Γενεραλ Απτιτυδε ΓΑ Σετ 2

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γενεραλ Απτιτυδε ΓΑ Σετ 2"

Transcript

1 ΓΑΤΕ 6 Γενεραλ Απτιτυδε ΓΑ Σετ Q. Q. carry one mar each. Θ. Τηε ϖολυmε οφ α σπηερε οφ διαmετερ υνιτ ισ τηαν τηε ϖολυmε οφ α χυβε οφ σιδε υνιτ. (Α) λεαστ (Β) λεσσ (Χ) λεσσερ λοω Θ. Τηε υνρυλψ χροωδ δεmανδεδ τηατ τηε αχχυσεδ βε ωιτηουτ τριαλ. (Α) ηανγεδ (Β) ηανγινγ (Χ) ηανκερινγ ηυνγ Θ. Χηοοσε τηε στατεmεντ(σ) ωηερε τηε υνδερλινεδ ωορδ ισ υσεδ χορρεχτλψ: (ι) (ιι) (ιιι) Α προνε ισ α δριεδ πλυm. Ηε ωασ λψινγ προνε ον τηε φλοορ. Πεοπλε ωηο εατ α λοτ οφ φατ αρε προνε το ηεαρτ δισεασε. (Α) (ι) ανδ (ιιι) ονλψ (Β) (ιιι) ονλψ (Χ) (ι) ανδ (ιι) ονλψ (ιι) ανδ (ιιι) ονλψ Θ.4 Fact: Ιφ ιτ ραινσ τηεν τηε φιελδ ισ ωετ. Ρεαδ τηε φολλοωινγ στατεmεντσ: (ι) Ιτ ραινσ (ιι) Τηε φιελδ ισ νοτ ωετ (ιιι) Τηε φιελδ ισ ωετ (ιϖ) Ιτ διδ νοτ ραιν Wηιχη ονε οφ τηε οπτιονσ γιϖεν βελοω ισ NO λογιχαλλψ ποσσιβλε βασεδ ον τηε γιϖεν φαχτ? (Α) Ιφ (ιιι) τηεν (ιϖ). (Χ) Ιφ (ι) τηεν (ιι). (Β) Ιφ (ι) τηεν (ιιι). Ιφ (ιι) τηεν (ιϖ). Θ. Α ωινδοω ισ mαδε υπ οφ α σθυαρε πορτιον ανδ αν εθυιλατεραλ τριανγλε πορτιον αβοϖε ιτ. Τηε βασε οφ τηε τριανγυλαρ πορτιον χοινχιδεσ ωιτη τηε υππερ σιδε οφ τηε σθυαρε. Ιφ τηε περιmετερ οφ τηε ωινδοω ισ 6 m τηε αρεα οφ τηε ωινδοω ιν m ισ. (Α).4 (Β).6 (Χ).68.88

2 ΓΑΤΕ 6 Q. 6 Q. carry two mars each. Γενεραλ Απτιτυδε ΓΑ Σετ Θ.6 Στυδεντσ τακινγ αν εξαm αρε διϖιδεδ ιντο τωο γρουπσ P ανδ Q συχη τηατ εαχη γρουπ ηασ τηε σαmε νυmβερ οφ στυδεντσ. Τηε περφορmανχε οφ εαχη οφ τηε στυδεντσ ιν α τεστ ωασ εϖαλυατεδ ουτ οφ mαρκσ. Ιτ ωασ οβσερϖεδ τηατ τηε mεαν οφ γρουπ P ωασ ωηιλε τηατ οφ γρουπ Q ωασ 8. Τηε στανδαρδ δεϖιατιον οφ γρουπ P ωασ ωηιλε τηατ οφ γρουπ Q ωασ. Ασσυmινγ τηατ τηε mαρκσ ωερε διστριβυτεδ ον α νορmαλ διστριβυτιον ωηιχη οφ τηε φολλοωινγ στατεmεντσ ωιλλ ηαϖε τηε ηιγηεστ προβαβιλιτψ οφ βεινγ RU? (Α) Νο στυδεντ ιν γρουπ Q σχορεδ λεσσ mαρκσ τηαν ανψ στυδεντ ιν γρουπ P. (Β) Νο στυδεντ ιν γρουπ P σχορεδ λεσσ mαρκσ τηαν ανψ στυδεντ ιν γρουπ Q. (Χ) Μοστ στυδεντσ οφ γρουπ Q σχορεδ mαρκσ ιν α ναρροωερ ρανγε τηαν στυδεντσ ιν γρουπ P. Τηε mεδιαν οφ τηε mαρκσ οφ γρουπ P ισ. Θ.7 Α σmαρτ χιτψ ιντεγρατεσ αλλ mοδεσ οφ τρανσπορτ υσεσ χλεαν ενεργψ ανδ προmοτεσ συσταιναβλε υσε οφ ρεσουρχεσ. Ιτ αλσο υσεσ τεχηνολογψ το ενσυρε σαφετψ ανδ σεχυριτψ οφ τηε χιτψ σοmετηινγ ωηιχη χριτιχσ αργυε ωιλλ λεαδ το α συρϖειλλανχε στατε. Wηιχη οφ τηε φολλοωινγ χαν βε λογιχαλλψ ινφερρεδ φροm τηε αβοϖε παραγραπη? (ι) (ιι) (ιιι) (ιϖ) (Α) (ι) ανδ (ιϖ) ονλψ (Χ) (ιϖ) ονλψ Αλλ σmαρτ χιτιεσ ενχουραγε τηε φορmατιον οφ συρϖειλλανχε στατεσ. Συρϖειλλανχε ισ αν ιντεγραλ παρτ οφ α σmαρτ χιτψ. Συσταιναβιλιτψ ανδ συρϖειλλανχε γο ηανδ ιν ηανδ ιν α σmαρτ χιτψ. Τηερε ισ α περχεπτιον τηατ σmαρτ χιτιεσ προmοτε συρϖειλλανχε. Θ.8 Φινδ τηε mισσινγ σεθυενχε ιν τηε λεττερ σεριεσ. Β ΦΗ ΛΝΠ. (Β) (ιι) ανδ (ιιι) ονλψ (ι) ονλψ (Α) ΣΥWΨ (Β) ΤΥςW (Χ) ΤςΞΖ ΤWΞΖ Θ.9 Τηε βιναρψ οπερατιον ισ δεφινεδ ασ a b = ab+(a+b) ωηερε a ανδ b αρε ανψ τωο ρεαλ νυmβερσ. Τηε ϖαλυε οφ τηε ιδεντιτψ ελεmεντ οφ τηισ οπερατιον δεφινεδ ασ τηε νυmβερ x συχη τηατ a x = a φορ ανψ a ισ. (Α) (Β) (Χ)

3 ΓΑΤΕ 6 Γενεραλ Απτιτυδε ΓΑ Σετ Θ. Wηιχη οφ τηε φολλοωινγ χυρϖεσ ρεπρεσεντσ τηε φυνχτιον ln φορ? Ηερε ρεπρεσεντσ τηε αβσχισσα ανδ ρεπρεσεντσ τηε ορδινατε. (Α) (Β) (Χ) ND OF H QUSION PPR

4 Q. Q. carry one mar each. Q. Consider the linear differential equation dy xy. If y at x then the value of y at x= is dx given by e () e e e Q. Which of the following magnetic vector potentials gives rise to a uniform magnetic field ˆ? z ˆ () xˆ j y iˆ x ˆ j y iˆ x ˆj Q. he molecule 7 O is Raman active but not NMR (nuclear magnetic resonance) active. () Infrared active and Raman active but not NMR active. Raman active and NMR active. Only NMR active. Q.4 here are four electrons in the d shell of an isolated atom. he total magnetic moment of the atom in units of ohr magneton is. Q. Which of the following transitions is NO allowed in the case of an atom according to the electric dipole radiation selection rule? s-s () p-s p-s d-p Q.6 In the SU() quar model the triplet of mesons Isospin = Strangeness = () Isospin = Strangeness = Isospin = Strangeness = + Isospin = Strangeness = - Q.7 he magnitude of the magnetic dipole moment associated with a square shaped loop carrying a steady current I is m. If this loop is changed to a circular shape with the same current I passing pm through it the magnetic dipole moment becomes. he value of p is. Q.8 he total power emitted by a spherical blac body of radius R at a temperature is P. Let P be the total power emitted by another spherical blac body of radius R ept at temperature. he ratio P P is. (Give your answer upto two decimal places) has PH

5 Q.9 he entropy of a system of spins which may align either in the upward or in the downward direction is given by S N p ln p ( p) ln( p). Here is the oltzmann constant. he probability of alignment in the upward direction is p. he value of p at which the entropy is maximum is. (Give your answer upto one decimal place) Q. For a system at constant temperature and volume which of the following statements is correct at equilibrium? he Helmholtz free energy attains a local minimum. () he Helmholtz free energy attains a local maximum. he Gibbs free energy attains a local minimum. he Gibbs free energy attains a local maximum. Q. atoms of an ideal gas are enclosed in a container of volume. he volume of the container is changed to 4 while eeping the total energy constant. he change in the entropy of the gas in units of N ln is where is the oltzmann constant. Q. Which of the following is an analytic function of z everywhere in the complex plane? z * () z z z Q. In a oung s double slit experiment using light the apparatus has two slits of unequal widths. When only slit- is open the maximum observed intensity on the screen is 4I. When only slit- is open the maximum observed intensity is I. When both the slits are open an interference pattern appears on the screen. he ratio of the intensity of the principal maximum to that of the nearest minimum is. Q.4 Consider a metal which obeys the Sommerfeld model exactly. If F is the Fermi energy of the metal at = K and R H is its Hall coefficient which of the following statements is correct? H F R () H F R R H F F. R H is independent of Q. one-dimensional linear chain of atoms contains two types of atoms of masses m and m (where m > m ) arranged alternately. he distance between successive atoms is the same. ssume that the harmonic approximation is valid. t the first rillouin zone boundary which of the following statements is correct? he atoms of mass m are at rest in the optical mode while they vibrate in the acoustical mode. ( he atoms of mass m are at rest in the optical mode while they vibrate in the acoustical mode. oth types of atoms vibrate with equal amplitudes in the optical as well as in the acoustical modes. oth types of atoms vibrate but with unequal non-zero amplitudes in the optical as well as in the acoustical modes. Q.6 Which of the following operators is Hermitian? d dx d () dx d d i dx dx PH

6 Q.7 he inetic energy of a particle of rest mass m is equal to its rest mass energy. Its momentum in units of c where c is the speed of light in vacuum is. (Give your answer upto two m decimal places) Q.8 he number density of electrons in the conduction band of a semiconductor at a given temperature 9 is m. Upon lightly doping this semiconductor with donor impurities the number density of conduction electrons at the same temperature becomes 4 m. he ratio of majority to minority charge carrier concentration is. Q.9 wo blocs are connected by a spring of spring constant. One bloc has mass m and the other bloc has mass m. If the ratio m = 4 s the angular frequency of vibration ω of the two bloc spring system in is. (Give your answer upto two decimal places) s Q. particle moving under the influence of a central force F( r) r (where r is the position vector of the particle and is a positive constant) has non-zero angular momentum. Which of the following curves is a possible orbit for this particle? straight line segment passing through the origin. () n ellipse with its center at the origin. n ellipse with one of the foci at the origin. parabola with its vertex at the origin. Q. 4 Consider the reaction Mn γ + 4 e Cr 4 +. he particle is () n π e Q. he scattering of particles by a potential can be analyzed by orn approximation. In particular if the scattered wave is replaced by an appropriate plane wave the corresponding orn approximation is nown as the first orn approximation. Such an approximation is valid for large incident energies and wea scattering potentials. () large incident energies and strong scattering potentials. small incident energies and wea scattering potentials. small incident energies and strong scattering potentials. Q. Consider an elastic scattering of particles in l states. If the corresponding phase shift is 9 and the magnitude of the incident wave vector is equal to cross section in units of fm is. fm - then the total scattering Q.4 hydrogen atom is in its ground state. In the presence of a uniform electric field z ˆ the n leading order change in its energy is proportional to( ). he value of the exponent n is. PH

7 Q. solid material is found to have a temperature independent magnetic susceptibility C. Which of the following statements is correct? If C is positive the material is a diamagnet. () If C is positive the material is a ferromagnet. If C is negative the material could be a type I superconductor. If C is positive the material could be a type I superconductor. Q. 6 Q. carry two mars each. Q.6 n infinite conducting slab ept in a horizontal plane carries a uniform charge density. nother infinite slab of thicness t made of a linear dielectric material of dielectric constant is ept above the conducting slab. he bound charge density on the upper surface of the dielectric slab is ( ) () ( ) Q.7 he number of spectroscopic terms resulting from the L S coupling of a p electron and a d electron is. Q.8 Which of the following statements is NO correct? deuteron can be disintegrated by irradiating it with gamma rays of energy 4 MeV. () deuteron has no excited states. deuteron has no electric quadrupole moment. he S state of deuteron cannot be formed. Q.9 If s and s are the spin operators of the two electrons of a He atom the value of s s ground state is () 4 4 for the Q. two-dimensional square rigid box of side L contains six non-interacting electrons at = K. he mass of the electron is m. he ground state energy of the system of electrons in units of is ml. Q. n alpha particle is accelerated in a cyclotron. It leaves the cyclotron with a inetic energy of 6 MeV. he potential difference between the D electrodes is ilovolts. he number of revolutions the alpha particle maes in its spiral path before it leaves the cyclotron is. Q. Let be the component of a vector field which has zero divergence. If the expression for is equal to j Vi () j Vi V j i V j i PH 4

8 Q. he direction of for a scalar field () = + at the point () is ˆj ˆ ˆj ˆ ˆj ˆ ˆj ˆ () Q.4 and is equal to x y z are the Pauli matrices. he expression x y y x i () z i z i z i z Q. particle of mass =. g is initially at rest at origin. It starts moving with a uniform acceleration ˆ a i ms at =. he action of the particle in units of J-s at = is. (Give your answer upto two decimal places) Q.6 periodic function () of period is defined in the interval ( < < ) as: < < () = < < he appropriate Fourier series expansion for () is f ( x) 4 [sin x (sin x) (sin x)...] () f ( x) 4 [sin x (sin x) (sin x)...] f ( x) 4 [cos x (cos x) (cos x)...] f ( x) 4 [cos x (cos x) (cos x)...] Q.7 toms which can be assumed to be hard spheres of radius R are arranged in an fcc lattice with lattice constant a such that each atom touches its nearest neighbours. ae the center of one of the atoms as the origin. nother atom of radius r (assumed to be hard sphere) is to be accommodated at a position ( a ) without distorting the lattice. he maximum value of rr is. (Give your answer upto two decimal places) Q.8 In an inertial frame of reference S an observer finds two events occurring at the same time at coordinates x and x d. different inertial frame S moves with velocity v with respect to S along the positive x-axis. n observer in S also notices these two events and finds them to occur at times t and t and at positions x and x respectively. If t t t x x x and v c which of the following statements is true? t x d () t x d t vd c x d t vd c x d PH

9 Q.9 he energy vs. wave vector approximated as 4 ( a) ( a) relationship near the bottom of a band for a solid can be where the lattice constant a =. Å. he values of and 9 are 6. J and. J respectively. t the bottom of the conduction band the ratio of the effective mass of the electron to the mass of free electron is. (Give your answer upto two decimal places) (ae =.x -4 J-s mass of free electron= 9.x - g) Q.4 he electric field component of a plane electromagnetic wave travelling in vacuum is given by ( z t) cos( z t) iˆ. he Poynting vector for the wave is c cos ( z t) j c cos ( z t) ˆ j c cos ( z t) ˆ () c cos ( z t) ˆ ˆ Q.4 Consider a system having three energy levels with energies and with respective degeneracies of and. Four bosons of spin zero have to be accommodated in these levels such that the total energy of the system is. he number of ways in which it can be done is. Q.4 he Lagrangian of a system is given by sin mgl cos where m l and g are constants. L ml Which of the following is conserved? sin () sin sin sin Q.4 Protons and α-particles of equal initial momenta are scattered off a gold foil in a Rutherford scattering experiment. he scattering cross sections for proton on gold and α-particle on gold are and respectively. he ratio p is. p PH 6

10 PH 7 Q.44 For the digital circuit given below the output is C () C) ( C) ( C) ( Q.4 he Fermi energies of two metals and are ev and 7 ev and their Debye temperatures are 7 K and 4 K respectively. he molar specific heats of these metals at constant volume at low temperatures can be written as C V and C V where γ and are constants. ssuming that the thermal effective mass of the electrons in the two metals are same which of the following is correct? 8 7 () Q.46 two-level system has energies zero and. he level with zero energy is non-degenerate while the level with energy is triply degenerate. he mean energy of a classical particle in this system at a temperature is e e () e e e e e e C

11 Q.47 particle of rest mass M is moving along the positive x-direction. It decays into two photons and as shown in the figure. he energy of is GeV and the energy of is.8 GeV. he value of M (in units of GeVc ) is. (Give your answer upto two decimal places) Q.48 If x and p are the x components of the position and the momentum operators of a particle respectively the commutator [ x p ] is i ( xp px) () i ( xp px) i ( xp px) i ( xp px) Q.49 he x-y plane is the boundary between free space and a magnetic material with relative permeability r. he magnetic field in the free space is iˆ x zˆ. he magnetic field in the magnetic material is i ˆ x zˆ () iˆ x ˆ r z iˆ x zˆ iˆ r x zˆ r Q. Let l m be the simultaneous eigenstates of x y z L and L z. Here L is the angular momentum operator with Cartesian components ( L L L ) l is the angular momentum quantum number and m is the azimuthal quantum number. he value of ( L il ) () Q. For the parity operator P which of the following statements is NO true? = () P P x y P I = is

12 Q. For the transistor shown in the figure assume V =.7 V and β dc =. If V in = V V out (in Volts) is. (Give your answer upto one decimal place) Q. he state of a system is given by where and form an orthonormal set. he probability of finding the system in the state is. (Give your answer upto two decimal places) Q.4 ccording to the nuclear shell model the respective ground state spin-parity values of 8 O and 8O nuclei are 7 ()

13 Q. particle of mass m and energy moving in the positive x direction is incident on a step potential at x = as indicated in the figure. he height of the potential is V where V >. t x x where x the probability of finding the electron is e times the probability of finding m( V it at x =. If ) the value of x is V x = x = x () ND OF H QUSION PPR 4 PH

Γενεραλ Απτιτυδε ΓΑ Σετ 2

Γενεραλ Απτιτυδε ΓΑ Σετ 2 ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 2 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε ϖολυmε οφ α σπηερε οφ διαmετερ 1 υνιτ ισ τηαν τηε ϖολυmε οφ α χυβε οφ σιδε 1 υνιτ. (Α) λεαστ (Β) λεσσ (Χ) λεσσερ (D) λοω Θ.2 Τηε

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3) Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Γενεραλ Απτιτυδε ΓΑ Σετ 2

Γενεραλ Απτιτυδε ΓΑ Σετ 2 ΓΑΤΕ 2016 Γενεραλ Απτιτυδε ΓΑ Σετ 2 Q. 1 Q. 5 carry one mark each. Θ.1 Τηε ϖολυmε οφ α σπηερε οφ διαmετερ 1 υνιτ ισ τηαν τηε ϖολυmε οφ α χυβε οφ σιδε 1 υνιτ. (Α) λεαστ (Β) λεσσ (Χ) λεσσερ (D) λοω Θ.2 Τηε

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

In your answer, you should make clear how evidence for the size of the nucleus follows from your description

In your answer, you should make clear how evidence for the size of the nucleus follows from your description 1. Describe briefly one scattering experiment to investigate the size of the nucleus of the atom. Include a description of the properties of the incident radiation which makes it suitable for this experiment.

Διαβάστε περισσότερα

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r UNIVERSAL speed of light in vacuum c, c 0 299 792 458 m s 1 exact magnetic constant µ 0 4π 10 7 N A 2 = 12.566 370 614... 10 7 N A 2 exact electric constant 1/µ 0 c 2 ɛ 0 8.854 187 817... 10 12 F m 1 exact

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 Q1. The magnetic flux through a coil of N turns is increased uniformly from zero to a maximum value in a time t. An emf, E, is induced across the coil. What is the maximum value

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin. Q1.(a) Figure 1 shows how the entropy of a molecular substance X varies with temperature. Figure 1 T / K (i) Explain, in terms of molecules, why the entropy is zero when the temperature is zero Kelvin.

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz Solutions to the Schrodinger equation atomic orbitals Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz ybridization Valence Bond Approach to bonding sp 3 (Ψ 2 s + Ψ 2 px + Ψ 2 py + Ψ 2 pz) sp 2 (Ψ 2 s + Ψ 2 px + Ψ 2 py)

Διαβάστε περισσότερα

( ) Sine wave travelling to the right side

( ) Sine wave travelling to the right side SOUND WAVES (1) Sound wave: Varia2on of density of air Change in density at posi2on x and 2me t: Δρ(x,t) = Δρ m sin kx ωt (2) Sound wave: Varia2on of pressure Bulk modulus B is defined as: B = V dp dv

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAndMathsTutor.com June 2005 1. A car of mass 1200 kg moves along a straight horizontal road. The resistance to motion of the car from non-gravitational forces is of constant magnitude 600 N. The

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Chapter 7 Transformations of Stress and Strain

Chapter 7 Transformations of Stress and Strain Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1

Διαβάστε περισσότερα

What happens when two or more waves overlap in a certain region of space at the same time?

What happens when two or more waves overlap in a certain region of space at the same time? Wave Superposition What happens when two or more waves overlap in a certain region of space at the same time? To find the resulting wave according to the principle of superposition we should sum the fields

Διαβάστε περισσότερα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα

1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα IPHO_42_2011_EXP1.DO Experimental ompetition: 14 July 2011 Problem 1 Page 1 of 5 1. Ηλεκτρικό μαύρο κουτί: Αισθητήρας μετατόπισης με βάση τη χωρητικότητα Για ένα πυκνωτή χωρητικότητας ο οποίος είναι μέρος

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Nuclear Physics 5. Name: Date: 8 (1)

Nuclear Physics 5. Name: Date: 8 (1) Name: Date: Nuclear Physics 5. A sample of radioactive carbon-4 decays into a stable isotope of nitrogen. As the carbon-4 decays, the rate at which the amount of nitrogen is produced A. decreases linearly

Διαβάστε περισσότερα

Variational Wavefunction for the Helium Atom

Variational Wavefunction for the Helium Atom Technische Universität Graz Institut für Festkörperphysik Student project Variational Wavefunction for the Helium Atom Molecular and Solid State Physics 53. submitted on: 3. November 9 by: Markus Krammer

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ. PHY 396 T: SUSY Solutions for problem set #1. Problem 2(a): First of all, [D α, D 2 D α D α ] = {D α, D α }D α D α {D α, D α } = {D α, D α }D α + D α {D α, D α } (S.1) = {{D α, D α }, D α }. Second, {D

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Answer sheet: Third Midterm for Math 2339

Answer sheet: Third Midterm for Math 2339 Answer sheet: Third Midterm for Math 339 November 3, Problem. Calculate the iterated integrals (Simplify as much as possible) (a) e sin(x) dydx y e sin(x) dydx y sin(x) ln y ( cos(x)) ye y dx sin(x)(lne

Διαβάστε περισσότερα

6.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves .0 - Marine Hydrodynamics, Spring 005 Lecture.0 - Marine Hydrodynamics Lecture 6.4 Superposition of Linear Plane Progressive Waves. Oblique Plane Waves z v k k k z v k = ( k, k z ) θ (Looking up the y-ais

Διαβάστε περισσότερα

Three coupled amplitudes for the πη, K K and πη channels without data

Three coupled amplitudes for the πη, K K and πη channels without data Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216 Present status

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Lecture 21: Scattering and FGR

Lecture 21: Scattering and FGR ECE-656: Fall 009 Lecture : Scattering and FGR Professor Mark Lundstrom Electrical and Computer Engineering Purdue University, West Lafayette, IN USA Review: characteristic times τ ( p), (, ) == S p p

Διαβάστε περισσότερα

DETERMINATION OF FRICTION COEFFICIENT

DETERMINATION OF FRICTION COEFFICIENT EXPERIMENT 5 DETERMINATION OF FRICTION COEFFICIENT Purpose: Determine μ k, the kinetic coefficient of friction and μ s, the static friction coefficient by sliding block down that acts as an inclined plane.

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves: 3.0 Marine Hydrodynamics, Fall 004 Lecture 0 Copyriht c 004 MIT - Department of Ocean Enineerin, All rihts reserved. 3.0 - Marine Hydrodynamics Lecture 0 Free-surface waves: wave enery linear superposition,

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity CHAPTE () Electric Chrges, Electric Chrge Densities nd Electric Field Intensity Chrge Configurtion ) Point Chrge: The concept of the point chrge is used when the dimensions of n electric chrge distriution

Διαβάστε περισσότερα

Probability and Random Processes (Part II)

Probability and Random Processes (Part II) Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα