The Skeleton. Consists of bones, cartilage, joints, and ligaments Composed of 206 named bones grouped into two divisions
|
|
- Ακταίων Αλεξίου
- 5 χρόνια πριν
- Προβολές:
Transcript
1 The Skeleton Consists of bones, cartilage, joints, and ligaments Composed of 206 named bones grouped into two divisions Axial skeleton (80 bones) Appendicular skeleton (126 bones)
2 Bone Markings Bone markings may be: Elevations and Projections Processes that provide attachment for tendons and ligaments Processes that help form joints (articulations) Depressions and openings for passage of nerves and blood vessels
3 The Axial Skeleton Formed from 80 named bones Consists of skull, vertebral column, and bony thorax
4 The Skull Formed by cranial and facial bones The cranium serves to: Enclose brain Provide attachment sites for some head and neck muscles Facial bones serve to: Form framework of the face Form cavities for the sense organs of sight, taste, and smell Provide openings for the passage of air and food Hold the teeth Anchor muscles of the face Figure 7.2a
5 Overview of Skull Geography The skull contains approximately 85 named openings Foramina, canals, and fissures Provide openings for important structures Spinal cord Blood vessels serving the brain 12 pairs of cranial nerves
6 Overview of Skull Geography Facial bones form anterior aspect Cranium is divided into cranial vault and the base Internally, prominent bony ridges divide skull into distinct fossae cranial vault base
7 Overview of Skull Geography The skull contains smaller cavities Middle and inner ear cavities in lateral aspect of cranial base Nasal cavity lies in and posterior to the nose Orbits house the eyeballs Air-filled sinuses occur in several bones around the nasal cavity
8 Cranial Bones Formed from eight large bones Paired bones include Temporal bones Parietal bones Unpaired bones include Frontal bone Occipital bone Sphenoid bone Ethmoid bone
9 Sutures Four sutures of the cranium Coronal suture runs in the coronal plane Located where parietal bones meet the frontal bone Squamous suture occurs where each parietal bone meets a temporal bone inferiorly Sagittal suture occurs where right and left parietal bones meet superiorly Lambdoid suture occurs where the parietal bones meet the occipital bone posteriorly
10 Facial Bones Unpaired bones Mandible and vomer Paired bones Maxillae, zygomatics, nasals, lacrimals, palatines, and inferior nasal conchae
11 Special Parts of the Skull Orbits Nasal cavity Paranasal sinuses Hyoid bone
12 Orbits
13 Nasal Cavity
14 Nasal Septum Figure 7.9b
15 Paranasal Sinuses Air-filled sinuses are located within Frontal bone Ethmoid bone Sphenoid bone Maxillary bones Lined with mucous membrane Serve to lighten the skull
16 Paranasal Sinuses Figure 7.11a, b
17 The Hyoid Bone Lies inferior to the mandible The only bone with no direct articulation with any other bone Acts as a movable base for the tongue Figure 7.12
18 The Vertebral Column Formed from 26 bones in the adult Transmits weight of trunk to the lower limbs Surrounds and protects the spinal cord With vertebral curves, acts as shock absorber Serves as attachment sites for muscles of the neck and back Held in place by ligaments Anterior and posterior longitudinal ligaments Ligamentum flavum Supraspinus and interspinous ligaments
19 Intervertebral Discs Cushion-like pads between vertebrae Act as shock absorbers Compose about 25% of height of vertebral column Composed of nucleus pulposus and annulus fibrosis
20 Intervertebral Discs Nucleus pulposus The gelatinous inner sphere of intervertebral disc Enables spine to absorb compressive stresses Annulus fibrosis An outer collar of ligaments and fibrocartilage Contains the nucleus pulposus Functions to bind vertebrae together, resist tension on the spine, and absorb compressive forces
21 Ligaments and Intervertebral Discs Figure 7.14a
22 Ligaments and Intervertebral Discs Figure 7.14b, c
