.16) by inducion, i is easy o verify ha 1 y n+1 () y n () y 0 () = 2,, n= 1, 2,.... (3.15) (3.16) hen he limi lim n y n () = y() exiss for, ) 1 y() 2for, ). Applying Lebesgue s monoone convergence heorem o (3.16), we obain y() = 1 + τ β s p β(u+ρ)/τ q(u) y(u) ] β duds,. (3.17) I follows ha p /τ y () = τ β p β(s+ρ)/τ q(s) y(s) ] β ds,, (3.18) Se ( p /τ y ()) = τ β p β(+ρ)/τ q() y() ] β 0,. (3.19) u() = p /τ y (),. (3.20)
13 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) hen from (3.17), (3.18), (3.19) (3.20), we have u() 0, u () 0,, (3.21) y() = u(s) ds + 1, 1. (3.22) From (3.21) (3.22), we find p i u( + iτ) 1 τ i=1 = 1 τ +ρ+iτ i=1 +ρ+(i 1)τ +ρ = 1 τ p(+ρ)/τ p (+ρ s)/τ u(s) ds +ρ 1 τ p(+ρ)/τ p (+ρ s)/τ u(s) ds u(s) ds +ρ u(s) ds + 1 = 1 τ p(+ρ)/τ y( + ρ),. (3.23) Noe ha q() 0for, so we can choose 1 > + ρ such ha u( 1 ) = τ β 1 I follows from (3.21) ha p β(s+ρ)/τ q(s) y(s) ] β ds > 0. (3.24) u() > 0, u () 0, 1. (3.25) Define a funcion v() as follows: v() = p i u( + iτ),. (3.26) i=1 By (3.23) (3.25), i is easy o see ha v() coninues on, ) v() > 0for, v() = 1 p u( + τ)+ v( + τ) ],, (3.27) v() 1 τ p(+ρ)/τ y( + ρ),. (3.28) I follows from (3.26) he fac ha y () 0for ha ]
14 566 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) v( σ j ) 1 τ p(+ρ σ j )/τ y( + ρ σ j ) 1 τ p(+ρ σ j )/τ y(), 1,j= 1, 2,...,m. (3.29) hen, by (3.18), (3.20), (3.24), (3.27) (3.29), we obain v() = 1 ] v( + τ)+ u( + τ) p = 1 +τ v( + τ)+ τ β p β(s+ρ)/τ q(s) y(s) ] ] β ds p = 1 u( 1 ) + v( + τ)+ τ β p +τ 1 +τ 1 u( 1 ) + v( + τ)+ τ β p 1 u( 1 ) + v( + τ)+ p his shows ha he inequaliy { v() 1 u( 1 ) + v( + τ)+ p +τ 1 +τ 1 1 q(s) q(s) ] p β(s+ρ)/τ ] β q(s) y(s) ds p β(s+ρ)/τ q(s) m τp ( s ρ+σ j )/τ v(s σ j ) ] ] β j ds m v(s σj ) ] ] β j ds, 1. m v(s σj ) βj sign v(s σ 1 ) ] } ds, 1, (3.30) has a posiive soluion v() on 1, ). Similar o he proof 1, Lemma 5.1.5], we can prove ha he corresponding equaion { x() = 1 +τ m u( 1 ) + x( + τ)+ q(s) x(s σj ) βj sign x(s σ 1 ) ] } ds, p 1 1, (3.31) has also a posiive soluion x() on 1, ). Obviously, x() is also he evenually posiive soluion of Eq. (1.1), so he necessiy is proved. he proof is complee. 4. Remarks Combining heorems 1.4, 2.1, , we have he following corollaries. Corollary 4.1. Assume ha ( m β j 1) ln p<0. hen every soluion of Eq. (1.1) oscillaes if only if ( m ) ] q(s)exp τ 1 ln p β j 1 s ds =. (4.1)
15 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) Corollary 4.2. Assume ha ( m β j 1) ln p>0. hen every soluion of Eq. (1.1) oscillaes if only if q(s)ds =. (4.2) Now we consider he firs nonlinear neural delay differenial equaion ] m x() p()x( τ) + q() x( σj ) βj sign x( σ 1 ) ] = 0,, (4.3) where p C(, ), 0, )), τ, β j > 0 q() are he same as in Eq. (1.1). In view of he proof of heorems , we have he following heorems. heorem 4.1. Assume ha m β j > 1. hen he following conclusions hold: (i) If here exiss a p 1 (0, 1) such ha p 1 p() 1,, (4.4) ( m ) ] q(s)exp τ 1 ln p 1 β j 1 s ds =, (4.5) hen every soluion of Eq. (4.3) oscillaes; (ii) If here exiss a p 2 (0, 1) such ha 0 p() p 2,, (4.6) ( m ) ] q(s)exp τ 1 ln p 2 β j 1 s ds <, (4.7) hen Eq. (4.3) has an evenually posiive soluion; (iii) If here exis p 3,p 4 (1, ) such ha p 3 p() p 4,, (4.8) hen every soluion of Eq. (4.3) oscillaes if only if q(s)ds =. (4.9) heorem 4.2. Assume ha m β j < 1. hen he following conclusions hold: (i) If here exiss p 1 (0, 1) such ha 0 p() p 1,, (4.10)
