ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
|
|
- Κλωθώ Ακρίδας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Κινητά Ροµ ότ Πλοήγηση και Συντονισµός Mobile Robots Navigation and Coordination Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης
2 Ε ανάληψη Συλλογιστική στο χρόνο χρόνος και αβεβαιότητα παραδοχές Βασικές λειτουργίες συµ ερασµού φιλτράρισµα πρόβλεψη εξοµάλυνση πλέον πιθανή εξήγηση Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 2
3 Σήµερα Mobile robot navigation path planning motion control improvements experiments Multi-Robot Coordination auction-based coordination multi-robot routing experiments Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 3
4 Mobile Robots Computers on wheels!
5 Mobile Robots RWI B14 RWI B21 Nomad XR4000 Nomad 150 Nomad 200 Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 5
6 Univ. of Louisiana, Lafayette Nomad 200 Robot Nonholonomic Mobile Base Zero Gyro-Radius Max Speeds: 24 in/sec, 60 deg/sec Diameter: 21 in, Height: 31 in Pentium-Based Master PC Linux Operating System Full Wireless 1.6 Mbps Ethernet 16 Sonar Ring (6 in in) 20 Bump Sensors Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 6
7 Distance Sensors Hardware ultrasound, laser, infrared,... transmission, reflection, reception Information distance to closest obstacles egocentric view circular area of coverage Quality limited coverage decaying resolution noisy readings Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 7
8 Nonholonomicity degrees of freedom (DOF) degrees of action (DOA) DOA < DOF The unicycle model Kinematic Model Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 8
9 Mobile Robot Navigation Moving Around Safely
10 Mobile Robot Navigation Global Map-Based Deliberative Slow Local Sensory-Based Reactive Fast Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 10
11 Robot Navigation Problems What should I remember? Mapping Where am I? Localization Where should I go? Path Planning How can I go? Motion Control Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 11
12 Animal Navigation Maximum Gradient Following The Planarian reaches the food by testing the water and by moving toward the direction where chemical stimulation increases. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 12
13 Path Planning Where should I go next?
14 Path Planning Robot Goal 2D Map Obstacle-free path from initial position to the goal Grid-Based Method for Path Planning (neural map, potential field, harmonic functions, A* search,...) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 14
15 Path Planning Methods Cell decomposition divide the configuration space in a finite number of cells path planning within each cell is easy reduce the problem to discrete graph search Potential field assign a value of potential to each point in the free space highest value at the goal, least value at the obstacles variety of methods for potential field generation value iteration Laplace transformation neural maps Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 15
16 Potential Field Navigation Create a model of the robot s environment. Simulate diffusion from the target position. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 16
17 Navigation Landscape Find a path from any initial position to the target by steepest ascent (maximum gradient following) on the navigation landscape. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 17
18 Neural Maps A localized neural representation of signals in the outer world [Amari] Hopfield Neural Networks receptive field connections Topologically Ordered Units mapping of places to neurons Self-Organization amplification of sensitive areas Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 18
19 Fixed Network Topology Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 19
20 Neurons Non-linear Processing Units u i (t) = W i V (t) +θ i (t) Non-Linear Dynamics v i (t +1) = Φ(u i (t)) dv i (t) dt = Φ(u i (t)) v i (t) Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 20
21 Path Planning Example I Target (middle) and initial position (up right). Obstacle-free path from initial position to the target. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 21
22 Path Planning Example I 50 x 50 rectangular neural map Activation landscape formed on the neural map at equilibrium. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 22
23 Path Planning Example I Activation diffusion on the neural map. Navigation map for the given target. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 23
24 Path Planning Example II Initial position (middle) and three targets. Obstacle-free path to the closest target. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 24
25 Path Planning Example II 50 x 50 rectangular neural map Activation landscape formed on the neural map at equilibrium. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 25
26 Path Planning Example II Activation diffusion on the neural map. Navigation map for the given targets. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 26
27 Neural Maps for Local Navigation No map information! Sensory information Egocentric view Circular range Decaying resolution Main idea A neural map can be used if adapted appropriately to the sensory and motor capabilities of the robot! Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 27
28 Bad and Good Organization Rectangular Topology Polar Topology Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 28
29 polar ΕΚΠ 413/606 Αυτόνοµοι Πράκτορες 2007 The Polar Neural Map Topologically-ordered neurons topology Natural mapping of sensory data resembles the distribution of sonar data Representation of the local space working memory Higher resolution closer to the robot focus of attention Conventions Inner Ring: Robot Center Outer Ring: Target Direction Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 29
30 Incremental Path Planning Obstacle Goal Sensor Range Five sensors detect the L-shaped obstacle. The robot is on the way to the goal. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 30
31 Incremental Path Planning Areas of the map characterized as obstructed by the sensor data. The polar neural map superimposed. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 31
32 Incremental Path Planning Obstacle Units The goal is specified at the periphery. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 32
33 Incremental Path Planning Path of maximum activation propagation. Angular Displacement Target Point Radial Displacement Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 33