23 Regions and Normal Curvatures Vertebral column is about 70 cm (28 inches) Vertebral column is divided into five major regions Cervical vertebrae 7 vertebrae of the neck region Thoracic vertebrae 12 vertebrae of the thoracic region Lumbar vertebrae 5 vertebrae of the lower back Sacrum inferior to lumbar vertebrae articulates with coxal bones Coccyx most inferior region of the vertebral column
24 Regions and Normal Curvatures Four distinct curvatures give vertebral column an S-shape Cervical and lumbar curvatures concave posteriorly Thoracic and sacral curvatures convex posteriorly Curvatures increase the resilience of the spine
25 General Structure of Vertebrae
26 Regions Vertebral Characteristics Specific regions of the spine perform specific functions Types of movement that occur between vertebrae Flexion and extension Lateral flexion Rotation in the long axis
27 Cervical Vertebrae Seven cervical vertebrae (C 1 C 7 ) smallest and lightest vertebrae C 3 C 7 are typical cervical vertebrae Body is wider laterally Spinous processes are short and bifid (except C 7 ) Vertebral foramen are large and triangular Transverse processes contain transverse foramina Superior articular facets face superoposteriorly
28 Cervical Vertebrae
29 C 1 is termed the atlas The Atlas Lacks a body and spinous process Supports the skull Superior articular facets receive the occipital condyles Allows flexion and extension of neck Nodding the head yes
30 The Atlas
31 The Axis Has a body and spinous process Dens (odontoid process) projects superiorly Formed from fusion of the body of the atlas with the axis Acts as a pivot for rotation of the atlas and skull Participates in rotating the head from side to side Shaking the head to indicate no
32 Thoracic Vertebrae (T 1 T 12 ) All articulate with ribs Have heart-shaped bodies from the superior view Each side of the body bears demifacts for articulation with ribs T 1 has a full facet for the first rib T 10 T 12 only have a single facet
33 Thoracic Vertebrae Spinous processes are long and point inferiorly Vertebral foramen are circular Transverse processes articulate with tubercles of ribs Superior articular facets point posteriorly Inferior articular processes point anteriorly Allows rotation and prevents flexion and extension
34 Lumbar Vertebrae (L 1 L 5 ) Bodies are thick and robust Transverse processes are thin and tapered Spinous processes are thick, blunt, and point posteriorly Vertebral foramina are triangular Superior and inferior articular facets directly medially Allows flexion and extension rotation prevented
35 Sacrum (S 1 S 5 ) Shapes the posterior wall of pelvis Formed from 5 fused vertebrae Superior surface articulates with L 5 Inferiorly articulates with coccyx Sacral promontory where the first sacral vertebrae bulges into pelvic cavity Center of gravity is 1 cm posterior to sacral promontory
36 Sacrum Sacral foramina Ventral foramina passage for ventral rami of sacral spinal nerves Dorsal foramina passage for dorsal rami of sacral spinal nerves
37 Coccyx Is the "tailbone" Formed from 3-5 fused vertebrae Offers only slight support to pelvic organs
38 Bony Thorax Forms the framework of the chest Components of the bony thorax Thoracic vertebrae posteriorly Ribs laterally Sternum and costal cartilage anteriorly Protects thoracic organs Supports shoulder girdle and upper limbs Provides attachment sites for muscles
39 The Bony Thorax
40 The Bony Thorax Figure 7.19b
41 Sternum Formed from 3 sections Manubrium superior section Articulates with medial end of clavicles Body bulk of sternum Sides are notched at articulations for costal cartilage of ribs 2-7 Xiphoid process inferior end of sternum Ossifies around age 40
42 Sternum Anatomical landmarks Jugular notch central indentation at superior border of the manubrium Sternal angle a horizontal ridge where the manubrium joins the body
43 Ribs All ribs attach to vertebral column posteriorly True ribs - superior seven pairs of ribs True because? They attach to sternum by their own costal cartilage False ribs inferior five pairs of ribs False because? They attach via inferior true rib costal cartilage, or not at all. As in Floating ribs no attachment anteriorly