16 568 X.H. ang, X. Lin / J. Mah. Anal. Appl. 321 (2006) hen every soluion of Eq. (4.3) oscillaes if only if q(s)ds = ; (4.11) (ii) If here exiss a p 2 (1, ) such ha 1 p() p 2,, (4.12) ( m ) ] q(s)exp τ 1 ln p 2 β j 1 s ds =, (4.13) hen every soluion of Eq. (4.3) oscillaes; (iii) If here exiss a p 3 (1, ) such ha p() p 3,, (4.14) ( m ) ] q(s)exp τ 1 ln p 3 β j 1 s ds <, (4.15) hen Eq. (4.3) has an evenually posiive soluion. References 1] L.H. Erbe, Q. Kong, B.G. Zhang, Oscillaion heory for Funcional Differenial Equaions, Dekker, New York, ] I. Gyori, G. Ladas, Oscillaion heory of Delay Differenial Equaions wih Applicaions, Clarendon Press, Oxford, ] X.H. ang, Oscillaion for firs order nonlinear delay differenial equaions, J. Mah. Anal. Appl. 264 (2001) ] X.H. ang, X.Q. Li, Necessary sufficien condiions for oscillaion of nonlinear neural differenial equaions, Hunan Ann. Mah. 17 (1997) (in Chinese). 5] X.H. ang, J.S. Yu, Firs order nonlinear differenial inequaliies wih deviaing argumens, Appl. Mah. J. Chinese Univ. Ser. B 15 (2000) ] L.W. Wang, Oscillaion of firs order nonlinear neural differenial equaions, Aca Mah. Appl. Sinica 14 (1991) ] J.S. Yu, Firs order nonlinear differenial inequaliies wih deviaing argumens, Aca Mah. Sinica 33 (1990) ] B.G. Zhang, J.S. Yu, Oscillaion nonoscillaion for neural differenial equaions, J. Mah. Anal. Appl. 172 (1993)
Oscillation Criteria for Nonlinear Damped Dynamic Equations on Time Scales
Oscillaion Crieria for Nonlinear Damped Dynamic Equaions on ime Scales Lynn Erbe, aher S Hassan, and Allan Peerson Absrac We presen new oscillaion crieria for he second order nonlinear damped delay dynamic
Διαβάστε περισσότεραJ. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
Διαβάστε περισσότεραOscillation criteria for two-dimensional system of non-linear ordinary differential equations
Elecronic Journal of Qualiaive Theory of Differenial Equaions 216, No. 52, 1 17; doi: 1.14232/ejqde.216.1.52 hp://www.mah.u-szeged.hu/ejqde/ Oscillaion crieria for wo-dimensional sysem of non-linear ordinary
Διαβάστε περισσότεραNonlinear Analysis: Modelling and Control, 2013, Vol. 18, No. 4,
Nonlinear Analysis: Modelling and Conrol, 23, Vol. 8, No. 4, 493 58 493 Exisence and uniqueness of soluions for a singular sysem of higher-order nonlinear fracional differenial equaions wih inegral boundary
Διαβάστε περισσότεραLinear singular perturbations of hyperbolic-parabolic type
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Number 4, 3, Pages 95 11 ISSN 14 7696 Linear singular perurbaions of hyperbolic-parabolic ype Perjan A. Absrac. We sudy he behavior of soluions
Διαβάστε περισσότεραPositive solutions for a multi-point eigenvalue. problem involving the one dimensional
Elecronic Journal of Qualiaive Theory of Differenial Equaions 29, No. 4, -3; h://www.mah.u-szeged.hu/ejqde/ Posiive soluions for a muli-oin eigenvalue roblem involving he one dimensional -Lalacian Youyu
Διαβάστε περισσότερα( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential
Periodic oluion of van der Pol differenial equaion. by A. Arimoo Deparmen of Mahemaic Muahi Iniue of Technology Tokyo Japan in Seminar a Kiami Iniue of Technology January 8 9. Inroducion Le u conider a
Διαβάστε περισσότεραMultiple positive periodic solutions of nonlinear functional differential system with feedback control
J. Mah. Anal. Appl. 288 (23) 819 832 www.elsevier.com/locae/jmaa Muliple posiive periodic soluions of nonlinear funcional differenial sysem wih feedback conrol Ping Liu and Yongkun Li Deparmen of Mahemaics,
Διαβάστε περισσότεραVol. 40 No Journal of Jiangxi Normal University Natural Science Jul. 2016
4 4 Vol 4 No 4 26 7 Journal of Jiangxi Normal Universiy Naural Science Jul 26-5862 26 4-349-5 3 2 6 2 67 3 3 O 77 9 A DOI 6357 /j cnki issn-5862 26 4 4 C q x' x /q G s = { α 2 - s -9 2 β 2 2 s α 2 - s
Διαβάστε περισσότεραOrdinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
Διαβάστε περισσότερα16. 17. r t te 2t i t 1. 18 19 Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k. 31 33 Evaluate the integral.
SECTION.7 VECTOR FUNCTIONS AND SPACE CURVES.7 VECTOR FUNCTIONS AND SPACE CURVES A Click here for answers. S Click here for soluions. Copyrigh Cengage Learning. All righs reserved.. Find he domain of he
Διαβάστε περισσότεραAppendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)
Aenix Aenix A: The equaion o he sock rice. The soluion egins wih Eq..5 rom he ex, which we reea here or convenience as Eq.A.: [ [ E E X, A. c α where X u ε, α γ, an c α y AR. Take execaions o Eq. A. as
Διαβάστε περισσότεραEvery set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Διαβάστε περισσότεραManaging Production-Inventory Systems with Scarce Resources
Managing Producion-Invenory Sysems wih Scarce Resources Online Supplemen Proof of Lemma 1: Consider he following dynamic program: where ḡ (x, z) = max { cy + E f (y, z, D)}, (7) x y min(x+u,z) f (y, z,
Διαβάστε περισσότεραST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Διαβάστε περισσότεραApproximation of the Lerch zeta-function
Approximaion of he Lerch zea-funcion Ramūna Garunkši Deparmen of Mahemaic and Informaic Vilniu Univeriy Naugarduko 4 035 Vilniu Lihuania ramunagarunki@mafvul Abrac We conider uniform in parameer approximaion
Διαβάστε περισσότερα2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Διαβάστε περισσότεραSCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Διαβάστε περισσότερα( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω
Fourier series e jm when m d when m ; m is an ineger. jm jm jm jm e d e e e jm jm jm jm r( is periodi (>, r(+ r(, Fundamenal period smalles Fundamenal frequeny r ( + r ( is periodi hen M M e j M, e j,
Διαβάστε περισσότεραConcrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Διαβάστε περισσότεραUniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
Διαβάστε περισσότερα= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).
Worked Soluion 95 Chaper 25: The Invere Laplace Tranform 25 a From he able: L ] e 6 6 25 c L 2 ] ] L! + 25 e L 5 2 + 25] ] L 5 2 + 5 2 in(5) 252 a L 6 + 2] L 6 ( 2)] 6L ( 2)] 6e 2 252 c L 3 8 4] 3L ] 8L
Διαβάστε περισσότεραExistence of travelling wave solutions in delayed reaction diffusion systems with applications to diffusion competition systems
INSTITUTE OF PHYSICS PUBLISHING Nonlineariy 9 (2006) 253 273 NONLINEARITY doi:0.088/095-775/9/6/003 Exisence of ravelling wave soluions in delayed reacion diffusion sysems wih applicaions o diffusion compeiion
Διαβάστε περισσότεραFractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Διαβάστε περισσότεραNowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Διαβάστε περισσότεραThe choice of an optimal LCSCR contract involves the choice of an x L. such that the supplier chooses the LCS option when x xl
EHNIA APPENDIX AMPANY SIMPE S SHARIN NRAS Proof of emma. he choice of an opimal SR conrac involves he choice of an such ha he supplier chooses he S opion hen and he R opion hen >. When he selecs he S opion
Διαβάστε περισσότεραORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Διαβάστε περισσότεραExample Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Διαβάστε περισσότεραA Simple Version of the Lucas Model
Aricle non publié May 11, 2007 A Simple Version of he Lucas Model Mazamba Tédie Absrac This discree-ime version of he Lucas model do no include he physical capial. We inregrae in he uiliy funcion he leisure
Διαβάστε περισσότερα4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Διαβάστε περισσότεραReservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling
Reservoir modeling Reservoir modelling Linear reservoirs Paul Torfs Basic equaion for one reservoir:) change in sorage = sum of inflows minus ouflows = Q in,n Q ou,n n n jus an ordinary differenial equaion
Διαβάστε περισσότεραOn Strong Product of Two Fuzzy Graphs
Inernaional Journal of Scienific and Research Publicaions, Volume 4, Issue 10, Ocober 014 1 ISSN 50-3153 On Srong Produc of Two Fuzzy Graphs Dr. K. Radha* Mr.S. Arumugam** * P.G & Research Deparmen of
Διαβάστε περισσότεραAnalysis of optimal harvesting of a prey-predator fishery model with the limited sources of prey and presence of toxicity
ES Web of Confeences 7, 68 (8) hps://doiog/5/esconf/8768 ICEIS 8 nalsis of opimal havesing of a pe-pedao fishe model wih he limied souces of pe and pesence of oici Suimin,, Sii Khabibah, and Dia nies Munawwaoh
Διαβάστε περισσότεραOSCILLATION CRITERIA FOR SECOND ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS WITH DAMPING TERM
DIFFERENIAL EQUAIONS AND CONROL PROCESSES 4, 8 Elecroic Joural, reg. P375 a 7.3.97 ISSN 87-7 hp://www.ewa.ru/joural hp://www.mah.spbu.ru/user/diffjoural e-mail: jodiff@mail.ru Oscillaio, Secod order, Half-liear
Διαβάστε περισσότερα1. Introduction and Preliminaries.
Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat Filomat 22:1 (2008), 97 106 ON δ SETS IN γ SPACES V. Renuka Devi and D. Sivaraj Abstract We
Διαβάστε περισσότεραC.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
Διαβάστε περισσότεραA Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Διαβάστε περισσότεραTridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Διαβάστε περισσότεραMatrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Διαβάστε περισσότεραOn shift Harnack inequalities for subordinate semigroups and moment estimates for Lévy processes
Available online a www.sciencedirec.com ScienceDirec Sochasic Processes and heir Applicaions 15 (15) 3851 3878 www.elsevier.com/locae/spa On shif Harnack inequaliies for subordinae semigroups and momen
Διαβάστε περισσότεραElectronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution
i Eleconic Copanion o Supply Chain Dynaics and Channel Efficiency in Duable Poduc Picing and Disibuion Wei-yu Kevin Chiang College of Business Ciy Univesiy of Hong Kong wchiang@ciyueduh I Poof of Poposiion
Διαβάστε περισσότεραOn local motion of a general compressible viscous heat conducting fluid bounded by a free surface
ANNALE POLONICI MAHEMAICI LIX.2 (1994 On local moion of a general compressible viscous hea conducing fluid bounded by a free surface by Ewa Zadrzyńska ( Lódź and Wojciech M. Zaja czkowski (Warszawa Absrac.
Διαβάστε περισσότεραHOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Διαβάστε περισσότεραLecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Διαβάστε περισσότεραCommutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
Διαβάστε περισσότεραStatistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Διαβάστε περισσότεραEE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Διαβάστε περισσότεραOther Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Διαβάστε περισσότεραHomework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Διαβάστε περισσότεραUniversity of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10
Universiy of Washingon Deparmen of Chemisry Chemisry 553 Spring Quarer 1 Homework Assignmen 3 Due 4/6/1 v e v e A s ds: a) Show ha for large 1 and, (i.e. 1 >> and >>) he velociy auocorrelaion funcion 1)
Διαβάστε περισσότεραCongruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Διαβάστε περισσότεραFinite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Διαβάστε περισσότεραarxiv: v1 [math.ap] 10 Apr 2017
C 1,θ -Esimaes on he disance of Inerial Manifolds José M. Arriea and Esperanza Sanamaría arxiv:1704.03017v1 [mah.ap] 10 Apr 2017 Absrac: In his paper we obain C 1,θ -esimaes on he disance of inerial manifolds
Διαβάστε περισσότεραCoefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Διαβάστε περισσότεραSection 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Διαβάστε περισσότερα2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Διαβάστε περισσότεραThe third moment for the parabolic Anderson model
The hird momen for he parabolic Anderson model Le Chen Universiy of Kansas Thursday nd Augus, 8 arxiv:69.5v mah.pr] 5 Sep 6 Absrac In his paper, we sudy he parabolic Anderson model saring from he Dirac
Διαβάστε περισσότεραSCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Διαβάστε περισσότερα6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Διαβάστε περισσότεραFRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND. Abstract
FRACTIONAL INTEGRATION OF THE PRODUCT OF BESSEL FUNCTIONS OF THE FIRST KIND Anaoly A. Kilbas,1, Nicy Sebasian Dedicaed o 75h birhday of Prof. A.M. Mahai Absrac Two inegral ransforms involving he Gauss-hypergeomeric
Διαβάστε περισσότερα5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Διαβάστε περισσότεραMulti-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Διαβάστε περισσότεραOn Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Διαβάστε περισσότεραThe Student s t and F Distributions Page 1
The Suden s and F Disribuions Page The Fundamenal Transformaion formula for wo random variables: Consider wo random variables wih join probabiliy disribuion funcion f (, ) simulaneously ake on values in
Διαβάστε περισσότεραF19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Διαβάστε περισσότεραSolution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
Διαβάστε περισσότεραCubic Γ-n normed linear spaces
Malaya Journal of Maemaik, Vol. 6, No. 3, 643-647, 18 hps://doi.org/1.6637/mjm63/8 Cubic Γ-n normed linear spaces P. R. Kavyasree1 * and B. Surender Reddy Absrac This paper is aimed o propose he noion
Διαβάστε περισσότεραCHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Διαβάστε περισσότεραPhys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Διαβάστε περισσότεραMulti-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Διαβάστε περισσότεραLecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Διαβάστε περισσότεραHomomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Διαβάστε περισσότεραis the home less foreign interest rate differential (expressed as it
The model is solved algebraically, excep for a cubic roo which is solved numerically The mehod of soluion is undeermined coefficiens The noaion in his noe corresponds o he noaion in he program The model
Διαβάστε περισσότεραReminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Διαβάστε περισσότεραON LOCAL MOTION OF A COMPRESSIBLE BAROTROPIC VISCOUS FLUID WITH THE BOUNDARY SLIP CONDITION. Marek Burnat Wojciech M. ZajĄczkowski. 1.
opological Mehods in Nonlinear Analysis Journal of he Juliusz Schauder Cener Volume 1, 1997, 195 223 ON LOCAL MOION OF A COMPRESSIBLE BAROROPIC VISCOUS FLUID WIH HE BOUNDARY SLIP CONDIION Marek Burna Wojciech
Διαβάστε περισσότεραA General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Διαβάστε περισσότεραPractice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
Διαβάστε περισσότεραOscillation of nonlinear second-order neutral delay differential equations
Available online at wwwisr-publicationscom/jnsa J Nonlinear Sci Appl, 0 07, 77 734 Research Article Journal Homepage: wwwtjnsacom - wwwisr-publicationscom/jnsa Oscillation of nonlinear second-order neutral
Διαβάστε περισσότεραAlmost all short intervals containing prime numbers
ACTA ARITHMETICA LXXVI (6 Almos all shor inervals conaining prime nmbers by Chaoha Jia (Beijing Inrocion In 37, Cramér [] conjecred ha every inerval (n, n f(n log 2 n conains a prime for some f(n as n
Διαβάστε περισσότεραExercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Διαβάστε περισσότεραJordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.
Διαβάστε περισσότεραTRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<
TRM!"#$%& ' *,-./ *!#!!%!&!3,&!$-!$./!!"#$%&'*" 4!5"# 6!#!-!&'!5$7!84//&'9&:*;83< #:4
Διαβάστε περισσότερα( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
Διαβάστε περισσότερα( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)
hapter 5 xercise Problems X5. α β α 0.980 For α 0.980, β 49 0.980 0.995 For α 0.995, β 99 0.995 So 49 β 99 X5. O 00 O or n 3 O 40.5 β 0 X5.3 6.5 μ A 00 β ( 0)( 6.5 μa) 8 ma 5 ( 8)( 4 ) or.88 P on + 0.0065
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραAreas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Διαβάστε περισσότεραThe challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Διαβάστε περισσότεραThe Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.
hp://www.nd.ed/~gryggva/cfd-corse/ The Eler Eqaions The Eler Eqaions The Eler eqaions for D flow: + + p = x E E + p where Define E = e + / H = h + /; h = e + p/ Gréar Tryggvason Spring 3 Ideal Gas: p =
Διαβάστε περισσότεραSOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Διαβάστε περισσότεραOn a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Διαβάστε περισσότεραANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Διαβάστε περισσότεραMINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS
MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed
Διαβάστε περισσότεραA Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering
Electronic Companion A Two-Sie Laplace Inversion Algorithm with Computable Error Bouns an Its Applications in Financial Engineering Ning Cai, S. G. Kou, Zongjian Liu HKUST an Columbia University Appenix
Διαβάστε περισσότερα9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Διαβάστε περισσότεραMath221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Διαβάστε περισσότεραAbstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Διαβάστε περισσότεραGenerating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
Διαβάστε περισσότεραCRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Διαβάστε περισσότεραΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΘΕΩΡΗΤΙΚΗ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΘΕΩΡΙΑ ΣΥΣΤΗΜΑΤΩΝ & ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ
Διαβάστε περισσότεραProblem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Διαβάστε περισσότερα