34 Motion Control How can I go there?
35 Motion Control Motion control move and stop the robot at a goal position Control cycle input: the target point from the path planner output: the translational and rotational velocities (u,v) Dynamic constraints limited acceleration Kinematic constraints nonholonomic system Safety constraints unexpected (moving) obstacles Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 35
36 Smoothness: The Dynamic Window Dynamic constraints changes in velocity are subject to maximum acceleration Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 36
37 Accuracy: Configuration Estimation Minimum Braking Distance/Angle Final configuration estimation Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 37
38 trajectory under constant velocities target position from the path planner estimated stopping configuration configuration at the next control cycle Robot Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 38
39 Safety: Impact Minimization Unexpected potential impacts holonomic path planner moving obstacles robot drifts Potential impact measure weighted density of obstacles (WDO) in the safety area triangular safety area around the estimated trajectory obstacle information from current range sensor readings weights proportional to the distance from the origin Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 39
40 Multi-Objective Motion Control Objective function f 1 : distance error from the target point f 2 : orientation error from the target point f 3 : density of obstacles along the estimated trajectory Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 40
41 Motion Control Algorithm Discrete optimization exhaustively find the best pair (u,v) Motion control cycle determine the current dynamic window discretize the dynamic window in a 2-dimensional grid evaluate the objective function at every point find the pair (u,v) which minimizes the objective function select (u,v) as control input Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 41
42 Improvements Past and future at our service!
43 Observations Control cycle perceive, think, act, perceive, think, act, perceive, think, act,... time from perception to action: 0.25 seconds (typical) Concern: time instant information is limited noisy distance readings motion during control cycle Idea: past and future exploit the time zone around the present time past: remember! future: predict! Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 43
44 Problem: Motion during Cycle Problem the robot moves during thinking the action taken at the end of the current step is based on the perception of the world at the beginning of the current step significant problem in high-speed navigation Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 44
45 Solution: Configuration Prediction Prediction measure dynamically the (real) time taken for each control step use the forward kinematic model of the robot (unicycle model) estimate the robot configuration at the end of the current step Improvement project all sensory data to the predicted configuration determine the next control input using the predicted/projected data Benefits control inputs are constantly up-to-date adaptive prediction depth Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 45
46 Problem: Noisy Sonar Data Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 46
47 Solution: Sonar Short-Term Memory Short-term memory maintain a window of the last n sonar scans corresponding to about 2-3 seconds of real time Transformation project all data to the current position (reuse) use odometric information (locally accurate) Conservative view assume that all data are correct discard only the data which fall within the physical area of the robot outside the polar map Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 47
48 Transformation Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 48
49 Representation on the Polar Map Polar Map Memory Window Size = Polar Map Memory Window Size = 10 Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 49
50 Improvement Tricks distance sensor data t k t odometry t kinematic model t+ t time Trick #1: Predict the near future! measure dynamically the elapsed real-time of the control cycle run the kinematic model from the current configuration predict the configuration at the end of the control cycle Trick #2: Remember the recent past! store a sliding window (over time) of sensory data use the local odometry and the predicted configuration transform all sensory data to the predicted configuration Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 50
51 Complete Motion Control Algorithm Motion control cycle predict the configuration at the end of the control cycle transform all stored sensory data to the predicted configuration pretend that the current configuration is the predicted one determine the current dynamic window discretize the dynamic window in a 2-dimensional grid evaluate the objective function at every pair find the pair (u,v) which minimizes the objective function select (u,v) as control input Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 51
52 Experiments Move, robot, move!
53 System Architecture Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 53
54 Navigation in a Simulated World Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 54
55 Sonar Sensor Data Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 55
56 U-Shaped Obstacle Target Trace Sensor Range Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 56
57 Cluttered Environment Start Finish Translational Velocity Control Input Rotational Velocity Control Steps Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 57
58 Various Navigation Tasks Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 58
59 Velocity Profiles Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 59
60 Comparison to Heuristic Motion Control Start Finish Control Steps Control Steps Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 60
61 Navigation in the Real World Start Finish Avoiding a walking person. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 61
62 Navigation in the Real World Start Finish The target is distant in the direction of the arrow. Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 62
63 Robot Navigation Video Clip videotape & 05-cmubg.mpg Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 63
64 Mobile Robot Coordination Actions and Auctions
65 Multi-Robot Task Who gets to do what and how in a team of robots Can we do it efficiently for real-world problems? Can we guarantee a good solution? Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 65
66 Multi-Robot Routing (MRR) Goal: Visit all targets and optimize a team objective Assumptions: triangle inequality, identical robots Examples: search and rescue, planetary exploration Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 66
67 Team Objectives Minimize Sum of Robot Costs (MiniSum) Total energy or distance Planetary surface exploration Minimize Max of Robot Costs (MiniMax) Total completion time (makespan) Facility surveillance Minimize Average Target Cost (MiniAve) Average visitation time (flowtime) Search and rescue Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 67
68 Hardness of MRR Hardness MRR is NP-Hard for any team objective Reduction from Hamiltonian Path Goal: good approximation algorithms MRR is related to the Vehicle Routing Problem (VRP) Traveling Salesman Problem (TSP) Traveling Repairman Problem (TRP) except that robots do not necessarily start at the same location are not required to return to the initial location do not have capacity constraints Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 68
69 MRR as Auction Auction Framework Robots=Bidders, Targets=Goods, Cost=Currency Multi-Round Sequential Auction While there are unallocated targets, repeat: Each robot places bids on all oneunallocated bid one targets unallocated target The minimum bid over all targets and robots wins One target is allocated to the winning robot Robots update their bids Decentralized Implementation Broadcast bids by message relay Determine winner locally Communication complexity: O(nm) per link Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 69
70 A form of hill climbing Derivation of Bidding Rules Generic Bidding Rule Bid the least marginal increase in the team objective. - Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 70
71 Auction Example Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 71
72 Auction: Round 1 Bids Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 72 11
73 Auction: Round 1 Winner Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 73 11
74 Auction: Round 2 Bids Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 74 23
75 Auction: Round 2 Winner Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 75 23
76 Auction: Round 3 Bids Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 76 23
77 Auction: Round 3 Winner Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 77 23
78 Auction: Round 4 Bids Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 78 23
79 Auction: Round 4 Winner Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 79 23
80 Auction: Round 5 Bids Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 80 39
81 Auction: Round 5 Winner Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 81 39
82 Auction: Round 6 Bids Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 82 39
83 Auction: Final solution Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 83
84 Bounds on Performance Performanc e Ratio = Solution of the Bidding Rule Optimal Solution n robots and m targets Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 84
85 Experimental Evidence BidSumPath (energy) Sum = Max = Ave = Optimal (MiniSum) Sum = Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 85
86 Experimental Evidence BidMaxPath (makespan) Sum = Max = Ave = Optimal (MiniMax) Max = Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 86
87 Experimental Evidence BidAvePath (flowtime) Sum = Max = Ave = Optimal (MiniAve) Ave = Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 87
88 Auction in Action 06-auction.wmv Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 88
89 Observations Quality within a factor of ~1.4 from the optimal Number of Bids Much less than combinatorial auctions Fixed for static allocations (N M) Computation time A fraction of a second for small problems 5 robots, 100 targets in seconds Reasonable for larger problems 100 robots, targets in 47 seconds Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 89
90 Comparison Quantify the relationship Optimal [MIP formulation and CPLEX] Exponential number of constraints Practical only for small problems Combinatorial auctions Bids on bundles, large number of bids Computationally intensive, centralized Parallel auctions Targets are allocated independently in parallel Simple, but synergies are ignored Combine the best Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 90
91 Μελέτη Σύγγραµµα Κεφάλαιο 25 Άρθρα M. G. Lagoudakis and A. S. Maida, Neural Maps for Mobile Robot Navigation, IEEE Intl Joint Conf on Neural Networks, M. G. Lagoudakis, V. Markakis, D. Kempee, P. Keskinocak, S. Koenig, C. Tovey, A. Kleywegt, A. Meyerson, and S. Jain, Auction- Based Multi-Robot Routing, Robotics: Science and Systems, Μ. Γ. Λαγουδάκης Τµήµα ΗΜΜΥ Πολυτεχνείο Κρήτης Σελίδα 91
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Λήψη Α οφάσεων υ ό Αβεβαιότητα Decision Making under Uncertainty Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιστών Πολυτεχνείο Κρήτης Ε ανάληψη Εντο
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες
ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες Ροµ οτική Χαρτογράφηη Robotic Mapping Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υ ολογιτών Πολυτεχνείο Κρήτης Ε ανάληψη Στρατηγικές MaxiMin παιχνίδια
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Real time mobile robot control with a multiresolution map representation
IIC 06 21 Real time mobile robot control with a multiresolution map representation Katsuya Iwata, Shinkichi Inagaki, Yusuke Nara, Tatsuya Suzuki (Nagoya University) Abstract In this paper a real-time path
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Capacitors - Capacitance, Charge and Potential Difference
Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
10 MERCHIA. 10. Starting from standing position (where the SIGN START ) without marshal (self start) 5 minutes after TC4 KALO LIVADI OUT
Date: 22 October 2016 Time: 09:00 hrs Subject: BULLETIN No 5 Document No: 1.6 --------------------------------------------------------------------------------------------------------------------------------------
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ
ΕΘΝΙΚΟ ΜΕΣΟΒΙΟ ΠΟΛΤΣΕΧΝΕΙΟ ΣΜΗΜΑ ΑΓΡΟΝΟΜΩΝ-ΣΟΠΟΓΡΑΦΩΝ ΜΗΧΑΝΙΚΩΝ ΣΟΜΕΑ ΣΟΠΟΓΡΑΦΙΑ ΕΡΓΑΣΗΡΙΟ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Εξερεύνηση χώρου από κινούμενα ρομπότ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Εξερεύνηση χώρου από κινούμενα ρομπότ Συγγραφέας: Παναγιώτου Λεωνίδας Ευθύμιος Επιβλέπων Καθηγητής: Αντώνιος Τζες Υποβάλλεται
Προσομοίωση BP με το Bizagi Modeler
Προσομοίωση BP με το Bizagi Modeler Α. Τσαλγατίδου - Γ.-Δ. Κάπος Πρόγραμμα Μεταπτυχιακών Σπουδών Τεχνολογία Διοίκησης Επιχειρησιακών Διαδικασιών 2017-2018 BPMN Simulation with Bizagi Modeler: 4 Levels
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011
Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι
1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT
Date: 21 October 2016 Time: 14:00 hrs Subject: BULLETIN No 3 Document No: 1.3 --------------------------------------------------------------------------------------------------------------------------------------
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών NP-Completeness (2) x 1 x 1 x 2 x 2 x 3 x 3 x 4 x 4 12 22 32 11 13 21
Χρήση συστημάτων πληροφορικής στην οδική υποδομή
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΕΜΠ Εργαστήριο Συγκοινωνιακής Τεχνικής Χρήση συστημάτων πληροφορικής στην οδική υποδομή Συσχέτιση δεδομένων GPS και χάρτη Βύρωνας Νάκος Καθηγήτης ΕΜΠ bnakos@central.ntua.gr
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
1) Formulation of the Problem as a Linear Programming Model
1) Formulation of the Problem as a Linear Programming Model Let xi = the amount of money invested in each of the potential investments in, where (i=1,2, ) x1 = the amount of money invested in Savings Account
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
Surface Mount Multilayer Chip Capacitors for Commodity Solutions
Surface Mount Multilayer Chip Capacitors for Commodity Solutions Below tables are test procedures and requirements unless specified in detail datasheet. 1) Visual and mechanical 2) Capacitance 3) Q/DF
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Robotics 2 Kinodynamic Motion Planning for a Holonomic Robot. Christoph Sprunk, Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard
Robotics 2 Kinodynamic Motion Planning for a Holonomic Robot Christoph Sprunk, Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Context Get robot nicely from start to goal Context Nicely
Block Ciphers Modes. Ramki Thurimella
Block Ciphers Modes Ramki Thurimella Only Encryption I.e. messages could be modified Should not assume that nonsensical messages do no harm Always must be combined with authentication 2 Padding Must be
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.
Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Ακέραιος προγραμματισμός πολύ-κριτηριακές αντικειμενικές συναρτήσεις Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής Διάλεξη 12-13 η /2017
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Odometry Calibration by Least Square Estimation
Robotics 2 Odometry Calibration by Least Square Estimation Giorgio Grisetti Kai Arras Gian Diego Tipaldi Cyrill Stachniss Wolfram Burgard SA-1 Least Squares Minimization The minimization algorithm proceeds
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Correction Table for an Alcoholometer Calibrated at 20 o C
An alcoholometer is a device that measures the concentration of ethanol in a water-ethanol mixture (often in units of %abv percent alcohol by volume). The depth to which an alcoholometer sinks in a water-ethanol
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»
Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική» Μεταπτυχιακή Διατριβή Τίτλος Διατριβής Επίκαιρα Θέματα Ηλεκτρονικής Διακυβέρνησης Ονοματεπώνυμο Φοιτητή Σταμάτιος
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Τεχνητή Νοημοσύνη. Ενότητα 2: Αναζήτηση (Search)
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Τεχνητή Νοημοσύνη Ενότητα 2: Αναζήτηση (Search) Αν. καθηγητής Στεργίου Κωνσταντίνος kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες
Business English. Ενότητα # 9: Financial Planning. Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Business English Ενότητα # 9: Financial Planning Ευαγγελία Κουτσογιάννη Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα
ΣΔΥΝΟΛΟΓΙΚΟ ΔΚΠΑΙΓΔΤΣΙΚΟ ΙΓΡΤΜΑ ΘΔΑΛΟΝΙΚΗ ΥΟΛΗ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ & ΓΙΑΣΡΟΦΗ ΣΜΗΜΑ ΣΔΥΝΟΛΟΓΙΑ ΣΡΟΦΙΜΩΝ ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή Αζαλαζηάδνπ Βαξβάξα
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 13η: Multi-Object Auctions Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 13η: Multi-Object Auctions Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών MULTI OBJECT AUCTIONS Sealed bid auctions for identical units -
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 5: Tutorial on External Sorting Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών TUTORIAL ON EXTERNAL SORTING
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου
Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Συστήματα Διαχείρισης Βάσεων Δεδομένων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo
TaxiCounter Android App. Περδίκης Ανδρέας ME10069
TaxiCounter Android App Περδίκης Ανδρέας ME10069 Content Android Operating System Development Tools Taxi Counter Algorithm Design Development Process Android Operating System Android is a Linux-based operating
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Διάλεξη: Προσαρμόσιμο Αρμονικό Μοντέλο Παρουσίαση: Gilles Degottex Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών A Full-Band Adaptive Harmonic
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
Monolithic Crystal Filters (M.C.F.)
Monolithic Crystal Filters (M.C.F.) MCF (MONOLITHIC CRYSTAL FILTER) features high quality quartz resonators such as sharp cutoff characteristics, low loss, good inter-modulation and high stability over
Presentation Structure
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods Zoe Theocharis, Constantine Memos, Demetris Koutsoyiannis National Technical University of Athens
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 6η: Basics of Industrial Organization Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Course Outline Part II: Mathematical Tools Firms - Basics
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods
Improvement of wave height forecast in deep and intermediate waters with the use of stochastic methods Zoe Theocharis, Constantine Memos, Demetris Koutsoyiannis National Technical University of Athens
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Firm Behavior GOAL: Firms choose the maximum possible output (technological
Systems with unlimited supply of work: MCQN with infinite virtual buffers A Push Pull multiclass system
Systems with unlimited supply of work: MCQN with infinite virtual buffers A Push Pull multiclass system Gideon Weiss University of Haifa Joint work with students: Anat (Anastasia) Kopzon Yoni Nazarathy
Thesis presentation. Turo Brunou
Thesis presentation Turo Brunou 11.8.2008 Topic System Dynamics Model of Handset Bundling Business. Goal to examine the effect of handset bundling on mobile diffusion and data usage Structure Intro Industry
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ
Δ ΕΘΝΙΚΗ ΥΟΛΗ ΔΗΜΟΙΑ ΔΙΟΙΚΗΗ ΙH ΕΚΠΑΙΔΕΤΣΙΚΗ ΕΙΡΑ ΤΜΗΜΑ ΚΟΙΝΩΝΙΚΗΣ ΔΙΟΙΚΗΣΗΣ ΔΙΟΙΚΗΣΗ ΜΟΝΑΔΩΝ ΥΓΕΙΑΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ Θέμα: «Αποκενηρωμένες δομές ζηο ζύζηημα σγείας ηης Ασζηρίας : Μια ζσζηημαηική θεωρηηική
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
CE 530 Molecular Simulation
C 53 olecular Siulation Lecture Histogra Reweighting ethods David. Kofke Departent of Cheical ngineering SUNY uffalo kofke@eng.buffalo.edu Histogra Reweighting ethod to cobine results taken at different
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the