44 Ribs Figure 7.20a
45 Disorders of the Axial Skeleton Abnormal spinal curvatures Scoliosis an abnormal lateral curvature Kyphosis an exaggerated thoracic curvature Lordosis an accentuated lumbar curvature "swayback" Stenosis of the lumbar spine a narrowing of the vertebral canal
46 Bones, Part 2: The Appendicular Skeleton
47 The Appendicular Skeleton Pectoral girdle attaches the upper limbs to the trunk (axial skeleton) Pelvic girdle attaches the lower limbs to the trunk (axial skeleton) Upper and lower limbs share the same structural plan, however function is different... sometimes
48 The Pectoral Girdle Consists of the clavicle and the scapula Pectoral girdles do not quite encircle the body completely The medial ends of the clavicles articulate with the manubrium and first rib Laterally the ends of the clavicles join the scapulae Scapulae do not join each other or the axial skeleton
49 The Pectoral Girdle Provides attachment for Superficial musculature many muscles that move the upper limb Girdle is very light and upper limbs are mobile Only clavicle articulates with the axial skeleton Socket of the shoulder joint (glenoid cavity) is shallow Good for flexibility bad for stability deep musculature
50 Structurally: Clavicles Extend horizontally across the superior thorax Sternal end articulates with the manubrium Acromial end articulates with scapula Functionally: Provide attachment for muscles Hold the scapulae and arms laterally Transmit compression forces from the upper limbs to the axial skeleton
51 Scapulae Lie on the dorsal surface of the rib cage Located between ribs 2-7 Have three borders Superior, medial (vertebral), and lateral (axillary) Have three angles Lateral, superior, and inferior Has pronounced spine which divides the posterior surface into a supraspinous fossa & an infraspinous fossa
52 Structures of the Scapula
53 Structures of the Scapula Figure 8.2c
54 The Upper Limb 30 bones form each upper limb Grouped into bones of the: Arm Forearm Hand
55 Arm Region of the upper limb between the shoulder and elbow Humerus the only bone of the arm Longest and strongest bone of the upper limb Articulates with the scapula at the shoulder Articulates with the radius and ulna at the elbow
56 Structures of the Humerus of the Right Arm
57 Forearm Formed from the radius and ulna Proximal ends articulate with the humerus Distal ends articulate with carpals Radius and ulna articulate with each other At the proximal and distal radioulnar joints Interconnected by a ligament the interosseous membrane In anatomical position, the radius is lateral and the ulna is medial
58 Details of Arm and Forearm Figure 8.5a
59 Ulna Main bone responsible for forming the elbow joint with the humerus Hinge joint allows forearm to bend on arm Distal end is separated from carpals by fibrocartilage Plays little to no role in hand movement
60 Radius Superior surface of the head of the radius articulates with the capitulum Medially the head of the radius articulates with the radial notch of the ulna Contributes heavily to the wrist joint Distal radius articulates with carpal bones When radius moves, the hand moves with it
61 Radius and Ulna Figure 8.4a-c
62 Hand Includes the following bones Carpus wrist Metacarpals palm Phalanges fingers
63 Carpus Forms the true wrist the proximal region of the hand Gliding movements occur between carpals Composed of eight marble-sized bones Carpal bones arranged in two irregular rows Proximal row from lateral to medial Scaphoid, lunate, triquetral (triquetrium), and pisiform Distal row from lateral to medial Trapezium, trapezoid, capitate, and hamate Acronym: SLTPTTCH (Some Lovers Try Positions That They Can t Handle)
64 Bones of the Hand
65 Metacarpals & Phalanges Five metacarpals radiate distally from the wrist Metacarpals form the palm Numbered 1 5, beginning with the pollex (thumb) Articulate proximally with the distal row of carpals Articulate distally with the proximal phalanges Phalanges Numbered 1 5, beginning with the pollex (thumb) Except for the thumb, each finger has three phalanges Proximal, middle, and distal
66 Pelvic Girdle Attaches lower limbs to the spine Supports visceral organs Attaches to the axial skeleton by strong ligaments Acetabulum is a deep cup that holds the head of the femur Lower limbs have less freedom of movement Are more stable than the arm Consists of paired hip bones (coxal bones) Hip bones unite anteriorly with each other Articulates posteriorly with the sacrum
67 Bony Pelvis A deep, basin-like structure Formed by coxal bones, sacrum, and coccyx
68 Coxal Bones Consist of three separate bones in childhood Ilium, ischium, and pubis Bones fuse retain separate names to regions of the coxal bones Acetabulum deep hemispherical socket on lateral pelvic surface
69 Lateral and Medial Views of the Hip Bone Figure 8.7b, c
70 True and False Pelves Bony pelvis is divided into two regions False (greater) pelvis bounded by alae of the iliac bones True (lesser) pelvis inferior to pelvic brim Forms a bowl containing the pelvic organs
71 Female & Male Pelvis Major differences between the male and female pelvis Female pelvis is adapted for childbearing Pelvis is lighter, wider, and shallower than in the male Provides more room in the true pelvis Male pelvis is adapted for heavy load handling Acetabulum are larger and wider Coxae bones are thicker Shape Female pelvis is tilted forward to a greater degree than the male pelvis Female pelvis has a round pelvic inlet, while the male pelvic inlet is more heartshaped
72 Female and Male Pelves Table 8.2
73 Female and Male Pelves
74 The Lower Limb Carries the entire weight of the erect body Bones of lower limb are thicker and stronger than those of upper limb Divided into three segments Thigh - femur Leg tibia & fibula Foot tarsals, metatarsals, phalanges
75 Thigh The region of the lower limb between the hip and the knee Femur the single bone of the thigh Longest and strongest bone of the body Ball-shaped head articulates with the acetabulum
76 Patella Triangular sesamoid bone Imbedded in the tendon that secures the quadriceps muscles Protects the knee anteriorly Improves leverage of the thigh muscles across the knee
77 Leg Refers to the region of the lower limb between the knee and the ankle Composed of the tibia and fibula Tibia more massive medial bone of the leg Receives weight of the body from the femur Fibula stick-like lateral bone of the leg Stabilizes the leg Interosseous membrane connects the tibia and fibula
78 The Foot Foot is composed of: Tarsus, metatarsus, and the phalanges Important functions Supports body weight Acts as a lever to propel body forward when walking Segmentation makes foot pliable and adapted to uneven ground
79 Tarsus Makes up the posterior half of the foot Contains seven bones called tarsals Talus, Calcaneous, Navicular, Cuboid, First, Second and Third Cuneiform Acronym: TCNCCCC The Crazy Nurse Can t Count Children Correctly Body weight is primarily borne by the talus and calcaneus
80 Metatarsus & Phalanges Consists of five small long bones called metatarsals Numbered 1 5 beginning with the hallux (great toe) First metatarsal supports body weight 14 phalanges of the toes Smaller and less nimble than those of the fingers Structure and arrangement are similar to phalanges of fingers Except for the great toe, each toe has three phalanges Proximal, middle, and distal
81 Arches of the Foot Foot has three important arches Medial and lateral longitudinal arch Transverse arch Arches are maintained by: Interlocking shapes of tarsals Ligaments and tendons
82 Disorders of the Appendicular Bone fractures Bone spurs Skeleton Hip dysplasia head of the femur slips out of acetabulum Clubfoot soles of the feet turn medially
ΓΛΩΣΣΑΡΙ. Αρθρική κοτύλη. Εμπρόσθιο χείλος. Μικρή κεφαλή. Κοιλότητα Αυχενικοί σπόνδυλοι. Κορωνοειδής απόφυση. Μετωποβρεγματική ραφή.
ΓΛΩΣΣΑΡΙ Αγγλικός όρος Acetabulum Acromial process Anterior crest Arch Body of Sternum Calcaneus Capitate Capitulum Carpals Cavity Cervical Clavicle Coccyx Coracoid process Coronal suture Coronoid process
ESP. The human body. Anatomy (simplified) Class B
ESP The human body Anatomy (simplified) Class B 2015-2016 The body The human face Input (εισαγωγή) Sensor (αισθητήρας) Visual (οπτικός) (eye) Auditory (ακουστικός) (ear) Olfactory (οσφρητικός) (nose) Taste
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Κεφάλαιο 2. ΜΕΛΕΤΗ ΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΣΚΕΛΕΤΙΚΗΣ ΔΟΜΗΣ
Κεφάλαιο 2. ΜΕΛΕΤΗ ΤΗΣ ΑΝΘΡΩΠΙΝΗΣ ΣΚΕΛΕΤΙΚΗΣ ΔΟΜΗΣ Σύνοψη Στο παρόν κεφάλαιο γίνεται αναλυτική παρουσίαση του ανθρώπινου σκελετού. Οι πληροφορίες που παρέχονται, όπως και αυτές του προηγούμενου κεφαλαίου,
Section 9.2 Polar Equations and Graphs
180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify
ΠΕΡΙΓΡΑΜΜΑ ΕΙΣΗΓΗΣΕΩΝ ΚΙΝΗΣΙΟΛΟΓΙΑΣ 0903
MINISTRY OF NATIONAL EDUCATION AND RELIGIOUS AFFAIRS MANAGING AUTHORITY OF THE OPERATIONAL PROGRAMME EDUCATION AND INITIAL VOCATIONAL TRAINING EUROPEAN COMMUNITY Co financing European Social Fund (E.S.F.)
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
Ειδικές Προβολές Άνω Άκρου
Ειδικές Προβολές Άνω Άκρου Χειμερινό Εξάμηνο 2018-2019 Περικλής Παπαβασιλείου Ειδικές Προβολές Καρπού A) ΟΠ προβολή καρπού με ωλένια απόκλιση B) ΟΠ προβολή καρπού με κερκιδική απόκλιση Προβολές Καρπού
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations
//.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is
Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³
Code Breaker. TEACHER s NOTES
TEACHER s NOTES Time: 50 minutes Learning Outcomes: To relate the genetic code to the assembly of proteins To summarize factors that lead to different types of mutations To distinguish among positive,
[1] P Q. Fig. 3.1
1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One
A, B. Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts in depth shown on diagram.
Corner Joints Machining, Frame edge sealing. Page ID: frame01 D D C A, B A C B C A 20 60 Before installation of the foam parts (A,B,C,D) into the chambers we put silicone around. We insert the foam parts
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Υφίζηση των ούλων σε παιδιά νηπιακής και εφηβικής ηλικίας
ΠΑΙΔΟΔΟΝΤΙΑ 2015 29(2): 65-74 65 Υφίζηση των ούλων σε παιδιά νηπιακής και εφηβικής ηλικίας *. Παιδοδοντίατρος **. Οδοντίατρος ***. Επίκουρος Καθηγητής ΕΚΠΑ-Περιοδοντολόγος Ρουμάνη Θ. *, Μπαχλαβά Ε. **,
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,
CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.
Right Rear Door. Let's now finish the door hinge saga with the right rear door
Right Rear Door Let's now finish the door hinge saga with the right rear door You may have been already guessed my steps, so there is not much to describe in detail. Old upper one file:///c /Documents
Assalamu `alaikum wr. wb.
LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
the total number of electrons passing through the lamp.
1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Ανατοµία Βασικών Γαγγλίων. Δηµήτριος Μυτιληναίος
Ανατοµία Βασικών Γαγγλίων Δηµήτριος Μυτιληναίος Στόχοι 1. Ορισµός των βασικών γαγγλίων (Β.Γ.) 2. Περιγραφή της ανατοµικής θέσης και των ανατοµικών σχέσεων των Β.Γ. 3. Περιγραφή των συνδέσεων και των βασικών
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ342: Βάσεις Δεδομένων. Χειμερινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ. Επερωτήσεις SQL
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ342: Βάσεις Δεδομένων Χειμερινό Εξάμηνο 2013 Φροντιστήριο 10 ΛΥΣΕΙΣ Επερωτήσεις SQL Άσκηση 1 Για το ακόλουθο σχήμα Suppliers(sid, sname, address) Parts(pid, pname,
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΓΕΩΠΟΝΙΑΣ, ΔΑΣΟΛΟΓΙΑΣ ΚΑΙ ΦΥΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΤΜΗΜΑ ΓΕΩΠΟΝΙΑΣ ΤΟΜΕΑΣ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ ΙΩΑΝΝΗ ΑΘ. ΠΑΠΑΪΩΑΝΝΟΥ Πτυχιούχου Γεωπόνου Κατόχου Μεταπτυχιακού
Ευκαµψία & Ευλυγισία. Γιάννης Κουτεντάκης, BSc, MA. PhD. Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας
Ευκαµψία & Ευλυγισία Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός Παράγοντες που επιδρούν τα µεγέθη ευκαµψίας & ευλυγισίας Οφέλη Σχετίζεται
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ξενόγλωσση Τεχνική Ορολογία Ενότητα: Principles of an Internal Combustion Engine Παναγιώτης Τσατσαρός Τμήμα Μηχανολόγων Μηχανικών
(C) 2010 Pearson Education, Inc. All rights reserved.
Connectionless transmission with datagrams. Connection-oriented transmission is like the telephone system You dial and are given a connection to the telephone of fthe person with whom you wish to communicate.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ιπλωµατική Εργασία του φοιτητή του τµήµατος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Ηλεκτρονικών
8.1. ΣΕΤ ΕΞΑΡΤΗΜΑΤΩΝ ΟΡΘΟΠΕΔΙΚΩΝ ΕΠΕΜΒΑΣΕΩΝ A/A ΦΩΤΟΓΡAΦΙA ΠΕΡΙΓΡAΦΗ ΔΙAΚΗΡΥΞΗΣ ΠΕΡΙΓΡAΦΗ MAQUET ΚΩΔΙΚΟΣ
8.1. ΣΕΤ ΕΞΑΡΤΗΜΑΤΩΝ ΟΡΘΟΠΕΔΙΚΩΝ ΕΠΕΜΒΑΣΕΩΝ A/A ΦΩΤΟΓΡAΦΙA ΠΕΡΙΓΡAΦΗ ΔΙAΚΗΡΥΞΗΣ ΠΕΡΙΓΡAΦΗ MAQUET ΚΩΔΙΚΟΣ ΠΟΣΟ ΤΗΤA (ΤΜΧ) 8.1.1 Μαξιλάρι για επεμβάσεις μεσοσπονδύλιου δίσκου Special pad for spinal surgery,
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΤΗΣ ΣΥΓΚΡΑΤΗΤΙΚΗΣ ΙΚΑΝΟΤΗΤΑΣ ΟΡΙΣΜΕΝΩΝ ΠΡΟΚΑΤΑΣΚΕΥΑΣΜΕΝΩΝ ΣΥΝΔΕΣΜΩΝ ΑΚΡΙΒΕΙΑΣ
ΚΑΡΠΟΥΖΙ / WATERMELON a b
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ REPUBLIC OF GREECE ΥΠΟΥΡΓΕΙΟ AΓΡΟΤΙΚΗΣ ΑΝΑΠΤΥΞΗΣ ΠΕΡΙΓΡΑΦΙΚΟ ΔΕΛΤΙΟ MINISTRY OF RURAL DEVELOPMENT ΚΑΙ ΤΡΟΦΙΜΩΝ DESCRIPTION FORM AND FOOD ΙΝΣΤΙΤΟΥΤΟ ΕΛΕΓΧΟΥ ΠΟΙΚΙΛΙΩΝ VARIETY RESEARCH
(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)
Q1. (a) A fluorescent tube is filled with mercury vapour at low pressure. In order to emit electromagnetic radiation the mercury atoms must first be excited. (i) What is meant by an excited atom? (1) (ii)
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1
Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Section 1: Listening and responding. Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016
Section 1: Listening and responding Presenter: Niki Farfara MGTAV VCE Seminar 7 August 2016 Section 1: Listening and responding Section 1: Listening and Responding/ Aκουστική εξέταση Στο πρώτο μέρος της
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님
상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님 Motivation Bremsstrahlung is a major rocess losing energies while jet articles get through the medium. BUT it should be quite different from low energy
Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.
Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author. 2012, Γεράσιμος Χρ. Σιάσος / Gerasimos Siasos, All rights reserved. Στοιχεία επικοινωνίας συγγραφέα / Author
Τελική Εξέταση =1 = 0. a b c. Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. HMY 626 Επεξεργασία Εικόνας
Τελική Εξέταση. Logic Operations () In the grid areas provided below, draw the results of the following binary operations a. NOT(NOT() OR ) (4) b. ( OR ) XOR ( ND ) (4) c. (( ND ) XOR ) XOR (NOT()) (4)
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
Instruction Execution Times
1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ
ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?
HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? The point on the horizontal axis such that of the area under the histogram lies to the left of that point (and to the right) What
Αναερόβια Φυσική Κατάσταση
Αναερόβια Φυσική Κατάσταση Γιάννης Κουτεντάκης, BSc, MA. PhD Αναπληρωτής Καθηγητής ΤΕΦΑΑ, Πανεπιστήµιο Θεσσαλίας Περιεχόµενο Μαθήµατος Ορισµός της αναερόβιας φυσικής κατάστασης Σχέσης µε µηχανισµούς παραγωγής
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Εισαγωγή στην Ιατρική Φυσική - Φυσική του σκελετού
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Εισαγωγή στην Ιατρική Φυσική - Φυσική του σκελετού Ακαδ. έτος 2008-2009 - Διδάσκουσα: Μυρσίνη Μακροπούλου ΦΥΣΙΚΗ ΤΟΥ ΣΚΕΛΕΤΟΥ Η εξέλιξη του ανθρώπινου
ΣΠΟΝΔΥΛΙΚΗ ΣΤΗΛΗ Ο.Μ.Σ.Σ. ΙΕΡΟ - ΚΟΚΚΥΓΑΣ ΓΑΛΑΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ
ΣΠΟΝΔΥΛΙΚΗ ΣΤΗΛΗ Ο.Μ.Σ.Σ. ΙΕΡΟ - ΚΟΚΚΥΓΑΣ ΓΑΛΑΝΟΠΟΥΛΟΥ ΑΓΓΕΛΙΚΗ π - ο προβολή Ο.Μ.Σ.Σ. ύπτιος κάμψη γονάτων ισχίων οσφυϊκής λόρδωσης Π.Α.Λ.Α. ισαπέχουν από τραπέζι (όχι στροφή) προστασία γονάδων επικέντρωση:
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Section 8.2 Graphs of Polar Equations
Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation
Writing for A class. Describe yourself Topic 1: Write your name, your nationality, your hobby, your pet. Write where you live.
Topic 1: Describe yourself Write your name, your nationality, your hobby, your pet. Write where you live. Χρησιμοποίησε το and. WRITE your paragraph in 40-60 words... 1 Topic 2: Describe your room Χρησιμοποίησε
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ
ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Ενότητα 12: Συνοπτική Παρουσίαση Ανάπτυξης Κώδικα με το Matlab Σαμαράς Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
_05 _15 _21 _25 _33 _37 _41 _43. Aυχένας / Ώμος / Πλάτη / Αγκώνας / Καρπός Νeck / Shoulder / Back / Eblow / Wrist
Aυχένας / Ώμος / Πλάτη / Αγκώνας / Καρπός Νeck / Shoulder / Back / Eblow / Wrist Kορμός & Πλευρά / Κοιλία Torso & Rib / Abdomen Mέση / Κηλεπίδεσμοι Waist / Trusses Γόνατο / Αστράγαλος Κnee / Ankle Βαδιστικά
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ. ιπλωµατική Εργασία. της ΘΕΟ ΟΣΟΠΟΥΛΟΥ ΕΛΕΝΗΣ ΜΣ:5411
Παρακίνηση εργαζοµένων: Ο ρόλος του ηγέτη στην παρακίνηση των εργαζοµένων. ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΣΤΗ ΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ιπλωµατική Εργασία της ΘΕΟ ΟΣΟΠΟΥΛΟΥ ΕΛΕΝΗΣ ΜΣ:5411 ΠΑΡΑΚΙΝΗΣΗ
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
Νευροφυσιολογία και Αισθήσεις
Biomedical Imaging & Applied Optics University of Cyprus Νευροφυσιολογία και Αισθήσεις ιάλεξη 14 Κίνηση από τον Νωτιαίο Μυελό (Spinal Control of Movement) Εισαγωγή Κινητικά Συστήµατα Μύες και νευρώνες
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
Section 7.6 Double and Half Angle Formulas
09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΠΑΡΑΔΟΤΕΟ ΕΠΙΣΤΗΜΟΝΙΚΗ ΕΡΓΑΣΙΑ ΣΕ ΔΙΕΘΝΕΣ ΕΠΙΣΤΗΜΟΝΙΚΟ ΠΕΡΙΟΔΙΚΟ
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙ ΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Α.Σ.ΠΑΙ.Τ.Ε.) «Αρχιμήδης ΙΙΙ Ενίσχυση Ερευνητικών ομάδων στην Α.Σ.ΠΑΙ.Τ.Ε.» Υποέργο: 8 Τίτλος: «Εκκεντρότητες αντισεισμικού σχεδιασμού ασύμμετρων
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Démographie spatiale/spatial Demography
ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Démographie spatiale/spatial Demography Session 1: Introduction to spatial demography Basic concepts Michail Agorastakis Department of Planning & Regional Development Άδειες Χρήσης
13111203 P.R.O. Tri Sprint Suit
13111203 P.R.O. Tri Sprint Suit The P.R.O. Tri Sprint Suit features our Transfer Repel fabric which is hydrodynamic perfect for short distance races such as sprint or Olympic but can also be worn over
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Mechanics of Materials Lab
Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα. Ξενόγλωσση Τεχνική Ορολογία. Ενότητα: An Introduction to Tribology
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ξενόγλωσση Τεχνική Ορολογία Ενότητα: An Introduction to Tribology Παναγιώτης Τσατσαρός Τμήμα Μηχανολόγων Μηχανικών ΤΕ Άδειες Χρήσης
Vol. 32, pp , 2004 : neurocentral synchondrosis. No Fig Figs. 1 & 2. synchondrosis.
551 Vol. 32, pp. 551559, 2004 : 16 12 20 neurocentral synchondrosis 38 37 No. 372 1 0 16 3 8 Fig. 1 123456 Figs. 1 & 2 centrum 1 45 neurocentral synchondrosis 7891011 7 33 552 Figure 1. Ossification centers
ORTHOPAEDICS. Activity Reimbursement (indicative price 15) Consultation New patient office visit Πρώτη επίσκεψη Follow-up consultation
ORTHOPAEDICS Consultation New patient office visit Πρώτη επίσκεψη 3.50 52.50 Follow-up consultation Established patient office visit (Follow-up) Επιπρόσθετη επίσκεψη 2.00 30.00 Total Application, cast;
Muscles of the Hip & Thigh
ΠΑΝΕΠΙςΤΗΜΙΟ ΘΕςςΑΛΙΑς ΤΜΗΜΑ ΕΠΙςΤΗΜΗς, ΦΥςΙΚΗς ΑΓΩΓΗς & ΑΘΛΗΤΙςΜΟΥ Muscles of the Hip & Thigh Μαρία Πολυμέρου Διδάσκουσα στο Τεφαα-ΠΘ Mpolymer@pe.uth.gr GLUTEUS MAXIMUS= ΜΕΙΖΩΝ ΓΛΟΥΤΙΑΙΟς Basic functional
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/
Μορφοποίηση υπό όρους : Μορφή > Μορφοποίηση υπό όρους/γραμμές δεδομένων/μορφοποίηση μόο των κελιών που περιέχουν/ Συνάρτηση round() Περιγραφή Η συνάρτηση ROUND στρογγυλοποιεί έναν αριθμό στον δεδομένο
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΝΑΥΤΙΛΙΑΚΩΝ ΣΠΟΥΔΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΝΟΜΙΚΟ ΚΑΙ ΘΕΣΜΙΚΟ ΦΟΡΟΛΟΓΙΚΟ ΠΛΑΙΣΙΟ ΚΤΗΣΗΣ ΚΑΙ ΕΚΜΕΤΑΛΛΕΥΣΗΣ ΠΛΟΙΟΥ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ που υποβλήθηκε στο
Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw
Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships